
Apache Spark on Hadoop YARN & Kubernetes

for Scalable Physics Analysis

IT Department - Database Group - Scalable Analytics Solutions

Thursday 27th September, 2018
Author:
Vasileios S. Dimakopoulos

Supervisor:

Evangelos Motesnitsalis

c© Copyright by CERN 2018
All rights reserved

No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright
law.

Abstract

Big Data Technologies popularity continues to increase each year. The vast amount of data produced at the LHC
experiments, which will increase further after the upgrade to HL-LHC, makes the exploration of new ways to perform physics
data analysis a very important challenge. As part of the openlab project on Big Data Analytics in collaboration with the CMS
Big Data Project and Intel, this project aims at exploring the possibility to utilize Apache Spark for data analysis and reduction
in High Energy Physics. To do this, we decided to focus on the scalability aspect of Apache Spark. We scaled our data input
between 20 and 110 TBs and our available resources between 150 and 4000 virtual cores and monitored Sparks performance.
Our ultimate goal is to be able to reduce 1 PB of data in less than 5 hours. The datasets used in these scalability tests are
stored in ROOT format within the EOS Storage Service at CERN. We used two different resource managers for Apache Spark:
Hadoop/YARN and Kubernetes. Furthermore, we leveraged three important libraries: Hadoop-XRootD Connector to fetch
the files from EOS, spark-root to import the ROOT files in Spark dataframes, and sparkMeasure to monitor the performance
of our workload in terms of execution time. The detailed results and conclusions are presented in this report.

Scalability Tests - Final Report iii

Contents

Contents iv

List of Figures v

1 Introduction 1
1.1 Apache Spark . 1

1.1.1 Architecture . 2
1.2 Hadoop YARN . 3
1.3 Kubernetes . 4
1.4 Tools, Frameworks and Protocols . 5

2 Scalability Tests 6
2.1 Description & Prerequisites . 6
2.2 Initial Tests . 7
2.3 Main Tests . 8
2.4 Spark on Kubernetes . 10
2.5 Validation and Final Results . 11
2.6 Tests on Higher Workload - 1PetaByte . 14
2.7 Tests on different input structure . 14

3 Conclusions 15
3.1 Observations & Lessons Learnt . 15
3.2 Issues . 16
3.3 Future Steps . 16

Scalability Tests - Final Report iv

List of Figures

1.1 Deployment of Apache Spark . 1
1.2 Apache Spark Architecture . 2
1.3 Hadoop YARN Architecture . 3
1.4 Hadoop-XRootD Connector Architecture . 5

2.1 Input Size - Time Plot . 6
2.2 CPU Cores - Time Plot . 6
2.3 Tasks Straggling Effect . 6
2.4 Optimal Network Throughput . 6
2.5 Typical Example of Spark Job . 7
2.6 Small workloads with dynamic allocation enabled . 7
2.7 Performance for different input size . 8
2.8 Performance for different memory size . 9
2.9 Performance for different number of cores . 9
2.10 Network Throughput while scaling the resources . 10
2.11 Kubernetes results for different input size . 10
2.12 Full Network Saturation resulting in production services degradation . 10
2.13 Low network saturation with 111 executors . 11
2.14 Intermediate Network saturation with 222 executors . 11
2.15 Network saturation with more than 300 executors . 11
2.16 Performance of the tests for different input size with new Hadoop-XRootD Connector configuration on EOS

Public . 12
2.17 Performance of the tests for different memory size with new Hadoop-XRootD configuration on EOS Public . . 12
2.18 Performance of the tests for different number of cores with new Hadoop-XRootD Connector configuration on

EOS Public . 12
2.19 Performance of the tests for different input size with new Hadoop-XRootD connector configuration on EOS

public, UAT . 13
2.20 Performance of the tests for different memory with new Hadoop-XRootD Connector configuration on EOS

public, UAT . 13
2.21 Performance of the tests for different number of cores with new Hadoop-XRootD Connector configuration on

EOS public, UAT . 13

Scalability Tests - Final Report v

Chapter 1

Introduction

CERN Experiments data production rates will face a substantial increase in the following years due to the upgrade to
HL-LHC. While current technologies perform rather well, the need to investigate alternative scalable ways to perform physics
analysis in an easier, more efficient, and more scalable way is becoming imperative. The use of different approaches and tools
has the potential to provide a fresh look at analysis of very large datasets that could potentially reduce the time-to-physics
with increased interactivity.

1.1 Apache Spark

Apache Spark is a cluster-computing framework for large-scale data processing. It is designed for fast computation and
it extends the MapReduce model to efficiently use it for more types of computations, which include interactive queries and
stream processing. The main characteristic of Apache Spark is its in-memory computation model that increases the processing
speed of applications. It offers a variety of components and multiple features for big data processing.
Such features are:

• Supports of multiple languages - Spark provides built-in APIs in Java, Scala, or Python and comes up with 80
high-level operators for interactive querying.

• Advanced Analytics - It supports SQL queries, Streaming data, Machine learning (ML), and Graph algorithms.

• DataFrames - Spark can process structured data using Dataframes. Dataframes are conceptually an equivalent to
tables in relational databases and can be constructed from a variety of sources such as structured data files, tables in
Hive or existing RDDS.

It offers the possibility to be deployed in different modes using various resource managers(Hadoop YARN, Kubernetes, Apache
Mesos). Spark components are illustrated in figure 1.1 1

Figure 1.1: Deployment of Apache Spark

1Source: databricks Documentation

Scalability Tests - Final Report 1

• Standalone - Spark Standalone deployment means Spark occupies the place on top of HDFS (Hadoop Distributed File
System) and space is allocated for HDFS, explicitly. In this mode, Spark and MapReduce will run side by side to cover
all park jobs on cluster.

• Hadoop YARN - Hadoop Yarn deployment means, simply, Spark runs on YARN without any pre-installation or root
access required. It helps to integrate Spark into Hadoop ecosystem or Hadoop stack and it allows other components to
run on top of stack.

• Apache Mesos - Apache Mesos is a cluster manager that provides efficient resource isolation and sharing across
distributed applications or frameworks. When Spark is deployed using Mesos, Mesos replaces Spark master as Cluster
Manager.

• Kubernetes - Kubernetes is a containerized resource manager and when Spark is deployed using it, it uses Kubernetes
scheduler for the resource management.

1.1.1 Architecture

Spark architecture is based on 2 main abstractions: RDD,DAG (Resilient Distributed Datasets, Directed Acyclic Graphs).
However, Apache Spark 2.x is using DataFrames as well.

• Resilient Distributed Datasets (RDD): RDDs are collection of data items that are split into partitions and can
be stored in-memory on workers nodes of the Spark cluster. In terms of datasets, Apache Spark supports two types of
RDDs Hadoop Datasets which are created from the files stored on HDFS and parallelized collections which are based
on existing Scala collections. Spark RDDs support two different types of operations: Transformations and Actions.

• Directed Acyclic Graphs (DAGs): DAG is a sequence of computations performed on data where each node is an
RDD partition and each edge is a transformation on top of data. The DAG abstraction helps eliminate the Hadoop
MapReduce multistage execution model and provides performance enhancements over Hadoop.

It is worth mentioning that it follows a master/slave architecture with two main daemons and a cluster manager. A
standalone Spark cluster has a single Master and any number of Slaves/Workers. The driver and the executors run their
individual Java processes and users can run them on the same horizontal Spark cluster or on separate machines i.e. in a
vertical Spark cluster or in mixed machine configuration.

Figure 1.2: Apache Spark Architecture

Spark Driver runs the main function of each application and it is responsible for Spark Context Creation. It contains
various components like DAG Scheduler, Task Scheduler etc.

1. The Driver program that runs on the master node of the Spark cluster schedules the job execution and negotiates with
the cluster manager.

Scalability Tests - Final Report 2

2. For Spark SQL, Dataframes are exposed to SQL optimizer (Catalyst) which leverages advanced programming language
features in a novel way to build an extensible query optimizer. Catalyst’s transformation framework performs 4 levels of
analysis: Analysis of Logical Plan, Logical Plan Optimization, Physical Plan Creation & Code Generation
to compile the parts of the query to Java bytecode

3. It translates the RDDs into the execution graph and splits the graph into multiple stages.

4. Driver stores the metadata about all the Resilient Distributed Databases and their partitions.

5. Driver program converts a user application into smaller execution units known as tasks. Tasks are then executed by the
executors i.e. the worker processes which run individual tasks.

6. The tasks executions are handled using Spark’s Memory Management which has 2 different memory regions. Executor
Memory is mainly used for joints, shuffles or aggregations while Storage Memory used to cache partitions of
data

7. Driver exposes the information about the running Spark application through a Web UI at port 4040.

Executor is a distributed agent responsible for the execution of tasks. Every Spark application has its own set of
executor processes. Executors usually run for the entire lifetime of a Spark application and this phenomenon is known as
Static Allocation of Executors. However, users can also opt for dynamic allocations of executors wherein they can add or
remove Spark executors dynamically to match with the overall workload. This type of allocation is very common on shared
environment. The executor is responsible for :

1. Performing all the data processing.

2. Reading from and writing data to external sources.

3. Storing the computation results data in-memory, cache or on hard disk drives.

4. Interacting with the storage systems.

Last but not least, Cluster Manager is an external service responsible for acquiring resources on the Spark cluster and
allocating them to a Spark job. There are 3 different types of cluster managers which a Spark application can leverage for
the allocation and deallocation of various physical resources such as memory for client Spark jobs, CPU memory, etc. Hadoop
YARN, Apache Mesos, Kubernetes.

1.2 Hadoop YARN

In our use case Hadoop YARN is used as cluster manager.For the first part of the tests YARN is the Hadoop framework which
is responsible for assigning computational resources for application execution.

Figure 1.3: Hadoop YARN Architecture

Scalability Tests - Final Report 3

The ResourceManager is the rack-aware master node in YARN. It is responsible for taking inventory of available resources
and runs several critical services, the most important of which is the Scheduler, which allocates resources for applications to
be executed.

Each application running on Hadoop has its own dedicated ApplicationMaster instance. This instance lives in its own,
separate container on one of the nodes in the cluster. Each applications ApplicationMaster periodically sends heartbeat mes-
sages to the ResourceManager, as well as requests for additional resources, if needed.

The NodeManager is a per-node agent tasked with overseeing containers throughout their lifecycles, monitoring container
resource usage, and periodically communicating with the ResourceManager.

1.3 Kubernetes

Kubernetes is an open source container management platform designed to run cloud-enabled and scalable workloads. It
groups containers that make up an application into logical units for easy management and discovery. Whether testing locally
or running a global enterprise, Kubernetes flexibility grows so that it can deliver the applications consistently and easily no
matter their complexity.
Some of its features are:

• Horizontal Scaling - Scales the application up and down with simple commands or automatically based on CPU Usage.

• Self Healing - Restarts containers that fail, replaces and reschedules containers when nodes die, kills containers that
don’t respond to user-defined health check

• Configuration Management - Deploys application configuration without rebuilding the images

• Automatic Binpackings - Automatically places containers based on their resource requirements and other constraints,
while not sacrificing availability

The architecture of Kubernetes provides a flexible mechanism for service discovery. Like most distributed computing
platforms, a Kubernetes cluster consists of at least one master and multiple compute nodes. The master is responsible for
exposing the application program interface (API), scheduling the deployments and managing the overall cluster. Each node
runs a container runtime along with an agent that communicates with the master. The node also runs additional components
for logging, monitoring, service discovery and optional add-ons. Nodes are the “slave components” of this master-slave
architecture. They expose compute, networking and storage resources to applications. Nodes can be virtual machines (VMs)
running in a cloud or physical servers running within the data center.

Scalability Tests - Final Report 4

1.4 Tools, Frameworks and Protocols

In this project the files are stored in EOS. EOS Storage Service is an open source distributed disk storage system in pro-
duction since 2011 at CERN. Development focus has been on low-latency analysis use cases for LHC and nonLHC experiments
and life-cycle management using JBOD(Just a Bunch of Disks) hardware for multi PB storage installations. The EOS design
implies a split of hot and cold storage and introduced a change of the traditional HSM(Hierarchical Storage Management)
functionality based workflows at CERN. Today, EOS provides storage for both physics and user use cases. Instances of EOS
include EOSUSER, EOSPUBLIC, EOSATLAS, EOSCMS. For user authentication EOS supports Kerberos while it is also
compatible with XRootD copy mechanism from/to other storage services using it. 2

For this project we mostly focus on the scalability and performance of the data processing but in order to process our
data we need specific tools. One such tool is Hadoop-XRootD Connector which allows the communication between the
EOS storage service and Hadoop. Specifically, it is a Java library that reads files directly without the need to import/export
to Hadoop File System (HDFS). Another useful tool used to analyse physics data in Apache Spark is spark-root. This is a
SCALA library which offers the ability to translate ROOT data structures into Spark dataframes and RDDs. Furthermore,
sparkMeasure is being used to monitor the scalability-tests thus offering performance analysis. It can provide further useful
insight about a specific job by collecting performance metrics using Spark Listeners. Last but not least, we used Intel CoFluent
System Modelling & Simulation Technology in order to configure our tests in an optimal way.

Figure 1.4: Hadoop-XRootD Connector Architecture

2Source: AJ Peters, EA Sindrilaru, G Adde

Scalability Tests - Final Report 5

Chapter 2

Scalability Tests

2.1 Description & Prerequisites

For this work, our main concerns are performance, efficiency and scalability. In this chapter, we specify the optimal configur-
ation parameters for our scalability tests as well as the prerequisites that will help us to achieve reproducible results.
Our workload consists of a single Spark job that receives multiple parameters. These parameters include:

• The Maven dependencies such as the spark-root library and the sparkMeasure tool
• The location of the Kerberos tokens in order to authenticate via Kerberos
• The required executor memory
• The desired number of executors
• The required ratio of executors and cores
• The Spark deploy mode
• The location of the input files
• The location of the output files
• The location of the output of the metrics produced by sparkMeasure

A typical example of a Spark job submission can be seen on Figure (2.5).
Our optimal goals for these tests are displayed in Figures 2.1 to 2.4. In Figure 2.1, we see the optimal time and input

size behavior, which scales linearly as we increase the input size. Similarly, in Figure 2.2 the increase in processing resources
leads to decrease in total execution time. Another apparent goal that we want to observe in our results is to keep the task
parallelization factor as high as possible, as we see in Figure 2.3. Finally, we want to keep the network throughput as high as
possible, without saturating the network, as it displayed in Figure 2.4.

Figure 2.1: Input Size - Time Plot Figure 2.2: CPU Cores - Time Plot

Figure 2.3: Tasks Straggling Effect Figure 2.4: Optimal Network Throughput

Scalability Tests - Final Report 6

To avoid some possible bottlenecks in tests performance it is recommended to follow some prerequisites. First of all, we need
to create a dedicated queue in YARN with fixed resources that we could use in each iteration of our experiments. Furthermore,
we need an EOS dedicated instance so that no other user’s access to the same data impacts the performance of these tests.
Additionally, a dedicated OpenStack cluster was necessary to have isolated environment for our tests on Kubernetes.

After setting up the prerequisites, the configuration of the job should follow. To be more specific, we modified the jar of the
physics processing example that we are using in order to be able to use the sparkMeasure tool. sparkMeasure is a tool for
performance troubleshooting of Spark workloads. It simplifies the collection and analysis of Spark task metrics data with the
utilization of Spark listeners. It provided useful and detailed metrics results for our scalability tests such as executorRunTime,
executorCPUTime, bytesRead, stageDuration and many others.

The next step needed to perform was the resource configuration. In order to define the optimal configuration it was
recommended to analyze our jobs in small workloads and observe their behaviour with different parameterization. This steps
could be divided into two sub steps, one for each resource manager (Hadoop YARN, Kubernetes). Starting with Hadoop
YARN configuration we should take into consideration that the infrastructure is comprised of almost 1300 cores and 7TB of
RAM. Since Spark demands at least 3 different resource configurations(executors, core per executor, memory per executor) we
decided to use: 418 executors, 2 cores per executor and 7GB memory per executor. The decision derives from the
execution time. Specifically the 2 cores offered the best performance compared to 1 or 4 in terms of execution time, minimum
stragglers and network throughput. Additionally, 418 executors mean that every node will use 11 executors (since in this
way we achieve best parallelization factor) and we selected the maximum allowed memory per executor (7 GB for analytix)
since these tests are memory hungy. We disabled also, dynamic allocation and enabled speculation to avoid the unbalanced
allocation of resources and long execution times in specific tasks respectively.
Regarding Kubernetes we created a virtual cluster on OpenStack with 500 nodes each of which consists of 8 cores and 16GB
of RAM. For these tests we used 1000 executors with 2 cores each and 6GB of memory. At this point it is also important to
highlight that before running a job on the private instance of custom storage service it is necessary to authenticate using a
Kerberos token. An example of the Spark job that is submitted is illustrated in figure (2.5)

Figure 2.5: Typical Example of Spark Job

Figure 2.6: Small workloads with dynamic allocation enabled

2.2 Initial Tests

It is worth mentioning that the initial tests were performed on small scale to understand their performance and the
behaviour of the workload. After executing tests on 22TB with different resource configuration, we obtained the results of
the table (2.1). From these results it is apparent that more executors and cores don’t affect the performance in a reasonable
way. The strange behaviour observed in these specific tests lead us to further monitor the process using ganglia. The reason
behind this originated from the fact that all of our straggler tasks were coming from a single node. Particularly, when

Scalability Tests - Final Report 7

observing the network usage of every node, it was detected that this node didn’t use the network adequately. Therefore, the
tasks assigned to this node were straggling thus, resulting in higher execution times. In order to improve the performance we
decided to exclude this node from the analytix cluster and modify the resource configuration to be proportional to the new
cluster architecture. The new resource configuration affected only the number of executors which would be 407 ((Previous
nodes(thirty eight)-Struggler Node(one))*Executors per Node(eleven))

Input Executors Cores/Executor Total Cores Memory/Executor Total Memory Execution Time
22 TB 148 4 592 7 GB 1 TB 2 hrs
22 TB 148 2 296 7 GB 1 TB 1hr 50 min
22 TB 148 1 148 7 GB 1 TB 3 hrs
22 TB 296 1 296 7 GB 2 TB 3 hrs
22 TB 555 1 555 7 GB 4 TB 1 hr 50 min

Table 2.1: First Results with different resource configuration

2.3 Main Tests

Our first goal is to execute the workload for different input size of physics data in order to understand how the execution
times scales with input size as well as obtain a first insight on how to reduce the 1PB data. The second goal is to execute
the same workload again for a specific input size while scaling up the available resources(executors/cores). These two types of
tests were repeated for 2 different storage instance, namely EOS Public and EOS UAT. We do this to identify if the network
throughput and storage infrastructure affect the performance of the tests. As illustrated in (table: 2.2, fig: 2.7) it could be
easily understood that there is a linear behaviour between the input size and the execution time. Moreover, we can claim that
these results are promising since we reduced 110 TBs in 212 minutes but they still need further optimization.

Input Size Execution Time
22TB 58 min
44TB 83 min
66TB 149 min
88TB 180 min
110TB 212 min

Table 2.2: The results of scalability tests for different input size Figure 2.7: Performance for different input size

Coupled with the previous results the memory/cores scalability tests followed, where we scale up the amount of memory
or the number of cores by adjusting the number of executors since the memory per executor is fixed to 7GB. The tables and the
figures illustrate the results below. However, it seems that after a specific amount of memory/cores used the results converge
to a constant performance .

Scalability Tests - Final Report 8

Number of
Executors/Cores

Total Memory
Execution
Time

74/148 0.5TB 81 min
148/296 1TB 53 min
222/444 1.5TB 52 min
296/592 2TB 51 min
370/740 2.5TB 50 min
444/888 3TB 50 min

Table 2.3: The results from scaling up the memory
Figure 2.8: Performance for different memory size

Number of
Executors/Cores

Execution
Time for
EOS public

Execution
Time for
EOS UAT

Execution Time
for Shared
Hadoop Cluster

111/222 81 min 153 min 41 min
222/444 52 min 146 min 35 min
296/592 51 min 144 min 33 min
407/814 50 min 140 min 29 min

Table 2.4: The results from scaling up the number of cores Figure 2.9: Performance for different number of cores

First of all, as far as EOS is concerned it seems that public instance behaves more efficient and the reason behind this is
that it has more nodes to utilize and therefore more network capacity. Moreover, as in figure 2.8 as in figure 2.9 it could be
highlighted that there is a convergence after scaling above a certain amount of memory or cores correspondingly. This led us
to investigate why is this happening. Apparently, there is a fundamental factor that affects this behaviour and this is the the
saturation of the available network bandwidth. With this in mind, we monitored and measured the total throughput of the
network while running these jobs and the results are summarized below. Notwithstanding the gradual scaling of the resources
the network reaches its upper bound in early stages of scaling resulting in freezing the improvement of the performance.
Approaching this issue from another perpective we could claim that no matter how we scale up the resources the network
could not fetch files faster to adapt to the availale computing resource. This means that the resources are “waiting” to be
used when the files are ready for processing or in other words that our workload is network bound in our use case.

Scalability Tests - Final Report 9

Cores EOS public EOS UAT
222 15GBytes/s 6GBytes/s
444 19GBytes/s 7.5GBytes/s
592 21GBytes/s 7.5GBytes/s
814 21GBytes/s 7.5GBytes/s

Table 2.5: Network throughput when scaling the resources Figure 2.10: Network Throughput while scaling the resources

2.4 Spark on Kubernetes

At this point and after executing the scalability tests on Hadoop YARN we proceeded to execute the same Spark jobs
for Kubernetes. The resource configuration is 1000 executors 2 cores per executor with 6GB memory for each executor. This
parameterization was chosen since we needed to utilize all of the available Openstack resources to improve the performance of
these tests. However, after running the first tests for three different input data sizes we observed a full network saturation
which impacted some CERN production services (2.12). For this reason, we had to abort these tests since the infrastructure
wasn’t ready to support this network load without impacting the production services. The results obtained for those three
tests that we managed to run before the termination are more than promising and could lead to the outcome that if the
network infrastructure could handle this workload we would be able to achieve our ultimate goal to reduce 1PB in 5 hours
with a limited amount of cores/memory.

Input Data Runtime
22TB 40 min
44TB 70 min
66TB 120 min

Table 2.6: The results from Kubernetes scalability tests Figure 2.11: Kubernetes results for different input size

Figure 2.12: Full Network Saturation resulting in production services degradation

Scalability Tests - Final Report 10

Figure 2.13: Low network saturation with 111 executors
Figure 2.14: Intermediate Network saturation with 222 execut-
ors

Figure 2.15: Network saturation with more than 300 executors

2.5 Validation and Final Results

An important step before confirming our findings is the validation step. Therefore, what we did is to repeat the same
jobs multiple times in order to confirm our results and assumptions. However, after a closer look in the sparkMeasure results
we noticed that some parameters, which were supposes to remain constant changed its values during the rerun of the same
tests (e.g number of bytes read for 20TB job should be the same in all of the repeats of the job). This led us to investigate
further and we noticed that there was a defect in reading from EOS using Hadoop-XRootD connector. This issue was
correlated to the buffer size used to read the files from the storage service. Specifically the buffer size was 32MB and along
with the fact that requests for read is high this caused collecting unnecesary data from files thus, increasing the network
throughput. Therefore, buffer size was decreased to 128 KB and all the tests re-executed. Keeping the configuration the
same the results were performed again for both EOS public and EOS UAT instances. The final results could be summarized
in the next tables and figures.

Scalability Tests - Final Report 11

Input Size Execution Time
22TB 17 min
44TB 30 min
66TB 38 min
88TB 48 min
110TB 56 min

Table 2.7: The results of re-executing scalability tests for
different input size on EOS Public

Figure 2.16: Performance of the tests for different input size
with new Hadoop-XRootD Connector configuration on EOS
Public

After this configuration of new Hadoop-XRootD Connector the tests seem to have significant improvements since as
observed from table 2.7 the 110TB job could be reduced in less than an hour but at the same time the scaling keeps
its linear behaviour. Compared to figure 2.7 the scaling is smoother now with smaller slope.

Number of
Executors/Cores

Total Memory
Execution
Time

74/148 0.5TB 32 min
148/296 1TB 28 min
222/444 1.5TB 16 min
296/592 2TB 16 min
370/740 2.5TB 17 min

Table 2.8: The results of re-executing tests
by scaling up the memory on EOS Public

Figure 2.17: Performance of the tests for different memory size
with new Hadoop-XRootD configuration on EOS Public

Coupled with the previous table and figure it is obvious that the tuning of Hadoop-XRootD Connector buffer offer im-
provements also in memory scaling for these tests. The reduction of the time is greater compared to the results before but we
still could observe that when we scaled up the memory the results keep on improving thus meaning that physics application
that we are using is maintaining its high memory requirements.

Input Executors Cores Memory Time
22 TB 111 222 0.7 TB 31 mins
22 TB 222 444 1.5 TB 19 mins
22 TB 296 592 2 TB 16 mins
22 TB 407 814 3 TB 16 mins

Table 2.9: The results of re-executing tests by scaling
up the cores on EOS Public

Figure 2.18: Performance of the tests for different number of
cores with new Hadoop-XRootD Connector configuration on
EOS Public

Scalability Tests - Final Report 12

Similarly, we performed the tests for both EOS UAT & HDFS apart from EOS public and we compared the aggregate results
to observe under which conditions our tests scale up better and in a more efficient way.

Input EOS PUBLIC EOS UAT
22 TB 16 mins 13 mins
44 TB 30 mins 25 mins
66 TB 38 mins 38 mins
88 TB 48 mins 57 mins
110 TB 56 mins 59 mins

Table 2.10: Aggregate results of re-executing tests
by scaling up the input data size on EOS public,
EOS UAT

Figure 2.19: Performance of the tests for different input size
with new Hadoop-XRootD connector configuration on EOS
public, UAT

Input Memory EOS PUBLIC EOS UAT
22 TB 0.5 TB 32 mins 21 mins
22 TB 1 TB 28 mins 16 mins
22 TB 1.5 TB 16 mins 15 mins
22 TB 2 TB 16 mins 13 mins
22 TB 2.5 TB 16 mins 13 mins

Table 2.11: Aggregate results of re-executing tests
by scaling up the memory on EOS public,
EOS UAT

Figure 2.20: Performance of the tests for different memory with
new Hadoop-XRootD Connector configuration on EOS public,
UAT

Input Cores EOS PUBLIC EOS UAT
22 TB 222 31 mins 17 mins
22 TB 444 19 mins 13 mins
22 TB 592 16 mins 13 mins
22 TB 814 16 mins 13 mins

Table 2.12: Aggregate results of re-executing tests
by scaling up the cores on EOS public,
EOS UAT

Figure 2.21: Performance of the tests for different number of
cores with new Hadoop-XRootD Connector configuration on
EOS public, UAT

Scalability Tests - Final Report 13

2.6 Tests on Higher Workload - 1PetaByte

After the execution of all our tests, one of the next steps was to submit a higher workload, namely 1PB, while keeping
constant the previous resource and parameter configuration. However, this job failed on the first runs since the output which was
produced couldn’t be handled by the current Driver size. To resolve this issue we tried with different Driver sizes between 2 and
8 GBs while changing spark.driver.maxResultSize. Apparently, the one that resolved the issue was the 8GBs. Moreover,
due to multiple restarts of Application Master, one other parameter that we configured was spark.yarn.maxAppAttempts,
which is responsible for maximum number of attempts that will be made to submit the application, to 1.

The execution time using these configurations was 9 hours & 56 minutes which is an expected number compared to the
performance of the previous tests. From another perspective this indicates that our tests, tools and services are scaling well
and linearly even for higher workloads.

2.7 Tests on different input structure

This part of the project goes beyond the initial goals and it has as aim to investigate how Apache Spark behaves for
different input structure. Specifically, it aims at testing the same workload but giving as input either one folder that contains
all the input files or multiple folders each of which contains some of the input data. For EOS UAT we tested 110TB workload
and we noticed the following execution times:

• For one folder: 72 minutes

• For multiple folders: 58 minutes

From these results we could say that Apache Spark performs better when the files are distributed among multiple folders.
Last but not least this could give us further insight on how higher workloads should be configured in terms of input structure
to achieve better performance.

Scalability Tests - Final Report 14

Chapter 3

Conclusions

Summarizing, in this project we performed scalability tests for physics data analysis using Apache Spark on top of Hadoop
YARN and Kubernetes. The results obtained from the executed task jobs conform to most of our goals. Specifically, we
managed to observe:

• Linear behaviour between input size & runtime

• Efficient utilization of resources

• Reduction of 110 TB in less than an hour

• Reduction of 1 PB in almost 10 hours

However, we faced also some bottlenecks in our use case that led to deviation from our primary goals. First of all, the
network bound that we observed when we scale the cores or the memory didn’t offer us the possibility to achieve better results
initially as we reached the upper bound of network even in the early stages of the scaling (figures: 2.13, 2.14, 2.15). This issue
though, was tackled since with the tuning of Hadoop-XRootD Connector readAhead buffer we managed to reduce the network
throughput to almost the half. The results of the tests after these configuration were promising and they are indicating that
we are getting closer to our initial goal of reducing 1PB in 5 hours.

Another key thing to remember is notwithstanding the uncompleted tests of Spark on Kubernetes tests they provided
us with an insight of optimistic results for the future. However we need to repeat these tests in an isolated infrastructure in
order to avoid impacting the production services.

3.1 Observations & Lessons Learnt

The Observations and the Lessons Learnt through this project are summarized below:

1. We found that it was necessary to tune the Hadoop-XRootD Connector buffers to achieve better network utilization.

2. The workload was memory hungry.

3. Hadoop, Spark, Openstack and Kubernetes scaled rather well.

4. Since slow nodes can create problems with straggler tasks, which can badly affect the performance, Apache Spark Task
Speculation feature is a good mitigation to this issue.

5. EOS also scaled rather well but we noticed a maximum throughput.

6. The ROOT files cannot be split into blocks, by the current version of the spark-root library and therefore we have a file
to task mapping which results in single tail at the end of the job taking 10-15 minutes of the total execution time.

7. With the new Hadoop-XRootD Connector buffer size and the same infrastructure we need 560 minutes to reduce 1PB
which approaches the initial aim of 300 minutes.

8. After executing 1PB job the execution time was 596 minutes which is close to 560 minutes which we were expected with
the current configuration.

9. Apache Spark performs better when the input data are distributed in multiple folders.

Scalability Tests - Final Report 15

3.2 Issues

Throughout our tests we faced several problems such as:

• Requesting many resources from the analytix Hadoop cluster led many times to resources denial and to problematic
results that needed to be re-executed

• Network errors during our jobs resulting in re-submissions of the jobs

• Performance Degradation of production services on Openstack since they were co-hosted with network switches that we
overloaded during the tests on Kubernetes.

• Kubernetes cluster took more than 1 week to be created due to a bug in the VM Scheduler

• Hadoop-XrootD Connector buffer resulted in excessive reading of data and thus high network throughput

3.3 Future Steps

As future steps of this work we would like to perform the tests on a scaled infrastructure. As a result, we aim at repeating the
Kubernetes tests in an isolated infrastructure and in a not impacting way. Last but not least it is worth investigating
if we are CPU or I/O Bound for our workload, once the network bottleneck is resolved. To be able to answer to this
question we need to perform the tests for our workload with the new upgrades of the network infrastructure and also the
newest Hadoop-XRootD Connector.

Scalability Tests - Final Report 16

	Contents
	List of Figures
	Introduction
	Apache Spark
	Architecture

	Hadoop YARN
	Kubernetes
	Tools, Frameworks and Protocols

	Scalability Tests
	Description & Prerequisites
	Initial Tests
	Main Tests
	Spark on Kubernetes
	Validation and Final Results
	Tests on Higher Workload - 1PetaByte
	Tests on different input structure

	Conclusions
	Observations & Lessons Learnt
	Issues
	Future Steps

