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ABSTRACT
Process mining is a research discipline that aims to discover, mon-
itor and improve real processing using event logs. In this paper
we tackle the problem of next activity prediction/recommendation
via "nested prediction model" learning, that is, we first identify
recurrent and frequent sequences of activities and then we learn
a prediction model for each frequent sequence. The key principle
underlying the design of the proposed solution is in the ability to
process massive logs by means of a parallel and distributed solution
(by exploiting the Spark parallel computation framework) which
can make reasonable decisions in the absence of perfect models.
Indeed, given the classical threshold for minimum support and
a user-specified error bound, our approach exploits the Chernoff
bound to mine “approximate” frequent sequences with statistical er-
ror guarantees on their actual supports. Experiments on real-world
log data prove the effectiveness of the proposed approach.
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1 INTRODUCTION
Today, many organizations store event data from their enterprise
information system in structured forms such as event logs. The
storage and the analysis of such logs allow organizations to extract
valuable knowledge (that can be used discover, monitor, and im-
prove processes) to compete with other organizations in terms of
efficiency, speed and services [9]. One of the main tasks in process
mining is that of operational support whose techniques can be
used for detecting deviation at runtime (Detect), predicting the
remaining processing time (Predict) and recommending the next
activity (Recommend). However, the algorithms presented in the
literature [7, 9], are not designed to automatically process massive
data logs collected in near-real time by sensors and system tools.

In this paper we propose a big data analytics method for opera-
tional support which is able to predict/recommend the next activity
by exploiting parallel computation. The method allows us to pro-
cess all the massive real-life logs in two phases: in the first phase
the algorithm extracts frequent sequences of activities, while in the
second it learns classifiers for each frequent sequence of activities.

2 BACKGROUND AND CONTRIBUTION
Recently, several process mining approaches that exploit paralleliza-
tion or distribution of the mining process have been proposed. The
most similar approaches to what we propose in this paper are those
that extract Petri nets in a parallel and distributed way [8]. These
operational support methods, based on Petri nets, however, natu-
rally fit cases where processes are very well-structured, resulting in
a spaghetti-like model in case of logs that suffer of problems related
to “incompleteness” and “noise”. To avoid the problem of spaghetti-
like models, we propose to exploit a frequency-based approach
which limits the analysis to frequent sequences of activities.

The starting point of the method proposed in this paper is the
non-distributed approach presented in [2]. The method first identi-
fies frequent partial processes in form of frequent activity sequences
that are represented in form of sequence trees. Afterwards, each
node of the tree is associated with a specific prediction model that
We call prediction model “nested”. In Figure 1 we report a schematic
representation of the model learned by the method proposed in
[2]. As a whole, the tree represents the frequent sequences of ac-
tivities in processes, whereas every node represents a frequent
sequence and is associated with a prediction model learned on the
dataset. The sequence pattern mining algorithm allows us to deal

https://doi.org/10.1145/3216122.3216125
https://doi.org/10.1145/3216122.3216125


IDEAS 2018, June 18–20, 2018, Villa San Giovanni, Italy M. Ceci et al.

Figure 1: Datasets associated with nodes ⟨A⟩ and ⟨A,B⟩. Each
node represents a sequence of activities (⟨A⟩ and ⟨A,B⟩).

with incompleteness (thanks to the probabilistic interpretation of
the support of a sequence). This approach is in common with the
associative classification task [1, 6], where descriptive data mining
techniques are exploited for predictive purposes.

In this paper we extend this method and make it parallel under
the map-reduce programming paradigm (we implemented the new
method in the Apache Spark programming framework).We propose
a parallel, distributed algorithm which mines an approximation of
the collections of frequent sequences (first phase). The algorithm
combines a statical approach based on the Chernoff bound with
the MapReduce framework to run a mining algorithm on subsets
of the input dataset independently and in parallel. The resulting
collections of frequent sequences from each subset are aggregated
using an SE-tree data structure. In the second phase, the method
generates training data for each node of the tree and runs a (off-
the-shelf) distributed machine learning algorithm. The final model
can be used on-line to predict the next activity of partial processes
while they are running (activity-by-activity).

3 METHOD
The problem that we solve can be formalized as: Given a set of pro-
cesses, where every process is composed by a sequence of activities,
generate a prediction model for the next activity of every partial
process P . In this simplified problem formulation, every activity
belongs to a specific activity type and represents an instantiation
of the activity type. Moreover, every activity type implicitly defines
the attributes according to which its activities are represented.

In the next subsection we focus on the sequential pattern mining
task for the extraction of frequent sequences of activities (or, more
formally, activity types).

3.1 Approximate sequence pattern extraction
Let A = {a1,a2, ...,am } be the set of the possible activity types.
From A, we can obtain any sequence of its elements. A generic
sequence S =< ai1 ,ai2 , · · · ,aik > denotes the sequence of activity
types performed in one or more processes. D is a set of process
executions represented as a set of sequences.

Now, given a sequence S and a dataset D, we can define the
support of S , denoted with suppD (S), as the number of sequences
in D containing, as subsequence, S .

Given a minimum frequency threshold σ (σ ∈ [0, 1]) the task
of Sequential Pattern Mining is to extract all the sequences with
frequency greater than or equal to σ .

In our model, a dataset D is composed by a list of sub-datasets
(D1,D2, . . . ,Dn ), such that

⋃
i ∈1, ...,n Di = D. Note that we do not

pose any constraints on the number of sequences in every Di .
The method we are proposing returns an approximation of the

collection of the frequent sequential patterns with a probability
(1 − δ ). This is done according to a procedure already proposed for
the task of frequent pattern mining [5], but never used for the task
of sequential pattern mining. The idea is that the collection of the
frequent sequential patterns is generated by analyzing the locally
frequent sequential patterns with a support greater than or equal
to (σ − ϵ)mined on the various computational nodes, where ϵ is an
error derived for the each local dataset Di by means of the Chernoff
Bound[3]. Using the Chernoff bound, we can define ϵ =

√
2σ ln 2/δ

n ,
which is an estimation of the maximum acceptable error ϵ that we
can commit at each subset Di to mine all the frequent sequential
patterns for D with probability at least (1 − δ ).

Algorithmically, given a minimum frequency threshold σ (sup-
port), a reliability parameter δ and the number t of cores to use, the
dataset of sequence of activities SDB is partitioned in {D1,D2, ...,Dn }

datasets (typically n ≤ t ). Then, the following discovery process
is run: First, for each Di the Chernoff bound is used to compute ϵ ,
that is, an estimation of the maximum bounded error for σ . Then,
locally frequent sequential patterns with a support greater than
or equal to (σ − ϵ) are mined using any sequential pattern mining
algorithm on computational nodes of Spark. In order to locally
extract frequent sequential patterns, we used a simplified version
of the system CloFAST [4] which was proved to extract frequent
sequential patterns very efficiently.

In details, in the first part of the our algorithm the sequences are
generated: the dataset is partitioned and each partition is loaded in
a format which is adapt for the task of sequential pattern mining.
Afterwards, the value of ϵ is computed and the local minimum
support is computed. At this point, we remove from the data the
sequences of length 1 whose support is smaller than (σ − ϵ) be-
cause they (and their extensions) will never be frequent and will
never generate any classifiers. Finally, the algorithm for sequential
pattern mining is locally run on the partition of data so obtained.
Subsequently, the locally extracted sequences are aggregated glob-
ally: for each sequence pattern, we have a list of LabelPoint objects,
where each LabelPoint contains a data row and a class label. In this
step we also start to consider, in addition to the activity types, the
attribute values for the activities of single processes.

3.2 Model Learning
Once the global frequent sequences are discovered, they are used to
build classification models (one classifier of each frequent sequence
of activities). Coherently with [2], we represent the extracted fre-
quent sequential patterns as a tree (see Figure 1), called SE-tree,
and we associate to each node of this tree a training set for the task
of next activity prediction. This training set is built by extracting
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the description of the processes (and composing activities) which
contribute to the support of the pattern expressed at that node.

This step of the algorithm, as in the case of frequent sequence
extraction, fully exploits the Spark framework and is distributed. In
fact, every node is in charge of creating one or more training sets
and is in charge of generating one or more classification models.
Additionally, the training phase is also distributed and is performed
by executing any available (in the Machine Learning Library of
Spark) learning algorithm which learns a classifier from discrete
and continuous attributes. The generation of the training set creates
a training example for each (partial) process execution. Every pro-
cess execution used for training is represented by: process attribute
values, attribute values of its first activity, attribute values of its
second activity and so on. It is noteworthy that the same process
used for training S contributes to the generation of multiple classi-
fiers, one for each subsequence of S , which was considered frequent
in the distributed sequential pattern mining step. For example, in
Figure 1 processes 1 and 4 contribute to generate training examples
for both the classifiers associated to < A > and < A,B >. Once
training data are prepared, the learning process starts.

3.3 On-line classification of partial processes
The first step consists in matching the sequence of activity types
of the partial process to be classified S against the tree of frequent
sequential patterns. If there is a perfect matching, that is, there is
a path from the root to a leaf with the same sequence of activities
types of S , then the classifier corresponding to the leaf is selected.
If there is no perfect matching, we consider a new sequence S(1)
obtained from S by removing its first activity (i.e., the oldest one)
and proceed with the matching procedure described for S . The
process continues considering S(2), (i.e., removing from S the two
oldest activities), S(3) and so on. If the process continues and there
is no matching sequence in the tree, at the end we evaluate S(l ),
composed by a single activity. If also this sequence does not match
any activity sequence in the tree (note that this case is very rare),
than the sequence S is considered not classifiable, and “unknown
class” is returned. The rationale of using this solution is that the
most recent activities are the most relevant ones for the determina-
tion of the next activities. Once the classifier to be used is identified,
the instance to be classified is created. For this purpose, only at-
tributes corresponding to the matching path are considered and
the remaining attributes are discarded.

Example 3.1. Consider the sequence S = ⟨C,A,B⟩ and the tree
reported in Figure 1. In this case S , does not match any rooted
path in the tree. On the contrary, S(1) = ⟨A,B⟩ matches the path
⟨A⟩, ⟨A,B⟩. This means that the classifier associated to the node
⟨A,B⟩ is used to predict the next activity of S . Since the classifier
used to predict the next activity of S is that associated to the node
⟨A,B⟩, attributes of the activity of type C are not considered.

4 EXPERIMENTS
In this section we first describe the datasets used, then we introduce
the experimental setting. Finally, we present and discuss the results.

4.1 Datasets
In all, we considered three real-world datasets:
BPI2013 This dataset contains event logs from Volvo IT Belgium.
Specifically, the log contain events from the incident and problem
management system VINST. The dataset and its description can be
found at the following link: http://www.win.tue.nl/bpi/doku.php?
id=2013:challenge
BPI2015 This dataset is provided by five Dutch municipalities.
The data contains all building permit applications over a period of
approximately four years. The cases in the log contain information
on the main application as well as objection procedures in various
stages. Furthermore, information is available about the resource
that carried out the task and on the cost of the application. The
dataset and its description can be found at the following link: http:
//www.win.tue.nl/bpi/doku.php?id=2015:challenge

More specific details of the datasets are given in Table 1.

4.2 Experimental setting
For evaluation purposes, we used a 5-fold cross-validation schema
and we collected the average classification accuracy. We also col-
lected average running times and average number of extracted
frequent sequential patterns. The total number of sequences to
classify are 12087 for BPI2013 and 4571 for BPI2015. In all the ex-
periments we used the following parameters’ settings: δ = 0.05
(this was considered a good value for the task of distributed fre-
quent pattern mining [5]) and number of partitions n=4 (to fully
use all the computational nodes at our disposal). The learner we
considered is the naïve Bayesian classifier implemented in MLlib
(https://spark.apache.org/docs/2.2.0/mllib-naive-bayes.html)1. All
the experiments have been performed on a cluster of 4 machines,
each equipped with a 4-cores (8 threads) CPU at 3.40 GHz, 32GB of
RAM and a 750GB SSD hard drive.

4.3 Results
In Table 2 we report the number of classifiers learned for each con-
sidered sequence length. As expected, the higher the support, the
lower the number of classifiers learned. Moreover, for the datasets
there is no classifier for sequences of length greater than 10 because
there is no frequent sequence whose length exceeds 10.

Figures 2, 3 show the average accuracy in predicting processes of
length between 1 and 20. As expected, if we increase the length of
the processes, the prediction task becomes more and more difficult.
The reason is that processes become more and more specific and it
is difficult to learn valid classifiers. Moreover, in general, the lower
the minimum support threshold, the higher the accuracy. For BPI
2013 we see that there is no clear advantage, instead for BPI 2015
we observe that the best results are obtained with σ = 0.6. Our
intuition is that when the minimum support threshold is small, we
have more classifiers, which are more specialized, with the effect
of increasing the classification accuracy. On the other hand, if the
minimum support threshold is too small, we start to consider noisy
patterns or the patterns start to suffer from overfitting problems.
The consequence is that the learned classifiers have low general-
ization capabilities, with the effect of decreasing the classification
1For futureworkwe plan to use additional distributed learning algorithms implemented
in MLlib and Spark ML (the new Spark machine learning library).

http://www.win.tue.nl/bpi/doku.php?id=2013:challenge
http://www.win.tue.nl/bpi/doku.php?id=2013:challenge
http://www.win.tue.nl/bpi/doku.php?id=2015:challenge
http://www.win.tue.nl/bpi/doku.php?id=2015:challenge
https://spark.apache.org/docs/2.2.0/mllib-naive-bayes.html
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Table 1: Datasets description

no. of no. of min no. of features no. of max no. of activities
processes activities per event activity types per process

BPI2013 7554 65533 5 5 123
BPI2015 1199 52217 3 397 101

Table 2: Number of classifiers learned, organized by the length of sequences to which they are associated.

BPI 2013 BPI 2015
Min support (σ ) 0,6 0,7 0,8 0,9 0,6 0,7 0,8 0,9
Process length

k=1 3 3 3 3 26 22 12 6
k=2 6 6 6 5 202 126 43 7
k=3 12 11 9 7 758 372 60 2
... ... ... ... ... ... ... ... ...
k=7 38 8 2 0 1737 77 0 0
k=8 31 2 0 0 832 6 0 0
k=9 16 0 0 0 250 0 0 0
k=10 4 0 0 0 38 0 0 0

Total 201 83 43 27 10506 2186 158 15

accuracy. The conclusion is that the best minimum support thresh-
old really depends on the peculiarities of the dataset. For BPI 2015,
since in the processes the same activity type is repeated several
times, there is an improper increase of the number of frequent
sequences identified and, consequently, higher error in the predic-
tions. In other words, the problem with this dataset seems to be in
the fact that the activity type (used in the generation of sequences)
is not so informative if compared to the information provided by
the attribute values of the activities (used in the classifiers).

A different perspective of the results, which does not change
the conclusions drawn is provided in Table 3, where we show the
average accuracy by varying the maximum value of k . This means
that a row for k = K represents the average accuracy obtained for
processes of length between 1 and K. From this table it becomes
clear that, for BPI2013, the best performances are obtained with
support equal to 0.9. In this case, with only 27 classifiers, learned
for sequences of maximum length 6 (see Table 2), we can correctly
predict the next activity type of 43% of the 12087 running pro-
cesses. Obviously, for shorter sequences, we can also reach 84.81%
of accuracy.

In the same table we also report running times, here we can
clearly see how the minimum support threshold leads to an expo-
nential increase of the whole learning process. This is coherent
with time complexity of the sequential pattern mining problem.

Finally, and more importantly, in Figures 4 and 5 we report
the comparison between the distributed approach and the non-
distributed approach for the most challenging task: k ≤ 20. The
results clearly show huge improvement in terms of running times
of our approach with respect to the non-distributed counterpart.
This is not achieved at the price of loss in accuracy: on the contrary,
the accuracy increases since the distributed algorithm that we pro-
pose implements some form of ensemble learning which leads to
prediction models which are more robust to noise.

Figure 2: Average accuracy onBPI 2013 by varying the length
of the processes to be predicted.

Figure 3: Average accuracy onBPI 2015 by varying the length
of the processes to be predicted.
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Table 3: Average percentage accuracy to predict next activity of processes of maximum length k

BPI 2013 BPI 2015
Min support 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

k=1 84.8 84.9 85.2 84.8 59.7 59.6 57.49 56.9
k≤5 41.4 41.8 42.2 50.4 48.3 50.3 33.9 33.8
k≤10 37.9 38.5 39.3 45.2 31.5 31.8 18.9 18.8
k≤15 37.5 37.9 38.6 43.6m 24.1 24.1 14.8 14.6
k≤20 37.4 37.7 38.1 42.7 22.4 22.3 13.6 11.7

Running times (s) 70.7 22.4 10.3 6.7 106,9 9,9 233.8 4.3

Figure 4: Distributed (4 nodes) vs non-distributed algorithm
(1 node): Average running times by varying the number of
classifiers learned. Results are obtained with the dataset BPI
2013 with k ≤ 20.

5 CONCLUSIONS AND FUTUREWORKS
This paper faces the problem of operational support in process
mining and, thanks to the distributed solution we propose, we
are able to efficiently obtain accurate prediction models for the
recommendation of the next activity. The proposed approach is
two-stepped and combines descriptive datamining for partial model
mining with predictive data mining for mining nested classifiers.

For future work, we intend to explore the following research
directions: 1) Consider “contiguous” sequential pattern mining in-
stead of classical frequent sequential pattern mining to further
reduce the number of nested models to learn and avoid “holes” in
the frequent sequence of activities extracted. 2) Compare our ap-
proach against state-of-the-art distributed approaches. 3) Compare
the performances obtained using the naive Bayes algorithm with
other classification algorithms.
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fiers learned. Results are obtained with the dataset BPI 2013
with k ≤ 20.
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