
Long-Read Data Analysis
Workshop

Bioinformatics - Nanopore Sequence analysis

27th-28th September 2018
Ramaciotti Center for Genomics

Tim Kahlke
tim.kahlke@uts.edu.au

Github: https://github.com/timkahlke
Twitter: @AdvancedTwigTec

mailto:tim.kahlke@uts.edu.au
https://github.com/timkahlke

2

Working environment

Login details

Virtual machine

All the tools and data will be provided on the same Virtual machine as

yesterday. Login details should have been provided by the workshop

organisers.

Course data

The course data for the Nanopore practicals can be found in the workshop

data directory in sub-directory nanopore_practicals. It includes 2 sub-

directories:

• work_dir: Use this directory to work through the different practicals

• data: This directory includes two sub-directories:

• MinKNOW: a (custom) MinKNOW output directory including fast5

files of a previously run experiment

• precomp: directory with precompiled data files needed for some of

the practicals.

3

Practical 1
Base calling with Albacore

4

Find your data

After a (successful) nanopore sequencing run the MinKNOW software will store your data

in a specific directory structure.

The nanopore directory includes a “fake” MinKNOW output directory with example data in

fast5 format that will be used throughout the course.

/intermediate

/tmp

/reads

/run-dirs

/fast5

/fail

/pass

/skip

/fastq

/fail

/pass

/data

MinKNOW directory structure

Because the provided directory did not include direct base-calling the fastq sub-directory is

missing. Instead, the raw course fast5 data will be provided in the sub-directory fast5/skip

of the run directory 20180419_0303.

Note: MinKNOW labels run-directories with a date prefix (yyyymmdd) followed by an

underscore and a specific identifier. Hence, the data provided was sequenced on the 19th of

April this year.

5

Base calling with Albacore

The first step for each sequencing run is to basecall your data, i.e., produce fastq

sequencing files from the initial fast5 files. We will use the standard basecaller is albacore

developed by Oxford Nanopore.

Note

Most tools that will be used in this practical are install in a conda environment. Before you

can use them you will have to activate this environment. This has to be done only once per

login to the virtual machine. To activate it type

source /mnt/gvl/apps/conda/bin/activate

To run albacore and basecall your data first change into the directory

WORKSHOP_DIR/nanopore_practicals/workdir/prac1 where WORKSHOP_DIR is the

directory in your home directory on the virtual machine that includes nanopore_practicals.

Then call albacore

read_fast5_basecaller.py –i \

WORKSHOP_DIR/nanopore_practicals/precomp/MinKNOW/data/reads/20180419_030

3/fast5/skip/0/ \

-s ./albacore_out –f FLO-MIN106 -k SQK-LSK108 -o fastq -t 2

NOTE: The backslash “\” in the commands can be ignored throughout the tutorial if you

type the command in one continuous line!

The command above will call albacore on the input fast5 directory option (-i), write the

output to the directory given with option -s in fastq format (option -o). The options -f and -k

defined the flow cell chemistry and the extraction kit, respectively. To see all possible

attributes for those two parameters call read_fast5_basecaller.py -i.

6

Base calling with Albacore

While albacore is running you can see the estimated run-time in the lower right corner. For

this particular data set it would take several hours to complete the base call. You can use

the option -t NUM to specify the number of CPUs/cores to speed up the process. However,

to save time we already ran alabacore on the data set. You can find the pre-computed data

in the directory /nanopore_practicals/data/precomp/albacore_out. Stop the albacore run

by pressing CTRL-C, remove the albacore_out directory that was just created by albacore

and copy the precompiled albacore output directory into your current directory

rm –rf ./albacore_out

cp –R WORKSHOP_DIR/nanopore_practicals/data/precomp/albacore_out .

Note: Remember to substitute WORKSHOP_DIR with the correct path of the directory with

the workshop data in it!

Now and change into the albacore_out directory.

Use ls to list the albacore output files and directories:

You will always find these files in your albacore output directory.

Configuration.cfg The configuration file for the base call

Pipeline.log A log file with base calling information per read

Sequencing_summary.txt A summary of the sequencing run

workspace A directory containing the fail and pass fastq
directories for the base called reads

7

Practical 2
Data analysis

&
Quality control

8

Data analysis and QC

After the basecalling step you want to get an overview of your data, e.g. what is the

number of reads, average length, quality etc.

An increasing number of tools is available to analyse nanopore data. In this tutorial we will

use two of the most common tools: nanoplot and poretools.

Plot your base called reads with nanoplot

Nanoplot is a command-line tool written in python that can be used to visualise your

nanopore reads and read alignments to a reference.

Analyse the basecalled data by first find the directory that contains the fastq files that

passed the quality control of the MinKNOW base call.

Change into directory /WORKSHOP_DIR/nanopore_practicals/workdir/prac2 and create a

directory to store the nanoplot output in, e.g. prac2_nanoplot1. Then use nanoplot to

analyse the fastq files that passed albacores quality threshold:

cd WORKSHOP_DIR/nanopore_practicals/workdir/prac2

mkdir prac2_nanoplot1

NanoPlot --fastq ../prac1/albacore_out/workspace/pass \

-o prac2_nanoplot2 --title Passed_reads --loglength

The options --fastq and -o set the input and output for the command. We also want the

length of the sequences shown log-transformed (--loglength) and also set a title for the

plots (--title).

9

The above command will create several plots and summary files including a *.html file that

can be opened in your browser.

Note

To open NanoPlot result files on the VM you’ll have to log on to the VM using a web

browser and your login details.

Example:

In case you logged in to your VM with the IP address researcher@12.123.123.12

1. Open a web browser, e.g. Firefox and go to http://12.123.123.12

2. Choose “Lubuntu” and login with your login details

3. Open the browser (lower left corner, you

might have to scroll down)

4. Choose Open File from the drop-down menue (upper-right corner)

5. Choose file NanoPlot-report.html

Data analysis and QC

http://12.123.123.12/

10

Data analysis and QC

Inspect the different plots and statistics:

• How many reads do you have in total?

• What is the average, minimum and maximum read length, what is the N50?

• What do the mean quality and the quality distribution of the run look like?

Do the same with the fastq files in the fail directory of the albacore output. First create

another directory prac_nanoplot2 and call NanoPlot again:

mkdir prac2_nanoplot2

NanoPlot --fastq ../prac1/albacore_out/workspace/fail \

-o prac2_nanoplot2 --title Failed_reads --loglength

Open the different plots and compare them.

What are the main differences, e.g., wrt. sequence length and quality?

Does albacore have a default quality cut-off? Which one?

Plotting with poretools

Poretools was one of the first tools to work with nanopore data which provides some

plotting functions as well as other functionality to work with fast5 files.

Note:

To work with poretools on the VM you will have to activate a separate conda environment.

Also, as soon as you are done with using poretools you will have to deactivate the poretools

environment

11

Activate poretools

source activate poretools

Deactivate poretools

source deactivate poretools

Plot the yield of a sequencing run

way of analysing your sequencing run is plotting the read yield of your flow cell over time.

Low yield or a drop off of sequencing yield can indicate contaminations in the library or

problems with the flow cell itself.

Use the tool poretools and the fast5 files to create a yield plot

poretools yield_plot \

WORKSHOP_DIR/nanopore_practicals/precomp/MinKNOW/data/reads/2018041

9_0303/fast5/skip/0/

How did the flow cell of the particular run perform?

You will have to close the plot to exit the command

Data analysis and QC

12

Export fast5 to fasta

Another functionality provided by poretools is the export of fasta files from basecalled fast5

files. Use poretools to extract fasta files from all fast5 files in /fast5/pass/0. Use the option

--min-length to only extract reads that are at least 2,000 nucleotides long. Because

poretools prints the sequences to the terminal you need to redirect the output into a file

using the “>” operator.

poretools fasta --min-length 2000 \

WORKSHOP_DIR/nanopore_practicals/precomp/MinKNOW/data/reads/2018041

9_0303/fast5/skip/0/ > reads_bigger_2000.fasta

You should now have a fasta file called reads_bigger_2000.fasta in your current directory.

What did you sequence?

If you are sequencing your own projects you should have a pretty good understanding of

where your DNA comes from. However, so far you don’t know organism the data for this

practical comes from.

Use the linux command head to list the first lines of the fasta file you just created and

compare it to known genomes using the Basic Local Alignment Tool BLAST at the Center for

Biotechnology Information (https://blast.ncbi.nlm.nih.gov/Blast.cgi)

Data analysis and QC

13

Data analysis and QC

1. Mark and copy sequence (right-click -> copy)

3. Paste your sequence

4. Start BLAST

2. Select Nucleotide BLAST

14

Practical 3
Read trimming and adapter
removal

15

Read trimming & adapter removal

Adapter removal using porechop

Similar to other 2

nd

and 3

rd

generation sequencing platforms MinION library prep kits use

ligate adapters to the ends of the DNA. Additionally, some library preparations kits, such as

the older 2D kits, use additional adapters to link the two strands of the DNA. Also, in some

instances chimeric reads may occur that include adapters in the middle of the sequence.

Porechop is a freely available open-source tool that among others can be used to find and

remove adapters from Oxford nanopore reads and remove chimeric reads.

Change into the prac3 directory in the WORKSHOP_DIR/nanopore_practicals/workdir

directory and create a directory porechop. Use porechop to remove adapters from the

albacore reads that passed the QC.

cd WORKSHOP_DIR/nanopore_practicals/workdir/prac3

mkdir porechop

porechop –i ../prac1/albacore_out/workspace/pass/

-o ./porechop/porechopped.fastq --discard_middle

The above command will use the default values of porechop to search for adapters in all

fastq files of the input directory, trim the reads and write them to file trimmed.fastq in the

created porechop directory. The “--discard_middle” option will remove reads with internal

adapters. As mentioned by R. Wick on the porechop github page

(https://github.com/rrwick/Porechop), this is essential if you want to use nanopolish later

in the analysis.

16

Read trimming & adapter removal

Plot reads using FastQC

In addition to poretools and nanoplot another tool can be used to analyse your sequences

visually is FastQC. FastQC is a common tool for quality control of 2nd generation Illumina

sequencing reads which can also be use to analyse 3rd generation long-read sequences, e.g.

to identify low-quality regions in your read data.

Type “fastqc –t 2” on the command-line to open

its graphical user interface and load the

fastq file of the reads that passed albacore

After loading the first tab will show you some

basic statistics about your fastq file and

sequences

The second tab “Per Base sequence quality”

shows the mean and standard deviation of the

sequencing quality for each position in all reads

of your data set.

17

Read trimming & adapter removal

The tab “Per Sequence Quality scores”

shows the average quality score distribution

of your nanopore reads

The tab “Per base sequence contents” show

the average ratio of As, Ts, Cs and Gs in your

data set. ”Clean” data without sequencing

should who almost parallel lines for all four

nucleotides.

Using the FastQC output we can make a decision whether we want to trim our reads

further, e.g., remove low-quality areas of the reads.

Which areas would you trim off?

Note: Exit FastQC to return to command-line prompt.

18

Read trimming & adapter removal

Trim reads using NanoFilt

NanoFilt is a python script that can be used to filter reads based on length and quality as

well as trimming parts of the sequence.

Create a directory for your nanofilt output in your current working directory (e.g.,

WORKSHOP_DIR/nanopore_practicals/workdir/prac3/nanofilt) and then use

nanopolish to remove:

• all sequences shorter than 500 nucleotides (option -l)

• trim the first 10 nucleotides off all reads (option --headcrop)

mkdir ./nanofilt

NanoFilt –l 500 --headcrop 10 \

< ./porechop/porechopped.fastq \

> ./nanofilt/nanofilt_trimmed.fastq

NanoFilt does not provide options for input or output files. Therefore we will use the two

redirect operators “>” and “<“ to

• redirect the file porechopped.fastq into NanoFilt (operator <)

• then redirect the output of NanoFilt into the file nanofilt_trimmed.fastq (>).

Use FastQC to check the result file and compare it to the original fastq.

19

Practical 4
Assembly using Minimap

& miniasm

20

Assembly using minimap & miniasm

Assembling long-reads, PacBio and Oxford Nanopore, into contiguous sequences (contigs)

has been challenging for common 2nd generation assemblers due to the high error rates of

3rd generation sequencing technologies. Recently, an increasing number of assemblers and

assembly pipelines is available that take into account he specific characteristics of long-

reads.

One way of assembling long-reads is the combination of minimap and miniasm.

Minimap is read mapper that can identify overlaps in reads.

Miniasm is a very fast overlap assembler that outputs unitigs, i.e., high confidence overlap

sequences. In contrast to other long-read assemblers miniasm does not include a

consensus step, i.e., miniasm unitigs have a similar error rate as the input reads.

First change intot the prac4 directory and then use minimap to map the filtered nanopore

reads onto themselves

cd ../prac4

minimap2 –x ava-ont ../prac3/nanofilt/nanofilt_trimmed.fastq \

../prac3/nanofilt/nanofilt_trimmed.fastq \

| gzip -1 > minimap.paf.gz

Minimap comes with several pre-configured parameter settings depending on the read

data. The option -x ava-ont sets the default parameters for Oxford Nanopore reads.

The additional pipe (|) into gzip is useful for large output files to compress them before

writing the compressed output file.

21

Assembly using minimap & miniasm

Use the minimap output and the trimmed reads to assemble unitigs with miniasm.

miniasm -f ../prac3/nanofilt/nanofilt_trimmed.fastq \

./minimap.paf.gz > miniasm.gfa

Miniamp and miniasm do not provide an option for output files but instead write the

output directly to the terminal. Thus, the output has to be redirected using the “>” operator

into the result gfa file.

To convert the miniasm.gfa file into a fasta file of unitigs use the following awk command

awk ’/^S/{print “>”$2”\n”$3}’ ./miniasm.gfa > miniasm.fasta

Now use the tools assembly-stats to get some simple statistics about the assembly

assembly-stats ./miniasm.fasta

Assembly-stats will tell you how many unitigs miniasm assembled, the total length of all

22

Assembly using minimap & miniasm

How to assess the assembly quality

The best way to analyse the quality of an alignment is to compare it to a published sequence.

In directory WORKSHOP_DIR/nanopore_practicals/precomp/data you will find the

published sequence of chromosome_17 of Thalassiosira pseudonana.

First get some assembly statistics. Use assembly-stats to print report statistics about this

chromosome, e.g., number of nucleotides and number of Ns (gaps or ambiguous sequences).

Compare the two statistics. Do some of the miniasm unitigs match the reference sequence in

length?

To make downstream analysis easier first remove sequences that are much shorter than the

reference sequence. Use the command filter_fasta_by_seq_length.pl from the ampli-tools

package to remove all sequences shorter than 100,000 nucleotides from the assembly fasta

filter_fasta_by_seq_length.pl –i miniasm.fasta \

-o miniasm_filtered.fasta -a 100000

and count the resulting sequences with the linux command grep

grep –c “>” ~/TOAST2018/day2/prac4/miniasm_filtered.fasta

The above command will count the occurance of the character “>” in the input file, which in a

fasta file is equivalent to number of sequences.

23

Assembly using minimap & miniasm

How many sequences “survived” the filtering?

To compare the left unitig to the reference genome use the tool dnadiff form the mummer

package. Mummer provides fast alignments of large highly similar sequences to each other.

dnadiff WORKSHOP_DIR/nanopore_practicals/precomp/data/chr17.fasta \

-p dnadiff miniasm_filtered.fasta

This command will create multiple output files of prefix dnadiff with alignment statistics

and detailed coordinate information of the overlapping regions of both sequences.

Open the file dnadiff.report (e.g. double click) to see a general report of the alignment.

How much of both sequences was aligned?

What is the average percent identity of the alignment?

We can also visualise the alignment with a dot-plot using the command mummerplot .

mummerplot --png –p miniasm dnadiff.delta \

–R WORKSHOP_DIR/nanopore_practicals/precomp/data/chr17.fasta \

-Q miniasm_filtered.fasta

The above command will create an image file in png format in directory prac4. Open it by

typing display miniasm.png

24

Assembly using minimap & miniasm

Dot plots

A dot-plot is a visual representation of the similarity of two sequences. In this case the

resulting dot-plot shows the miniasm unitig on the y-axis and the reference sequence of

chr17 on the x-axis. Sequence parts that overlap are shown as a diagonal line from the

lower left to upper right corner. Similarly, orthogonal lines (upper left to lower right)

indicate inversions in one of the sequences. Breaks and gaps in the line indicate deletions

or insertions in either of the sequences.

What do you think about this initial assembly?

Reference sequence

M
in

ia
sm

un
iti

gs Aligned/similar sequence parts

Breaks

Inversion

25

Practical 5
Create consensus
sequences using racon

26

Consensus sequences using racon

Due to consistently high error rates of Oxford Nanopore sequencing data downstream

analysis has to include some sort of error correction especially if no high quality short read

data is available.

Consensus assemblies try to reduce error rates by choosing the most likely sequence of a

given assembly and a set of raw reads. Although this does not incorporate the raw signal

information of the flow cell to correct individual reads it can significantly improve the

quality of an assembly.

The software package racon has been developed to complement the minimap and miniasm

tools. It provides a fasta consensus algorithm that uses either 2nd generation short reads or

raw noisy long-reads to correct draft assemblies.

To improve a draft assembly with racon map the reads that should be used for error

correction against the assembly.

Use minimap to map the trimmed reads from prac3/nanofilt against the miniasm assembly

and subsequently use the filtered reads and the mapping to build the consensus assembly.

cd ../prac5

minimap2 ../prac4/miniasm_filtered.fasta \

../prac3/nanofilt/nanofilt_trimmed.fastq > ./minimap.racon.paf

racon ../prac3/nanofilt/nanofilt_trimmed.fastq \

./minimap.racon.paf ../prac4/miniasm_filtered.fasta \

> ./consensus_assembly.fasta

27

Consensus sequences using racon

Analyse the assembly quality by comparing the consensus assembly to the published

sequence using dnadiff and mummerplot.

dnadiff WORKSHOP_DIR/nanopore_practicals/precomp/data/chr17.fasta \

-p dd_con ./consensus_assembly.fasta

mummerplot --png –p miniasm ./dd_con.delta \

–R WORKSHOP_DIR/nanopore_practicals/precomp/data/chr17.fasta \

-Q ./consensus_assembly.fasta

Did the assembly improve?

Which parts did not improve?

Run racon a second time but this time on the consensus assembly

minimap2 ./consensus_assembly.fasta \

../prac3/nanofilt/nanofilt_trimmed.fastq > ./minimap_2.racon.paf

racon ../prac3/nanofilt/nanofilt_trimmed.fastq \

./minimap_2.racon.paf ./consensus_assembly.fasta \

> ./consensus_assembly2.fas

28

Consensus sequences using racon

Analyse the second consensus

dnadiff WORKSHOP_DIR/nanopore_practicals/precomp/data/chr17.fasta \

-p dd_con2 ./consensus_assembly2.fasta

mummerplot --png –p miniasm2 ./dd_con2.delta \

–R WORKSHOP_DIR/nanopore_practicals/precomp/data/chr17.fasta \

-Q ./consensus_assembly2.fasta

What are the improvements?

Did some statistics decrease? If so which and why?

29

Practical 6
Error correction using
nanopolish

30

Error correction using nanopolish

Nanopolish is another free open-source tool for nanopore data analysis. In contrast to tools

such as racon it uses not only the sequence information from fasta/fastq files but also

utilises the raw signal of each read that is stored in the fast5 files: it compares the raw

signal of each nucleotide in a dataset and tries to identify incorrect base calls as well as

DNA modifications such as methylation.

The recommended workflow to polish and existing draft assembly includes the following

steps:

For large assemblies (>50K) nanopolish provides two scripts nanopolish_makerange.py and

nanopolish_merge.py to split the sequence into multiple segments before the error

correction steps and merging them again afterwards (see

http://nanopolish.readthedocs.io/en/latest/quickstart_consensus.html for more details).

1. Nanopolish index
Use nanopolish to link the raw fast5 signal
with base called fastq sequences

2. BWA index Prepare your draft genome for use with
read aligner BWA

3. Read mapping
Use BWA together with samtools to map
the base called reads back to your draft
genome

4. Nanopolish consensus Build an error corrected consensus

http://nanopolish.readthedocs.io/en/latest/quickstart_consensus.html

31

Error correction using nanopolish

1. Nanopolish index

First change into the prac6 directory. To index the nanopore reads, i.e., to connect the fastq

sequences with the corresponding raw signal first concatenate all fastq files in the

albacore_pass directory into one fastq file using the linux command cat:

Cd ../prac6

cat ../prac1/albacore_out/workspace/pass/* > ./all_pass.fastq

This will write one fastq file into the prac6 folder containing all sequences that passed the

initial albacore quality control.

Use nanopolish to index your fast5 and fastq reads

nanopolish index –d \

WORKSHOP_DIR/nanopore_practicals/precomp/MinKNOW/data/reads/20180419_030

3/fast5/skip/0/ \

./all_pass.fastq

This command will create several files index files in the directory for practical 6.

2. BWA index

BWA is a widely used free open-source read mapper developed to quickly map sequences

back to a reference genome. To speed up mapping of large read files bwa indexes the

refence genome

Index the draft assembly using

bwa index ~/TOAST2018/day2/prac4/miniasm_filtered.fasta

32

Error correction using nanopolish

3. Map reads to draft assembly

As input for the mapped reads nanopolish expects a sorted and indexed bam file.

Use bwa to create an output file in bam format and the free open-source package samtools

to subsequently sort and index it.

bwa mem –x ont2d ../prac4/miniasm_filtered.fasta ./all_pass.fastq \

| samtools sort -o ./reads.sorted.bam

samtools index reads.sorted.bam

4. Run nanopolish

Use the mapping information together with the linked fastq and fast5 files to create a

polished assembly

nanopolish variants --consensus ./nano.fasta -r ./all_pass.fastq \

-b ./reads.sorted.bam -g ../prac4/miniasm_filtered.fasta

-q dcm,dam --min-candidate-frequency 0.1

Note

This nanopolish call will run for several hours. You can find the final file nano.fasta in

directory WORKSHOP_DIR/nanopore_practicals /precomp/data.

33

Error correction using nanopolish

The above call will call nanopolish in methylation aware mode. DNA modifications can lead

to errors in the base calling due to the fact that modified nucleotides show a different raw

signal than their unmodified counterparts. By using option -q dcm,dam nanopolish is trying

to determine the differences in the signal of 5-methyle-cytosine and unmodified cytosines

and use this information to correct potential base calling errors.

As before, use dnadiff to assess the nanopolish results and compare them with racon:

dnadiff WORKSHOP_DIR/nanopore_practicals/precomp/data/chr17.fasta \

-p dd_con3 ../prac5/consensus_assembly2.fasta

What are the differences?

If you run racon on the polished data does it improve?

Note

Despite the systematic errors of nanopore base callers sequencing depth as well as

organism can affect nanopolish results. The current eukaryotic test data set has a mean

sequencing depth of <10. Nanopolish results of >99% accuracy have been reported for

bacterial data set with >15 x coverage. However, to achieve best performance from

nanopolish a sequencing depth of >=65 is recommended.

34

Practical 7
Canu assembly quality

35

Canu assembly quality

In contrast to miniasm the nanopore assembler Canu combines unitig assembler and contig

assembly and also provides error correction. Recent assembler comparisons on bacterial

data indicated higher accuracy and lower error rates for canu assemblies. However, canu’s

accuracy comes the cost of significant increases in run time and computational resources.

In directory WORKSHOP_DIR/nanopore_practicals/precomp/data you can find the

canu assembled contigs of the tutorial data in file canu.contigs.fasta.

Additionally, the same directory includes the the largest if the canu assembled contigs

polished with nanopolish in file canu.contigs.polished.fasta.

The commands used to assemble and polish the the sequences are:

Canu –p OUTPUT_PREFIX –d output_directory genomeSize=0.6m \

--nanopore-raw READS.FASTQ useGrid=false maxThreads=NO_CPUS \

maxMemory=RAM

bwa index CANU_ASSEMBLY

bwa mem –x ont2d –t THREADS READS.FASTQ |samtools sort –o \

OUTPUT_BAM

samtools index OUTPUT_BAM

nanopolish variants --consensus OUTPUT_FASTA –r READS.FASTQ \

-g CANU_ASSEMBLY –b READS.BAM –min-candidate-frequency 0.1\

-q dcm,dam

36

Hope you enjoyed these practical.

For questions and improvement suggestions
please contact me at tim.kahlke@uts.edu.au

