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Abstract
The Zeta Function and one of its analytic continuations are defined as follows:
Vs € C| Re(s) > 1, C(s) = Z—

, where 1(s) = E S
n=1

27 _nls)
VSGC\{l mlkez} C(s) = =

The Riemann Hypothesis states the following, for all the nontrivial zeros:
C(s) =0 = Re(s) = =

It has already been proved that Re(s) € ]0, 1] for all the nontrivial zeros.

Firstly, for a = Re(s) and b = Im(s), we'll prove that:

€)= 0= n(s) = O@E—+2><Z 3 CDS2eosOInd /N g 1 e
k=1 j=k+1 (k)"

Andsince Vx € R, —1 < Cos(x) < 1, this implies that there exists a map r,, satisfying -1 < r,, < 1 for
all n sufficiently large, and for which:

n

e PP

—0asn— +oo

k=1 k k=1 j=k+1 (k))°
Secondly, by reformulating it as a problem of quadratic equations, we will figure out that this holds true
. 1 1
onlyif Yme IN\[0,3], r, € |- T 3 where [0, 3] = {0, 1, 2, 3}, and therefore, that
n-— n-—
1
r, ~ ——asmn— +oo
n

And through various asymptotic equivalences, we will get:
g (1)
— — =X Z—a — 0asn— +oo
= Ko ok
Finally, from there, we'll consider a = Re(s).as a map a,, = Re(s,;) converging to a real number

d. € ]0, 1], rather than considering it as a fixed value (since we're dealing with infinity).
It is for convenience that we denote lim a, = a,. € ]0, 1].

n— 400

Then we'll approximate each side's sum with integrals depending on a4, .,




and we shall distinguish three different cases:

1
* i € ]O/ E[

1

* i € ]E/l[
1
(7 :E

And conclude that the only case that is logically consistent is when a, ., = —

1 Simplifying the expression

First of all, for the sake of simplification, let's write s = a + ib where a = Re(s) and b = Im(s),
We can write the Eta function as follows:

0 )n 1 —zbln(n)

= (—1)"" 1)n-1pib
e
n=1

n=1
B - (=1)"1 cos(—b In(n)) | (-1 1sm( ~b In(n))
n(s) = > +1X 21 —a
_ N ()" cos(bIn(n)) (=1)" sin(b In(n))
n(s) = 2211 r 21 pr
If we assume ((s) = 0, then by the expression of its analytic continuation {(s) = (117(—251_5) we also
have 7(s) = 0 and then |1(s)|? is null too:
2 2
, | % (=1)" 1 cos(b In(n)) O (-1 sin(bIn(n) |
()12 = [2} r ] - 2’; pr ] =0
2 2
e e [Z (1) cosoInG) | [Z (1) sin(b ln(k))J o
= ke k=1 k*
Z Z (-=1)772 cos(b In(k))cos(b ln(])) (=172 sin(b In(k))sin(b In(f)) 0 28 11— 400
k=1 j=1 L9)k (kj)”
— Z Z( )kt 2[cos(b In(k))cos(b ln(])) sin(b In(k))sin(b ln(]))] 045 11— +00
k=1 j=1 (kj)” (kj)“
reio | cOs(bIn(k) — b In(j)) . e
@%JE} (=1)*~ ( iy ] Oasn— +

(-1)*/2 cos(b In(k / j))
ki; ]2; (k)"

—0asn— +o0



" 2k-2 non k+j-2
=X +zz< ORI 045 oo
k=1 k=1 j=1 (])
j£k
" k+j-2 ;
‘:’Z—+2XEE (=)™ Coé(bln(k/]))—>0asn—>+oo
k=1 j=k+1 (kj)”

Vk,je[L,n],¥b € R, —1< cos(bIn(k/j) < 1

Thus there exists a map r,, satisfying —1 < r,, < 1 for all n sufficiently large, and for which:

Z—+2 xz E

k1 K k=1 joke1 (KD

—0asn— +oo

And we end up with what curiously resembles a quadratic equation.
2 The "Russian Doll" Quadratic Equations

Now let's assume there is x1,..., x,, € IR with x; = 1 so that:

Exk+2rn><2 E xpxj =0

k=1 j=k+1
And let's try and figure out which kind of map 7, is.

n

But first, let's define Vi € IN*, u,, = Ex,% R Z 2 XeXjand p, = Exk
= k=1 j=k+1

Our previous equation becomes:

U, + 21,0, = X2+ 28 Pu1Xy + Uy1 + 270,10 =0
And now let's define (f ;) enj0,1) @nd ($1)nemnjo,1) SO that Vi € IN'\ {0, 1}:

fnun + &0y = fnx;% + &nuPn-1%Xn +fnun—1 +3n0p-1 = 0
Let's now express the delta A, of this equation and find the expressions of f,,_; and g,,_1
sothat A, = fn_lun_l + 911041 2 0:

n — (gnpn—l)z - 4fn(fnun—1 +gnvn—1)/
2

n-1
= Z'xk = Uy + 201’1—1/
k=1

thus An = (gnpn—l)z - 4fn(fnun—1 + gnvn—l) = g%(un—l + 27]11—1) - 4fn(fnun—1 +gnvn—1)
= (82 - 4f2)uyo1 + (283 — 4fugn) Vnt



We conclude that f,, 1 = ¢2—4f2and g, 1 = 2¢2 - 4f,4,, and we see A,, is in turn a new quadratic
equation:

— 2
An - fn—lxn_l + gn—lpn—an—l + fn—l”n—z + gn—lvn—Z

with a new A,,_; for which we must determine the conditions to ensure A,_; > 0, and so on until A,
(hence the comparison with a Russian doll).

8n
1 _ 280 =4fu8n _ 280(80—2f0) 2% _ °h

fn—l g%—4f% _(gn_zfn)(gn+2fn):(gn+2fn)_}gr—”+2

But also,

-k
We observe that each time we calculate a A,,_;, we actually apply /1 : x +— to the ratio gn— to

xX+2 fn—k
p&nk
obtain Sn k1 Vk e [[1,n-3], Snkl _ _fok .
n—k-1 fn—k—l Snk +2
n—k

In our precise case, f, =1andg, = 2r,, so g—n = 2r,;our f,_; and g,_; thus become:
n

foo = (4r2-4)f2 =4(r2-1)f2 = 4(r, — 1)(ra + 1) f2
n1 = (2 X 4r2 — 4 ><2r,1)fn = S(r,% — rn)f% = 8r,(r, — 1)f2
Su1 87, (r, —1)f> 2r,,

Thus,

for A -V +DfF 1yt 1

Now, let's prove by induction that Yk € [[1,n - 2], En = :
fok  kxr,+1

k 21’,1

_ 2r
Let's assume dk € [1,n - 3], Snk = . ,
fn—k kxr,+1

Then we have:

Tn-k-1 Tn-k Zrn 1 1
=h =2X X =2 X2r, X
frok-1 fuk kxr,+1 20 L 5 2r, +2(k xr, +1)
kxr,+1
k-1 -k 4rn Zrn
<:> == h = =
f k-1 fuk 2(r, +kxr,+1) (k+1)xr,+1

k 21’n

Which proves that Yk € [[1,n - 2], Sn- = :
fok kXxr,+1

Now, Yn € IN'\ [[0, 3], Yk € [[1, n — 2]] we can express all the A,,_;, and above all the following:

— — 2 2 — 2 —
A3 = le/lz + 820 = fzxz + fle +QoXoX1 = f2x2 +Q2X> +f2 (because x; = 1)
2
r

02462 = n _ 2
Ay =85 -4f3 4X[[(n—2)><rn+1]2 1]Xf2
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»

To determine the positivity of A, we only focus on the positivity of - -1,
[(n—2) %71, +1]?

for we know f3 and 4 are always positive.

2
n

[(n—2) %71, +1]?

7

A=4n-22-4x(-)[1-(n-2)?] =4[(n-2)*+1-(n-2)*] =4>0
So solutions for all of our previous A exist;

Vn € IN'\ [0, 3], the quadratic coefficient [1 -(n- 2)2] is strictly negative, so:

. 2n-2)-V4 2m-2)+Va
T 2[1-m-2)2] 2[1-(n-2)?]
which means:
[(n—Z)—l (n—2)+1] l n-2)-1 n-2)+1
T, € , 71, € ,
1-(n-2)%"1-(n-2)? 1-n+2)1+n-2) 1-n+2)1+n-2)

1 1
@rnel_ ;= ], VYn e N\ O, 3]
n-1 n-3
1
Therefore,asn — +o0, 1, ~ — —
n

In conclusion, for the following to be true, as n — +oo:

Exk+2rn><2 Z Xpxj — 0

k=1 j=k+1
We must have it in the following form:

Zxk——xz Z xxj — 0asn— +oo
n

k=1 j=k+1
Now we could simplify this:

Exk—;xz 2 XKXj = Exk——XEZxka

k=1 j=k+1 N k=1j=1
j#k
n
: [zzxkx] z]
k=1 k=1 j=1
@[ ] Zxk—ZXEZxkx—O

k=1 j=1
And as n — +oo the asymptotic equivalences give us the following:

Exk—;XZZxkx —0asn— +oo

k=1 j=1

~120 © 2> [n-2)xr,+112 e [1-n-2)?]|r2-2n-2)r, -1 >

0



2

n
1
@Zx,%——x Exk —0asn— +oo
k=1 k=1

1
Now to get back to our problem, if we assume that Yk € [1, n]], xx = i then we get, as n — +oco:

2
n n

1 1 1
il P Bl
k=1 k=1

Which is therefore - thanks to all we've seen up to now - the new formula on which we'll work from now
on, and which is way more easy-to-handle and less obscure than:

n

n-1 n _1Vk+j-2 .
ELZ”XE D (-1) C0§(b1n(k/])) 045 11— 400
k=1 K~ k=1 j=k+1 (kj)*

3 Comparison Of Asymptotic Behaviours
Now, We got this expression from the previous part:

2
n n

1 1 1
— - =X E— — 0, asn — +o0
P Pl s

Since we're dealing with infinity, instead of distinguishing the cases for different fixed values fora € ]0, 1],
I will speak of a map (a,,),,cn+ converging to a real numberin |0, 1[: lim a, —»a,, € ]0,1[ witha

n— 400

rate of convergence €, = a4, — -

The sums with their corrections (obtained via Taylor expansions) become, as n — +oo:
2
n

R NS LI
1

n =1 kll+oo =1 kll+oo

The correction terms can be ignored for a fast convergence of a,,;
We'll deal with fast and slow convergences.

It has already been well-established in the literature [1, 2] that a_., € ]0, 1] for all the nontrivial zeros, so
1-a,. > 0 and then the squared sum can be approximated with the following squared integral as
follows if a,, converges fastly to its limit:

2
n1 2 (1’[1_“ - 1) n2-2a
f —dt| = ~ as n — +oo
1 t7 (1-a)? (1 -a)?
to obtain the following (I omit the 7 index of a,, for convenience in these calculations):

2
1 "1 1 2-2a 1-2a
Ya €]0,1[ and as n — +oo0, — X E— X " S
A el < n (1-a)? (1-a)?

~ —_—




And for a slow convergence, the sum of the correction term added in the squared sum:

n+1]n(t 3 In(k n+1 In(t — 1
VnelN*,f n()dt<2n()<1+f In(t=b 4
1 2

tﬂ+oo =1 kﬂ+oo (t _ 1)a+oo
"), In(mnl e e o1
with [ 00 4y _ Inbyn 7 n
1 fse 1-010 (1-a)?

Therefore, since 1 —a,,, > 0 we get the following asymptotic equivalence:

z”:ln(k) ~ f”ln(t) p In(m)n' == pl
1

o1 kam tu+oo 1- A too (1 _ a)z

asn — +oo

As to the sum of squares, for a fast convergence:

n+l 1 1 n+l 1
Vne]N*,f —dt<2—<1+f dt
I 2 (t-1)%

And the sum of the correction term added for a slow convergence:

n

n+1 n+1 _
Vi e N*, f Iy« PO f Int=1)
1 2

t2{l+oo =1 k2a+<>o (t _ 1)2ﬂ+oo
- In(k "In(t
803y6[0,1]|2k1;§)~y+f1 I;()dt‘asn—>+oo
k:1 +00 t A+

1 1
We get to distinguish a, ., # 5 anda,. = E for the sum of squares.

1
Fast convergence:
1-2a _ i _1\1-2a _ (» _1\1-2a
(n+1) 1<EL<1+(H+1 1) 2-1)
1-2a i k& 1-2a

(I skipped the details of variable substitution on the right side)

We then obtain the following asymptotic equivalences, as n — +o0:
1-2a i 1-2a
n -1 1 n -1
L Y Pl

1-2a

n
1 -1
Which means that as 1 — +o00, A\ € [0, 1], E — ~ A+ A
k=1 k2a 1 - 2(1

Sum of the correction term added for a slow convergence (asymptotic equivalent as n — +00):



uel0,1]]

k=1

— +
o7 1-2040  (1-2a,0)2

" n 1-20+0 1-20+00 _
In(k) B fl In(t) P In(n)n n 1 y

k2a+oo

If a+oo - =

Fast convergence:
n

1

Z— ~ In(n) asn — +oo
k2a

k=1

Sum of the correction term for a slow convergence (asymptotic equivalent as n — +00):

n

Z n® fnwdtasn—>+oo
1t

=1 k2a+oo

"In(t) "In(t)
j; t—dt = ln(n)z—f1 -

"In(t) ,  In(n)?
®f1 T A=

We therefore have three different cases:

1
* i € ]O/ E[

1
* i € ]Erl[

o a-}—OO:

1
2

1
Caseda, € ]0, 5[:

If a,, converges fastly enough to its limit, we can take the following for granted:
1-2a.. > 0son'=2* grows unboundedly as 11 — +00, s0:

G 1 n1—2a
Z o asn— +oo
k=1 k a 1 - 251
Thus our expression:
1 1-2a

Z_ n

— —0asn— +o0
o k2 (1-a)?

becomes, as 1 — +0o0:

1-2a 1-2a

n n
1-2a (1-a)?

»0e (1-010)?=1-20,0 & 1-2a,+a2 =1-2a,,

1
& a? =0 & a,. =0, which contradicts a,., € ]0, E[.

If the convergence is slow, the expression with the correction terms is as follows:



As n — +o0:

nl=20 2, In(n)n!=24+= p 12+ .\ 2e, In(m)n'=2+ €2 In(n)?nl-2
Lo 1 2¢, In(n) 1 2¢,In(n)  €21In(n)?
S n T 0

— — + —
1-2a,0 1-20,0 (1-040)? (1-040)? (1-040)2
which necessitates :
1-2¢,In(n) 1-2¢,In(n)+e2In(n)?

1-2a, (1-0a,0)? ~
(1-a,0)% 1-2€,In(n)+ €2 1In(n)?
< 1-2a, - 1-2¢, In(n)
a2, €2 In(n)?

- -
1-2a,, 1-2¢,In(n)

for p =€, In(n), this means :
a2 —2a% B—(1-2a,.)p> > 0asn— +oo
A =da3 +4a3 (1-203,) =403 (1-0a7,) >0

This equation admits two real solutions, let's not delve into the details but just call them ¢; and ¢,, and
just keep in mind that epsilon can then be expressed as:

IBE{Cl,Cz}@GnE{ a1 e }

In(n)” In(n)

1-251#—00

Since multiples of €112 In(n) and €21~ In(n)? dominate the multiples of €, and

2 1-2a+c0

€ , we neglected multiples of €, 2%

and e%nl_Za“’" in the final parenthesis, and actually these
1-2¢,In(n) 1-2¢,In(n)+e2In(n)?

vanishes for
1-2a,. (1 —a+oo)2

latter stay secretly in the parenthesis while

C1 Cy
€, € , :
In(n)" In(n)
We can express the sum of these "hidden" terms as 71727+ (d1en + dzeﬁ), (d1,d5) € R?, and by the

cidy  cida 1ooae | €201 cydy
+ oo +
In(n) In(n)? In(n) In(n)?

expression of €,,, they become p 172 [ ] and therefore:

Instead of this:

— + —
1 _2a+oo 1 _2a+oo (1 _a+c>o)2 (1 _a+c>o)2 (1 _a+oo)2
We are left with this:

o [ 1 2e,In(n) 1 2, In(n) €2 In(n)? ]
n - —0asn— +oo



2
cid
n12a+w[ C1d; 172

+ —0asn— +o0
In(n) In(n)? ]

] — 0asn— +oo, or nl =2 [

And this is impossible because, firstly, if 1 —2a,,, > 0, In(n) = o(nl_z‘“""), In(n)? = 0(n1_2”+°°), and

secondly and 5 have different decay rates, so the sum in the parenthesis can't even become
In(n) In(n)

a plain 0.

(I shall make d; and d, explicit in the following versions of this paper)

1
Casen, € ]E' 1[:

If a,, converges fastly enough to its limit, we can take the following for granted:

n
1 1—2a_1
Asit— +oo, AN €[0,1], Dy — ~ A+ ——
k=1k2€l 1-2&1

In this case, 1 —2a,,, <0,

n
1 1
Therefore as 1 — +0oo, Z — > A+ and then Z — = 0 becomes:
— ke 2a-1 o1 ke (1 _ {1)2 n— +oo
1 nl—Za 1
A+ - 0, and since 1 — 2a.,, < 0 this means A + =0
2a-1 (1-a)> "7+ 2a-1
A=1

S2-DA+1=00 2Dl =A-1ea,, = 7<Obecause)\—1<Owhi|e2A>Ofor

1
A € [0, 1], which also contradicts a, ., € ]E, 1[.

If the convergence is slow, the expression with the correction terms is as follows:

2
1 1 1| nt2~ €, ln(n)nl‘”+°°
/\+—1—26n1—+y - - — 0, asn — +oo
— 4l 400

20,00 — n{l-a,s 1-a

where u € [0, 1], thus as n — +oo;

1 120 2, In(n)n* 2> €2In(n)? n' 2=
A+ - + - —0
20400 =1 (1-0400)? (1-a400)? (1-a400)?
As 11 — +00, €, — 0 and n'72** — 0, and then:
A-1 1
A+ ————>0asn— +oowhichmeans a,,, = EYS < 0 which contradicts g, € ]E' 1[ once
Aico —
again.
1

Caseda,, , = —:
2

If a,, converges fastly enough to its limit, we can take the following for granted:

n 1 nl-2a

— > = 0 as n — +oo becomes:
k:1 k a (1 - a)

n
1
As n — +00, E 2 ~ In(n), so



1-2an

Inn)— — = 0asn— +o0
( ) (1_an)2

And now, let's reflect upon the conditions for this asymptotic equivalence to hold:

« As said earlier, we deal with a map (a,,),en¢ converging to a real number in |0, 1[ as n — +oo, >

1
in this case, rather than a fixed value a = > otherwise it would mean that lim In(n) — 4 which

n— +00
is absurd,
1
’ ﬁ — 4 as n — +00, so it doesn't affect the asymptotic behaviour of 7172

« In(n) grows unboundedly as n — +c0, so we must have 1 —2a,, > 0 for all n sufficiently large, for

n'=2 1o grow unboundedly as n — +o00 as well,
!

« Had we assumed that 3/ > 0 | lim 1 -2a,, = [, we would get In(n) — — 0asn— +oo,

n—+eo 1+1
2

which is impossible because Y1 > 0, In(n) = o(n’),
« So it is necessary that 1 — 2a,, be strictly positive for all n_sufficiently large while converging to

0* as n — +oo0, in order to adequately "bend" nl=2m,
ln(lné(:l))
but even in this case, the expression of €,, becomes something like €,, = — T()
n(n

which is too slow a rate of convergence to neglect the correction terms; which we ironically did here.

So we're left with one case, our last chance:

1
If the convergence to E is slow, the equivalence with the correction terms is as follows:

1
% (1 —2¢, In(n) + €2 ln(n)z)

(-3

s In(n)(1 - €, In(n)) — 4 (1 —2¢, In(n) + €2 ln(n)z) — 0, asn — +oo

—0, asn— 400

n
In(n) — 2¢, [ln(zn)z] _

& In(n) -4 + (8In(n) — In(n)?) e, — 4€2 In(n)? — 0, as n — +oo

1

= is an ideal choice:
In(n)

€n

2
In(n) — 4 + (8 In(n) — In(17)?) N 4[ ] In(n)?

In(n)
8In(n) In(n)*

=In(n)-4+
In(n) In(n)
=In(n)-4+8-In(n)-4=0

In(n)




—0asn— +oo.

We have agood €,, =
In(n)

Soifa, tends to E slowly, this adequate €,, exists, and voila, we get the right resuilit.

1
E is the only limit the map a,, can reach as n — +o0, if it hopes to satisfy:

2

n n
Z ! —1X[E 1] —0asn— +oo

=1 klen n =1 kan
: , 1 1
And we could ideally write a,, as a,, = = +
2  In(n)
Conclusion:
2nik o (—1)
For any nontrivial zeros € C\ {1 + i |keZ;, lim EL =0
ln(Z) n— +oo k=1 ks
1
implies that Re(s) be a map of n, a,, = Re(s,,), the limit of which necessarily is: lim a4, = X
n— 400
. _ Sy et
Therefore, since ((s) = 0 = 1(s) = 1 — =0
n=

In(2)

This proves the Riemann Hypothesis.

2mik 1
For any nontrivial zero s € C \ {1 + mx | k € Z}, C(s) =0 = Re(s) = >
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