
UNIVERSITY OF UDINE

DEPARTMENT OF MATHEMATICS, COMPUTER AND PHYSICAL SCIENCE

READERSOURCING 2.0

TECHNICAL DOCUMENTATION

MICHAEL SOPRANO AND STEFANO MIZZARO

v1.0-alpha

Contents

List of Figures 2

List of Tables 3

1 Introduction 4

2 General Architecture 4

3 RS Server 5

3.1 Implementation and Technology . 5

3.2 Communication Paradigm . 6

3.3 Database . 7

3.4 Class Diagram . 10

4 RS PDF 10

4.1 Implementation and Technology . 12

4.2 Package Diagram . 13

4.3 Class Diagram . 14

4.4 Commmand Line Interface . 14

5 RS Rate 17

5.1 Implementation and Technology . 17

References 18

1

List of Figures

1 General architecture of Readersourcing 2.0. 4

2 Intuitive scheme of the MVC pattern (NOT UML). 5

3 Entity-Relationship schema of the database (NOT UML). 9

4 Class diagram of RS Server. 11

5 Representation of the token-based authentication process (NOT UML). . . . 12

6 Package diagram of RS PDF. 13

7 Class diagram of RS PDF. 15

2

List of Tables

1 Subset of the RESTFul interface of RS Server. 8

2 Command line options of RS PDF. 16

3

1 Introduction

This technical documentation provides an overview of Readersourcing 2.0. Initially, a

recap of its general architeture is presented and subsequently, for each of its components,

a brief recap of their role and purpose is presented along with some specific aspects, such

as the technology used, the internal architecture, the structure of the database and more.

This is done by using different types of diagrams belonging to the UML standard (unless

otherwise specified) which are drew according to the set of style rules for that standard

proposed by Fowler [1].

2 General Architecture

Readersourcing 2.0 is composed of more than one application. Indeed, there must be

one application that acts as a server to gather all the ratings given by readers and one that

acts as a client to allow readers to effectively rate publications. There is one additional

component since the task of editing files encoded in PDF format is carried out by an ad hoc

software library exploited by the server side application. An overview of the architecture of

Readersourcing 2.0 is shown in Figure 1.

Figure 1: General architecture of Readersourcing 2.0.

4

Figure 2: Intuitive scheme of the MVC pattern (NOT UML).

3 RS Server

RS Server [4] is the server-side application which has the task to aggregate the ratings

given by readers and to use the RSA and TRA models to compute quality scores for read-

ers and publications. An instance of the server-side application is deployed along one of

RS PDF. Then, there are up to n different browsers of as many users which communicate

with the server and every one of them has an instance of RS Rate, which is the true client.

Both RS PDF and RS Rate will be described in the following. This setup means that every

interaction between readers and server is carried out through clients installed on readers’

browsers and these clients have to handle the registration and authentication of readers, the

rating action and the download action of edited publications.

3.1 Implementation and Technology

The technology used to develop RS Server is an open-source web application framework

called Ruby on Rails1 (it is also called RoR or Rails only; more specifically, Rails is the

framework built above Ruby, the actual programming language). It allows to build applica-

tions strongly based on an architectural design pattern called Model-View-Controller (often

abbreviated as MVC).

The MVC pattern allows to separate the control logic of the program from data presen-

tation and business logic. Thefore, it allows to obtain an effective architecture since the first

moments of its design phase. An intuitive representation of the structure that this pattern

allows to obtain is shown in Figure 2. This structure consists of three distinct entities, called

Controller, Model and View. These entities have the task of, respectively, managing control

logic, encapsulating business logic and implementing data presentation.

1https://rubyonrails.org/

5

https://rubyonrails.org/

The Controller has direct access to the Model and to the View; from the latter, generally,

it receives the user input and on its basis the Controller itself updates the internal state of

the Model using its methods. Finally, the Controller sends the updated Model to the View,

which is then exploited by the View itself to obtain and display the results of the processing.

A generic software can have more than one Controller, where each of them can manage

more than one Model instances. In MVC frameworks dedicated to the development of web

applications such as Rails, in fact, it is common practice to have a number of Controllers

equal to the number of entities modeled within the application domain. Furthermore, there

may be more than one View implementation to present the internal state of a specific type

of Model.

The use of MVC pattern is not the only founding principle of Rails. One of the most

important principles on which Rails itself is based for the developement of quality applica-

tions is “Convention Over Configuration”. In other words, the framework tries to minimize

the decisions that the developer must take during the construction of its application by

adopting standard conventions that he can modify if he needs more flexibility. The founding

principles of Rails can be deepened by reading the so-called Rails Doctrine2.

As a last note, Rails is a continuously developing framework and is used industrially by

several well-known industry players such as GitHub, SoundCloud, Airbnb and others. It is,

therefore, a widespread and appreciated technology, for which there is an active community

and a lot of learning material.

3.2 Communication Paradigm

The use of a modern MVC framework such as Rails allows to develop various kind of

web applications. One of the possibilities is to create a Web Service, which is a software

component capable of carrying out various operations made remotely available through the

exchange of messages encoded in a standard interchange format such as JSON, all thanks to

a transport layer built above the basic Internet protocols like HTTP. All this, however, must

be carried out according to a paradigm that defines precisely what are the functionalities

(resources and operations) actually available and which messages must be received in order

to access them.

One of the possible communication paradigms for Web Services is RESTful (REpresen-

tational State Transfer). Within this paradigm, the functionalities of a Web Service are

represented by resources identified by different URIs and the type of HTTP message sent

establishes the operation to be performed. The result of the operation initiated by the

message received from the Web Service is a new message encoded according to same inter-

change format of the one which has been sent and it is the client’s responsibility to correctly

interpret and use the response of the Web Service itself.

RS Server, therefore, is a Web Service (Server API-Only, according to Rails terminology)

based on a communication paradigm composed of RESTful interfaces and on the exchange

2https://rubyonrails.org/doctrine/

6

https://rubyonrails.org/doctrine/

of messages encoded in JSON format through the transport layer provided by the HTTP

protocol.

The communication interface of RS Server is constantly evolving and, for this reason, it

makes no sense to fully include it in this document. However, it is possible to consult it

freely and to see examples of requests that can be made by visiting the URL below.

https://web.postman.co/collections/4632696-c26fc049-7021-4691-b

eb3-97cebfb60adb?workspace=8a3ef37e-60b1-4b49-8782-e73d2a6e3a8c

To provide an example, a subset of the RESTFul interface of RS Server is shown in Table

1. These operations are all those available to handle one of the entities of the application

domain, namely the publications. Let’s then suppose that a user triggers a show operation

for a publications characterized by an identifier equal to 1 by visiting the corresponding

endpoint. The JSON-encoded response of RS Server would be something like the one below.

1 {
2 "id": 1,

3 "doi": "10.1140/epjc/s10052-018-6047-y",

4 "title": "Uncertainties in WIMP dark matter scattering revisited",

5 "author": "John Ellis",

6 "creator": "Springer",

7 "producer": null,

8 "...": ...,

9 "created_at": "2018-08-02T13:27:46.988Z",

10 "updated_at": "2018-08-02T13:27:49.135Z",

11 "...": ...,

12 }

3.3 Database

To implement the storage of edited publications, user authentication and the other func-

tionalities it is necessary to define the structure of a database, which is indeed shown in

Figure 3. There are three entities modeled within the application domain of Readersourcing

2.0:

• Users: models the users of the system itself, which are characterized by their personal

data and an optional ORCID ;

• Ratings: models the ratings given by readers of publications which are characterized

by a score;

7

https://web.postman.co/collections/4632696-c26fc049-7021-4691-beb3-97cebfb60adb?workspace=8a3ef37e-60b1-4b49-8782-e73d2a6e3a8c
https://web.postman.co/collections/4632696-c26fc049-7021-4691-beb3-97cebfb60adb?workspace=8a3ef37e-60b1-4b49-8782-e73d2a6e3a8c

Endpoint
HTTP

Message
Operation Description

/publications.json GET Index Fetches the entire collection of Publica-

tions.

/publications/1.json GET Show Returns the Publication with identifier

equal to 1.

/publications/lookup.json POST Lookup Searches for a Publication; if it doesn’t

exists, it is fetched from the given URL.

/publications/random.json GET Random Returns a random Publication.

/publications/1/is rated.json GET Is Rated Checks if the Publication with identifier

equal to 1 has been rated by at least one

reader.

/publications.json POST Create Creates a new Publication.

/publications/fetch.json POST Fetch Fetches a Publication from the given

URL.

/publications/refresh.json GET Refresh Fetches again an existing Publication.

/publications/1.json PUT Update Updates the Publication with identifier

equal to 1.

/publications/1.json DELETE Delete Deletes the Publication with identifier

equal to 1.

.

Table 1: Subset of the RESTFul interface of RS Server.

8

Figure 3: Entity-Relationship schema of the database (NOT UML).

• Publications: models the publications rated by their readers which are characterized

by an optional DOI, by various metadata and by a whole series of attributes used to

manage the paths on the server filesystem in order to guarantee a correct storage of

the original and edited files encoded in PDF format.

Moreover, each of these entities is characterized by further attributes (steadiness, infor-

mativeness, . . .) which represent the scores/parameters computed by the Readersourcing

models.

In the schema shown in Figure 3 are also represented two relationships (gives and re-

lated to) that exist between these three entities. These relationships allow to “tie together”

the entities to which they refer and they ensure compliance with the referential integrity

constraint.

In particular, the gives relation establishes that a user can give [0, . . . , n] different ratings,

while a single rating can be expressed at most by a user. At first glance, the multiplicity

equal to 0 described by the schema shown in Figure 3 regarding users may seem strange.

The meaning of this constraint is to allow the expression of anonymous ratings. Likewise,

the relation related to establishes that a rating is relative to a certain publication, while

a publication can be characterized by [1, . . . , n] different ratings. Moreover, this structure

allows to comply in a “natural” way with other constraints, such as the fact that if at least

at least one publication does not exist, no ratings have to exist.

9

3.4 Class Diagram

Figure 4 shows a diagram of the main classes of RS Server. As one can see, the convention

for which there is an MVC triple for each of the entities modeled in the application domain

is followed, althought Views are not shown in the diagram because in this case they are just

methods. The Controller methods represent actions that a user can perform on individual

entities or on collections of them, thus mapping the endpoints of the communication protocol

used in order to allow the communication between RS Server and the instances of RS Rate.

As for the Models, their attributes represent the characteristics of the reference entity, while

their methods encapsulate the business logic.

Furthermore, there are two additional Controllers3 responsible for managing user au-

thentication. RS Server, as specified previously, is a Web Service; this means that the user

interface is presented directly on the instances of RS Rate and, therefore, those instances

send messages to which RS Server responds once the necessary processing has been com-

pleted, according to the RESTful communication paradigm. Because of this design choice,

it is not possible to use the “classic” server-side approach to user authentication accord-

ing to which some information relative to the logged user are saved in the session data,

since RESTful paradigm is stateless. To be able to authenticate himself, therefore, the user

client must attach to each request a token that identifies its user as valid within the system.

Therefore, a token-based authentication approach has been implemented.

When a user performs the first request to RS Server since some time, he must fill in the

login form. If these inserted credentials exist in the database they are encrypted (a payload

is obtained) and used together with a unique signature to create an alphanumeric JSON

string, i.e. the actual token, a copy of which is saved inside the database. This token thus

generated is sent to the RS Rate instance of the user itself which stores it in a secure cookie

characterized by an expiration date after which the procedure must be repeated. At each

subsequent request to RS Sever, the instance of RS Rate attaches4 the previously obtained

token in order to demonstrate that its user has successfully completed the authentication

procedure. As for RS Server, if a token is present it is extracted and decoded and if it

corresponds to one of those saved in the database, then the user identified by the payload is

authorized to proceed. An intuitive scheme of the process procedure is shown in Figure 5.

4 RS PDF

RS PDF [2] is the software library which is exploited by RS Server to actually edit files

encoded in PDF format. It is called into question as soon as a reader requests to save for

later the publications that he’s reading. More in detail, it is a software characterized by

a command line interface and this means that RS Server can use it directly since they are

deployed one along the other, without using more communication channels and paradigms.

3Application Controller and AuthenticationController
4In the Authorization header of the HTTP package

10

Figure 4: Class diagram of RS Server.

11

Figure 5: Representation of the token-based authentication process (NOT UML).

4.1 Implementation and Technology

The tecnology used to develop RS PDF is an object-oriented programming language

called Kotlin, which main feature is to be fully compatible with the Java Virtual Machine.

This feature is of great importance because it allows a developer to exploit code contained

in any other software published in JAR format and, more generally, to import any Java

class, interacting with them through the syntax of Kotlin itself.

This programming language has been chosen because it has many modern features (it has

been created just three years ago) and it is supported rather intensively; furthermore, there

are openings to other platforms that have greatly expanded its use possibilities. The most

important reason, however, is that the underlying tool used to actually edit files encoded

in PDF format is PDFBox 5, which is a software library developed with Java and proposed

as a complete toolkit to edit files in that specific format. So, our library is a wrapper for

PDFBox that takes advantage of the modern features of Kotlin to add a reference inside

a publication that a reader requests to save for later and to achieve a better integration

between the components of Readersourcing 2.0.

Kotlin has been created by JetBrains6 which, in the first half of 2017, signed an agreement

with Google to let Kotlin become a first-class language for development on the Android

platform7. In the same year, moreover, Jetbrains announced the possibility to compile

programs written in Kotlin directly into machine language, thus avoiding the use of the

JVM.

On the web is possible to find different pages with comparisons between Kotlin and other

5https://pdfbox.apache.org/
6https://www.jetbrains.com/
7https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/

12

https://pdfbox.apache.org/
https://www.jetbrains.com/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/

Figure 6: Package diagram of RS PDF.

languages, including the official one8 made by JetBrains with Java, and several articles9 of

developers enthusiastic about this programming language.

4.2 Package Diagram

Figure 6 shows a diagram of the packages in which RS PDF is divided. This is a useful

diagram since it provides a high-level overview of the internal architecture of a software.

In particular, the interaction with RS Server takes place within the package program.

The server-side component itself can use the functionalities of RS PDF by executing it on

the JVM, with a special set of command line options. Within this package, therefore, the

parsing of the values received for each of these options and the management of the execution

flow on the basis of these values take place.

The package utils has the task of providing useful tools to the remaining components

of RS Rate. Inside it there are shared constants and methods that allow to access to the

logging functionality. As it can be seen by looking at the diagram shown in Figure 6, the

other packages depend on it, in particular for some of the values of its constants.

The package publications contains the business logic to handle files encoded in PDF

format that must be edited. Its classes follow the logic of the MVC pattern, although its

exploiting is not bound by the used technology as in the case of an application developed with

Rails. There is, therefore, a Controller which takes into account the execution parameters

analyzed in the package program and updates the internal state of one or more instances

of the Model which will be as many as the files encoded in PDF format that must be edited.

This operation involves loading the input files and adding a link to RS Server on a new page,

taking advantage of the functionalities of PDFBox. As a last note, a View is not necessary

because RS PDF simply saves the changes in a new PDF file and, then, ends its execution.

8https://kotlinlang.org/docs/reference/comparison-to-java.html
9https://medium.com/@octskyward/why-kotlin-is-my-next-programming-language-c25c001e26e3

13

https://kotlinlang.org/docs/reference/comparison-to-java.html
https://medium.com/@octskyward/why-kotlin-is-my-next-programming-language-c25c001e26e3

4.3 Class Diagram

Figure 7 shows a diagram of the main classes of RS PDF which details the internal

structure of the architectural elements outlined into the diagram shown in Figure 6.

The classes contained within the package publications are structured in a way which is

similar to what Rails forces in RS Server and most of the processing carried out by RS Rate

takes place within them. The Model contains the connections with PDFBox and its methods

exploit these connections to actually edit files encoded in PDF format.

A single exception to this structure is the use of the Parameters class; in particular, it

is only a data class, i.e. a class whose sole purpose is to store data of various kinds. This

instance, once created, is sent to the Model by the Controller through the interfaces of the

Model itself. If it is necessary to send further data, the only thing to do consists in adding

them to the data class, thus avoiding modifying the signatures of the methods of the Model.

Regarding the contents of the program and utils packages, there is not much else to add

with respect to what was said during the description of the diagram shown in figure 6.

4.4 Commmand Line Interface

The behavior of RS PDF is configured during its startup phase by RS Server through

a set of special command-line options. For this reason, it is useful to provide a list of all

the options that can be used if it is necessary to use RS PDF in other contexts, modify

its implementation or for any other reason. However, it is designed to work with a default

configuration if no options are provided. This list of command line options in shown in

Table 2.

To provide an execution example, let’s assume a scenario in which there is the need of

edit some files encoded in PDF format with the following prerequisites:

• there is a folder containing n files to edit at path C:\data;

• the edited files must be saved inside a folder at path C:\out;

• the file in JAR format containing the library is called RS_PDF-v1.0-alpha.jar;

• the JAR file containing RS PDF is located inside the folder at path C:\lib;

• the authentication token received from RS Server is

eyJhbGciOiJIUzI1NiJ9....XpC9PMXOjtjRd4NBCtB1a4SfBEi6ndgqsE3k_cEI6Wo10

• the publication identifier received from RS Server is 1.

The execution of RS PDF is started with the following command:

java -jar C:\lib\RS_PDF-v1.0-alpha.jar -pIn C:\data -pOut C:\out -a

eyJhbGciOiJIUzI1NiJ9....XpC9PMXOjtjRd4NBCtB1a4SfBEi6ndgqsE3k_cEI6Wo -pId 1

10Token truncated for spacing reasons

14

Figure 7: Class diagram of RS PDF.

15

Short Long Description Values Req. Deps.

--pIn --pathIn Path on the filesys-

tem from which to

load the PDF files

to be edited. It can

be a file or a folder.

String representing

a relative path.

No --pOut

--pOut --pathOut Path on the filesys-

tem in which to

save the edited

PDF files. It must

be a folder.

String representing

a relative path.

No --pIn

--c --caption Caption of the link

to add.

Any string. Yes No

--u --url Url to add. A valid URL. Yes No

--a --authToken Authentication to-

ken received from

the server-side com-

ponent.

A valid authentica-

tion token received

from the server-side

component.

No --pOut

--pIn

--pId

--pId --publicationId Identifier for a pub-

lication present on

the server-side com-

ponent.

A valid publication

identifier received

from the server-side

component.

No --pOut

--pIn

--a

Table 2: Command line options of RS PDF.

16

5 RS Rate

RS Rate [3] is an extension for Google Chrome11 and the client that readers actually use

to rate publications; this means that every interaction with RS Server is carried out through

this client.

5.1 Implementation and Technology

Google Chrome extensions are developed using standard web technologies such as HTML,

CSS and Javascript. Therefore, they are simple “collections” of files packaged in a CRX

archive. This particular format is nothing more than a modified version of a ZIP archive

with the addition of some special headers exploited by Google Chrome.

As for the Javascript component, RS Rate does not actually uses the “pure” language

but instead uses jQuery, a library developed with the aim of simplifying the selection, ma-

nipulation, management of events and the animation of DOM elements in HTML pages, as

well as implementing AJAX features. These AJAX features are widely used by RS Rate to

improve the user experience during its use.

11https://www.google.com/chrome/

17

https://www.google.com/chrome/

References

[1] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-

guage. 3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

isbn: 0321193687.

[2] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS PDF. Oct. 2018. doi:

10.5281/zenodo.1442598. url: https://doi.org/10.5281/zenodo.1442597.

[3] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS Rate. Oct. 2018. doi:

10.5281/zenodo.1442599. url: https://doi.org/10.5281/zenodo.1442599.

[4] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS Server. Oct. 2018. doi:

10.5281/zenodo.1442630. url: https://doi.org/10.5281/zenodo.1442630.

18

https://doi.org/10.5281/zenodo.1442598
https://doi.org/10.5281/zenodo.1442597
https://doi.org/10.5281/zenodo.1442599
https://doi.org/10.5281/zenodo.1442599
https://doi.org/10.5281/zenodo.1442630
https://doi.org/10.5281/zenodo.1442630

	List of Figures
	List of Tables
	Introduction
	General Architecture
	RS_Server
	Implementation and Technology
	Communication Paradigm
	Database
	Class Diagram

	RS_PDF
	Implementation and Technology
	Package Diagram
	Class Diagram
	Commmand Line Interface

	RS_Rate
	Implementation and Technology

	References

