
Employing HPC for Heterogeneous
HEP Data Processing

AUGUST 2018

AUTHOR:
Marco
Barbone

CERN IT-DI-OPL
DEEP-EST

SUPERVISORS:

Viktor Khristenko
Felice Pantaleo
Maria Girone

CERN openlab Report 2018

Project Specification

The DEEP-EST Project aims to build a Modular Supercomputer Architecture (MSA) with the main
focus on the usage of heterogenous computing resources. The majority of current HEP workflows
are capable of utilizing exclusively Central Processing Units (CPU), which create inefficiency
when trying to run on heterogenous systems equipped with additional hardware accelerators
(GPUs, FPGAs).

Within the context of this project, we want to extend current CPU specific implementations of
various algorithms (calorimeter reconstruction, track fitting, etc.) by utilizing OpenCL and CUDA
language extensions in order to harness the computational power provided by various hardware
accelerators.

DEEP-EST ii

CERN openlab Report 2018

Abstract

One of the most time consuming algorithms that is currently employed for the reconstruction of
High Energy Physics (HEP) workflows is the local energy reconstruction. The time spent to
execute this algorithm constitutes 24% of the total processing time, thus achieving substantial
speedup by optimizing this problem will noticeably influence the total processing time. Even
a speedup of a factor of 1.5 will shorten the processing time by about 5%. The purpose of this
project is to dig deep into both algorithmic and architecture dependent optimizations, trying to best
exploit heterogenous resources to maximize High Performance Computing (HPC) utilization.

DEEP-EST iii

CERN openlab Report 2018

Contents

Contents iv

List of Figures v

List of Tables vi

1 From physics to... Physics 1

2 Local energy reconstruction 4
2.1 Problem statement . 6
2.2 Fast non negative least square algorithm (FNNLS) 6
2.3 Implementation details . 8
2.4 GPU porting . 8
2.5 Optimizations . 8

2.5.1 Numerical . 8
2.5.2 Algorithmic . 9

3 Results 10
3.1 Test01: GPU vs CPU . 10
3.2 Test02: GPU vs CPU, Optimized Matrix multiplication 12

4 Profiling and further optimizations 15
4.1 Finding CPU hotspots . 15

4.1.1 Matrix multiplication . 16
4.1.2 Updating the Cholesky . 17

5 Conclusions 19

Bibliography 20

DEEP-EST iv

CERN openlab Report 2018

List of Figures

1.1 Cern data flow from collisions to analysis . 3

2.1 HLT processing pipeline . 4
2.2 Data processing time share . 5

3.1 Speedup achieved with 10 iterations, higher is better 11
3.2 Time needed to complete 10 iterations, linear channel scale, lower is better 11
3.3 Time needed to complete 10 iterations, log channel scale, lower is better 12
3.4 Speedup achieved with 10 iterations, higher is better 13
3.5 Time needed to complete 10 iterations, linear channel scale, lower is better 13
3.6 Time needed to complete 10 iterations, log channel scale, lower is better 14

4.1 VTune profiling of multifit cpu. 37% of the total time is spent performing ATA. . . . 15
4.2 Second bottleneck found using VTune. 34% of the time is spent calculating the

Cholesky decomposition. 16
4.3 Cache efficient 10× 10 matrix multiplication. The time needed to perform it is only

16.1% respect to the 37.6% spent by eigen implementation. 17

DEEP-EST v

CERN openlab Report 2018

List of Tables

2.1 Time spent into the various HLT reconstruction steps 5

5.1 Speedup achieved after applying all the optimizations. 19

DEEP-EST vi

CERN openlab Report 2018

1. From physics to... Physics

Modern High Energy Physics (HEP) experiments require complex multistage infrastructure. To
realize them several large scale facilities are needed: from accelerators, detectors, data centers
to the thousands of people involved to design and run the infrastructure.

The entry point of any Large Hadron Collider (LHC) experiment is the collision between
proton-proton beams (although Pb beams are used) which triggers various physical processes.
There are two kinds of processes, those that are not yet observed, called Signal (S) and the
observed ones, called Background (B). The objective of LHC experiments is to expand our
knowledge about elementary physical processes governing the universe by studying S through
the already observed particles that it produces. Unfortunately, interesting processes are quite
rare, thus a huge amount of collisions are needed to produce one of them.
This creates a lot of difficult and interesting IT challenges because everything from data acquisi-
tion to data analysis has to scale to meet throughput and timing requirements. The faster data
are processed, more collisions can be triggered therefore, quicker the research can proceed.
As computer scientists, our purpose here at CERN is to accelerate data processing by best ex-
ploiting the resources at our disposal, achieving the maximum efficiency using smart and creative
approaches, in particular targeting High Performance Computing (HPC) environment.
The LHC infrastructure is designed to process huge amounts of data (hundreds of Pb/s). The data
flow architecture illustrated in figure 1.1 is organized in four main stages. Staring from physical
processes to the physics carried out by analyzing the data, with data acquisition and processing
in the middle. Each of these steps is complex and deserves a dedicated explanation.

Data Generation The process starts with beams of protons colliding every 25ns that leads to
particle interactions that create some intermediate products. These intermediate products can
not be directly observed, but they further decay into something observable by the detectors.

Data Acquisition Detectors are split in two levels: physics detector level and electronics
level. The physics level takes as input sensor readouts and produces an analog signal. This
analog signal is digitized by the electronics level. At this point there is too much data to send
it directly to the next stage. Models are used to distinguish between which data that belongs to
S and which one belongs to B. Since these models are complex and the timing constraints are
very strict, only a simplified version of them is implemented directly in hardware, on top of Ap-
plication Specific Integrated Circuits (ASIC) and Field Programmable Gate Arrays (FPGA)
boards. Because models here are simplified there are a lot of B events labeled as S.
The events that survive this first stage are sent to the High Level Trigger (HLT).
The HLT has more relaxed time constraints since it receives less events and its job is to dis-
tinguish between S and B exploiting, an implementation of the same models used inside the
previous stage, but with more features that allows more precise evaluations. Another important
characteristic of the HLT is that it is implemented in software and executed on a CPU based clus-
ter. Currently there is an attempt to integrate and exploit accelerators such as GPUs and FPGAs
inside this cluster.

DEEP-EST 1

CERN openlab Report 2018

Data Processing At this point, events that pass previously described two level trigger system
are used to generate a dataset used for analytics purposes. To build this dataset, the same
models deployed inside the triggers are used, but with way more features. To extrapolate useful
information and build the dataset raw data are sent through a complex multistage processing
pipeline. This pipeline is offline so it does not share the timing constraints of the previous stage
but, efficient exploitation of resources is needed because even after all the filtering data is still
huge and models are very complex.
The first stage, called local reconstruction, transforms charges to physical quantities such as
energy, time, and position. This operation is done channel by channel. These channels are
independent form each other thus, this is an embarrassingly parallel problem. This parallelism
is exploited though multi-threading by running this code on a cluster of multi-core machines, al-
though other parallel architectures, such as GPUs, are currently tested to deploy them in future
upgrades. Then, information coming from different channels of the same detector are combined
by the cross channel clustering into local detector clusters. The final step needed to obtain
particle objects is the cross detector clustering in which data coming from different detector
is combined. In the end, some particle objects are built. The set of all these particle objects form
the dataset used to probe new horizons of fundamental physics.

DEEP-EST 2

CERN openlab Report 2018

PP collisions

BS

Particles

(analog)

Physics detectors
level

PHYSICS

(digital)

Electronics level

RAW DATA

HLT

ONLINE

(digits)
CHARGES

(digits)
CHARGES

Energy
Time

Position

Energy
Time

Position

local
reconstruction

Local detector
clusters

Local detector
clusters

cross channel
clustering

Physics
objects

Physics
objects

cross detector
clustering

DATA
ANALYSIS

OFFLINE

DISKS

Less features
CODEBASE

More
features

Figure 1.1: Cern data flow from collisions to analysis
DEEP-EST 3

CERN openlab Report 2018

2. Local energy reconstruction

The HLT shares the same code used for offline data processing, thus the processing pipeline is
more or less the same. The fundamental difference is that the output is used to perform event
classification instead of data analysis. The table 2.1 shows how much time is spent in every

Figure 2.1: HLT processing pipeline

RAW DATA

HLT

EVENT
CLASSIFICATION

(digits)
CHARGES

Energy
Time

Position

local
reconstruction

Local detector
clusters

cross channel
clustering

Physics
objects

cross detector
clustering

DISKS

EVENT
CLASSIFICATION

HLT

single step of the reconstruction process. Most of it is spent into tracking but after it, the second
more time consuming step is HCAL+ECAL local reconstruction that takes 113ms corresponding
to 24% of the total time. Given the time needed to perform this reconstruction even achieving a
speedup of two would reduce the total processing time by more than 10%. This is the focus of
this project: try to reduce it as much as possible by both optimizing it for CPU and exploiting GPU
resources.

DEEP-EST 4

CERN openlab Report 2018

Figure 2.2: Data processing time share

ECAL local reconstruction

8.3%

HCAL local reconstruction

15.7%

Jets/MET

3.0%

E/Gamma

4.3%

Muons

7.3%

Pixel tracking

13.9%

Full tracking

24.2%

Vertex reconstruction

0.5%

Particle Flow and Taus

7.8%

HLT

3.1%
Overhead

12.0%

Table 2.1: Time spent into the various HLT reconstruction steps

Step Real-Time Percentage
ECAL local reconstruction 38.9 ms 8.25%
HCAL local reconstruction 73.9 ms 15.67%
Jets/MET 14 ms 2.97%
E/Gamma 20.4 ms 4.33%
Muons 34.2 ms 7.25%
Pixel tracking 65.7 ms 13.93%
Full tracking 114.2 ms 24.22%
Vertex reconstruction 2.3 ms 0.49%
Particle Flow and Taus 36.8 ms 7.8%
HLT 14.7 ms 3.12%
Overhead 56.4 ms 11.96%
Total 471.5 ms 100%

DEEP-EST 5

CERN openlab Report 2018

2.1 Problem statement

For each channel {given n charge readouts→ reconstruct the energy}.

min(χ2) = argminx(‖Px− b‖2)

∀i : xi ≥ 0

where:
x = energy vector
P : ENERGY → CHARGE = feature matrix
b = charge vector
n = 10 (in this particular case)

(2.1)

Which is a standard χ2 problem with additional positivity constraints. This constraint is present
because physically speaking negative energy does not make sense.
As shown in [1] the statement above is incomplete. A perfect mapping from charges to energy
does not exist because signal from the shower does not dissipate within one time slice (25ns).
Adding the correlation term this problem becomes:

argminx(
∥∥(Px− b)T Σ(x)−1(Px− b)

∥∥2)

∀x : x ≥ 0
(2.2)

It is worth pointing out that Σ depends on x, meaning also Σ is unknown.
To compute Σ an iterative procedure is used:

1. Compute Σ.

2. Minimize χ2.

3. If not convergence goto 1.

More precisely Σ is the covariance matrix representing the noise correlation between time sam-
ples i and j, obtained from data where no signal is present, and the single sample noise.
To solve the problem stated in 2.1 several algorithms exist, for example lsqnonneg illustrated in
[4] and the ffnls illustrated in [2]. The one implemented is fnnls since as measured in [3] it is
faster.
The problem presented in 2.2 is not a χ2 problem but to solve it with nnls needs to be reduced
into the canonical form. The redution exploits the Cholesky decomposition and is illustrated in
2.3.

(Px− b)T Σ(x)−1(Px− b)
≡ Σ = LLT , (AB)−1 = B−1A−1

(Px− b)TL−TL−1(Px− b)
≡ (AB)T = BTAT

(L−1Px− L−1b)TL−1(Px− b)
≡

(L−1Px− L−1b)T (L−1Px− L−1b)
≡ L−1P = P ′, L−1b = b′

(P ′x− b′)T (P ′x− b′)

(2.3)

2.2 Fast non negative least square algorithm (FNNLS)

The nnls is an active set iterative algorithm. It uses two sets:

DEEP-EST 6

CERN openlab Report 2018

• Passive set (P): the constraint is ”passive”, meaning that it is not satisfied.

• Active set (R): the constraint is ”active”, meaning that it is satisfied.

The pseudo-code presented in algorithm 1, starts with a feasible solution (line 2), then checks for
the positivity constraint. If there are some negative components it finds a non negative one that
minimize the error, exploiting a gradient (line 5). More details can be found in [4]

Algorithm 1 NNLS
Input:

A real valued matrix of dimension m× n
b real valued vector of dimension m
ε the maximum accepted error
K the maximum number of iterations

Output:
x the solution vector

1: function NNLS(A, b, ε, K)
2: x← 0
3: P = ∅
4: R = {1, 2, ...,m}
5: w = AT (b−Ax) . compute the gradient
6: while R 6= ∅ ∧max(w) < ε ∧ k < K do
7: j ← max(wP) . wP ← {wj : j ∈ P}
8: Add j to P
9: Remove j from R

10: AP ← {aij ∈ A : i ∈ P ∧ j ∈ P}
11: s← ((AP)TAP)−1AP bP . s is a vector of the same dimension of P
12: while min(s) ≤ 0 do
13: α = mini{ xi

xi−si : i ∈ P ∧ si ≤ 0}
14: ∀i ∈ P : xi ← xi + α(si − xi)
15: move to R all i ∈ P : xi = 0
16: s← ((AP)TAP)−1AP bP . recompute s for the next iteration
17: ∀i ∈ P : xi = si
18: w ← AT (b−Ax)
19: k ← k + 1

This algorithm is slow because at each iteration it requires to calculate the pseudo-inverse
(line 11). FNNLS, showed in algorithm 2, is faster because it reduces the computational burden of
this operation. The idea is simple: instead of projecting the matrix A over P and then performing
the transposition and multiplication, it saves ATA and performs the projection over P . Another
operation avoided is the multiplication between A and b, also in this case the multiplication is
performed in the preprocessing phase. At runtime, only the projection over P is performed.
These improvements reduces the computational making the it to run faster.

Algorithm 2 FNNLS

1: w ← (AT b)(ATA)x
2: s← ((ATA)P)−1(AT b)P

DEEP-EST 7

CERN openlab Report 2018

2.3 Implementation details

This algorithm has several numerical issues coming from the pseudo-inverse computation (line
11 of pseudo-code 1 and line 2 of pseudo-code 2).
The original definition of the matrix AP is AP = {A.col(i) : ∀i ∈ P} ∪ {0 : ∀i ∈ R}. While the
definition of the vector bP is bP = {bi : ∀i ∈ P} ∪ {0 : ∀i ∈ R}. This results in a m × n matrix
and a m dimensional vector. Calculating the pseudo-inverse with this matrix generates numerical
issues, the result is a matrix containing some −nan.
One way to solve this problem is to reduce the number of operations needed to perform the
computation. To achieve this there are three ways:

1. Invert the matrix through some decomposition.

2. Changing the definition of AP to reduce the size of the matrix and the vector.

3. Combining both 1 and 2.

Decompositions From the decompositions present in this page [7], Cholesky and House-
Holder with and without pivoting have been tested. These decompositions have been chosen
following the advices present on this page of Eigen documentation. As a result all of them except
the HouseHolder with pivoting were numerically unstable. But, the HouseHolder with pivoting is
not fast enough to meet the time constraints so, other approaches has been tested.

AP Observing the computations performed utilizing the original definition can be noticed that a
lot of useless operations containing 0 were present. Not only this is overhead but also increases
the algorithmic error. Changing the definition to the one provided into the pseudo-code allowed
Cholesky and also the plain inverse to work without issues.

In the end the Cholesky without pivoting, applied on the modified AP matrix, was chosen be-
cause it is proven in [5] to perform best.

2.4 GPU porting

Until now there are two versions ported on GPU, the one taken from cms-sw codebase and the
one implemented from scratch.
To exploit the parallelism provided by these devices a channel level parallelization is performed
but, a dynamic parallelism inside the channel is to be studied.

2.5 Optimizations

There are two kinds of optimizations performed: numerical and algorithmic. In the first case some
mathematical properties are exploited to reduce the number of operations, in the other case some
architecture level knowledge is used to speedup the computation.

2.5.1 Numerical

The optimization performed here is to avoid using swap matrices and the P and R vectors. Study-
ing the algorithm it is possible to notice that the P , R partitioning can be obtained in-place by

DEEP-EST 8

https://eigen.tuxfamily.org/dox/group__LeastSquares.html

CERN openlab Report 2018

permuting the matrix A.

Passive

y

Passive−−−−−−−−−−−−−−−−−−−−→
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 (2.4)

As shown in 2.4 the passive set grows from the top left corner. The size of this block is the same
as P . This way, instead of a vector, a counter is enough to save the active set. Every time a
variable enters in the active set the corresponding column and row are swapped accordingly and
the nActive counter is incremented.
Both the vector b and x are permuted, because otherwise they would not be aligned with the
matrix.
A permutation matrix is used to keep track of all the swapping and the solution is reordered before
being returned.
This optimization allows to reduce both memory allocation/de-allocation and cache faults resulting
in a performance improvement of a factor of 2, as showed in 3.1.

2.5.2 Algorithmic
The optimization performed here is exploiting some pragmas to vectorise fixed iteration loops and
to unroll the others, which have non constant number of iterations.
From the profiling performed can be noted that in case of fixed iteration loops the vectorization
gives better performance results with respect to the unroll. Also the compiler unroll vectorized
loops combining the best of both approaches.
The unroll value has been determined empirically using the tool called cachegrind, using the
method illustrated in this page. Exploiting measurements like branch misprediction and cache
faults for each value and used the one that minimize them.

DEEP-EST 9

http://valgrind.org/docs/manual/cg-manual.html

CERN openlab Report 2018

3. Results

3.1 Test01: GPU vs CPU

The results of this test are used as baseline for further optimizations.
Test configuration:

• CPU: Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz

• GPU: NVIDIA Tesla K40c

Implementations tested:

• legacy multifit cpu: plain cms-sw cpu code.

• legacy multifit gpu: plain gpu porting cms-sw cpu code.

• multifit cpu: inplace fnnls cpu implementation.

• multifit gpu: inplace fnnls gpu implementation.

• multifit cpu swap: fnnls cpu implementation with swapping matrices.

• multifit gpu swap: fnnls gpu implementation with swapping matrices.

All the cpu implementations are single-threaded. With 64k channels the optimized GPU version
achieves a speedup of 2.67. Since the corresponding CPU version achieves a speedup of 1.10,
the GPU implementation runs more than twice as fast as the corresponding CPU one.

DEEP-EST 10

CERN openlab Report 2018

1024 2048 4096 8192 16384 32768 65536
channels

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

d-
up

Speed-up using legacy_multifit_cpu as reference value
legacy_multifit_cpu
legacy_multifit_gpu
multifit_cpu
multifit_gpu
multifit_gpu_swap
multifit_cpu_swap

Figure 3.1: Speedup achieved with 10 iterations, higher is better

0 10000 20000 30000 40000 50000 60000
channels

0

100

200

300

400

500

600

700

tim
e

(m
s)

Time to complete 10 iterations
legacy_multifit_cpu
legacy_multifit_gpu
multifit_cpu
multifit_gpu
multifit_gpu_swap
multifit_cpu_swap

Figure 3.2: Time needed to complete 10 iterations, linear channel scale, lower is better

From 3.1 that the GPU performs almost six times as fast with respect to the CPU. Other
optimizations like loop unrolling and branch reduction give a performance gain about 20% on
CPU.

DEEP-EST 11

CERN openlab Report 2018

1024 2048 4096 8192 16384 32768 65536
channels (log-scale)

0

100

200

300

400

500

600

700

tim
e

(m
s)

legacy_multifit_cpu
legacy_multifit_gpu
multifit_cpu
multifit_gpu
multifit_gpu_swap
multifit_cpu_swap

Figure 3.3: Time needed to complete 10 iterations, log channel scale, lower is better

From the plot present in 3.2 can be noted that in the GPU version there is a change of slope
around 15k channels, after this number the growth slows-down. The plot in 3.3 makes more evi-
dent the difference between the different version of the algorithm. The GPU outperforms the CPU
and since the growth is sub-linear, it will be interesting to study what will happen if the number of
channels increases even more.

3.2 Test02: GPU vs CPU, Optimized Matrix multiplication

All the cpu implementations are single-threaded. With 64k channels the GPU version achieves a
speedup of 2.67 that it the same as the previous test.

DEEP-EST 12

CERN openlab Report 2018

1024 2048 4096 8192 16384 32768 65536
channels

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

d-
up

Speed-up using legacy_multifit_cpu as reference value
legacy_multifit_cpu
legacy_multifit_gpu
multifit_cpu
multifit_gpu
multifit_gpu_swap
multifit_cpu_swap

Figure 3.4: Speedup achieved with 10 iterations, higher is better

0 10000 20000 30000 40000 50000 60000
channels

0

100

200

300

400

500

600

700

tim
e

(m
s)

Time to complete 10 iterations
legacy_multifit_cpu
legacy_multifit_gpu
multifit_cpu
multifit_gpu
multifit_gpu_swap
multifit_cpu_swap

Figure 3.5: Time needed to complete 10 iterations, linear channel scale, lower is better

From 3.1 can be noted that even with all the optimizations the GPU speedup it does not
increase. This is due to the fact that the GPU is underutilized so even if the implementation
requires less resources it can not be noted in this test, and the data transfer respect to the

DEEP-EST 13

CERN openlab Report 2018

computation is very big. The optimized CPU implementation in this case performs 35% better
than the legacy one.

1024 2048 4096 8192 16384 32768 65536
channels (log-scale)

0

100

200

300

400

500

600

700

tim
e

(m
s)

legacy_multifit_cpu
legacy_multifit_gpu
multifit_cpu
multifit_gpu
multifit_gpu_swap
multifit_cpu_swap

Figure 3.6: Time needed to complete 10 iterations, log channel scale, lower is better

DEEP-EST 14

CERN openlab Report 2018

4. Profiling and further optimizations

In order to further optimize the code some profiling is needed to identify the bottleneck and solve
them... If possible.

4.1 Finding CPU hotspots

The methodology followed is to use Intel VTune on the entire regression. Profiling only the nnls
portion of the code did not give reliable results because terminates too fast. Profiling the entire
regression instead, gave interesting results; As showed in 4.1 and 4.2 there are two hotspots in
the code.

Figure 4.1: VTune profiling of multifit cpu. 37% of the total time is spent performing ATA.

DEEP-EST 15

CERN openlab Report 2018

Figure 4.2: Second bottleneck found using VTune. 34% of the time is spent calculating the
Cholesky decomposition.

4.1.1 Matrix multiplication

The first hotspot is the computation of ATA that requires 37% of the total execution time. To solve
this hotspot it is possible by exploiting the observations:

• The matrix ATA is symmetric so it is enough calculate the one triangular portion and the
copy the results back.

• The matrix is 10 × 10, it fits in L1 cache, thus cache efficiency is more important than
algorithmic complexity.

Exploiting the hypothesis stated above the implementation illustraded in pseudo-code 3, specific
for this case, has been provided.
This code is very simple but, in cache simple things are needed. The goal is to avoid useless

computations, cache faults, and bubbles generated by branches. The main idea behind it is given
that ATA is symmetric compute only half of it and copy the values to the other part. Moreover,
knowing that the multiplication is not between two random matrices but, between a matrix and
tis transpose, if the storage order is column major perform a column×column dot product or a
row×row one in the other case. Since the storage order is column major there is another minor
optimization that can be performed to gain the last drop of performance. This optimization is
about the loop order. A careful choice minimizes jumps, for example in this particular case iterate
over column generates no jumps neither cache misses, while iterating over rows generate a jump.
A loop order of row → column→ dot product means that for each row there is one and only one
jump. Instead, a loop order like column → row → dot product generates |columns| × |rows|

DEEP-EST 16

CERN openlab Report 2018

Figure 4.3: Cache efficient 10 × 10 matrix multiplication. The time needed to perform it is only
16.1% respect to the 37.6% spent by eigen implementation.

jumps, which is bad for performance.
This optimized version of the matrix multiplication, as showed in 4.3 takes only 16.1% of the total
time, while the reference one takes 37.6% of it, giving a speedup of 2.33.
On the GPU side instead, it is possible to optimize this further by parallelizing this product with a
kernel invocation.

4.1.2 Updating the Cholesky
The second bottleneck can be solved using the closed formula present in [6] to update the
Cholesky without recomputing it in case of adding/removing one column and one row.
Given that nnls updates a components of the solution vector at the time, to reduce the number of
iterations performed inside the regression it is possible to directly exploit this information to up-
date the Σ matrix. That way the whole regression, that is intrinsically iterative might be executed
in fewer iterations.

DEEP-EST 17

CERN openlab Report 2018

Algorithm 3 Cache efficient matrix transposition and multiplication. A column major storage
order is assumed otherwise the index needs to be reversed.
Input:

A real valued matrix of dimension m× n
Output:

ATA Real valued matrix of size m×m

1: function TRANSPOSE MULTIPLY(A)
2: m×m matrix B
3: for i← 0; i < m; + + i do
4: for j ← i; j < m; + + j do . ATA is symmetric, compute half of it
5: Bji ← 0
6: for k ← 0; k < m; + + j do
7: Bji+ = Aik ∗Ajk

8: Bij ← Bji . Copy the result on the other half
return B

DEEP-EST 18

CERN openlab Report 2018

5. Conclusions

The results of all the tests performed are summarized in the table 5.1 below. There are two
important things to notice: first, with improvements applied to the CPU version a speedup of
additional 38% was achieved. In case of CPU, increasing the number of channels does not affect
the speedup, because all the versions are single threaded, therefore an approximately uniform
improvement is observed. Second of all, by porting to the GPU a speedup of a factor of 2.67
was achieved for the case of 65K channels (with trivial parallelization across all the channels).
Important to note that for the GPU, a different trend is observed (increase up to ≈ 8K and then a
slow down, and an increase again), as expected, due to the parallel nature of the architecture.

Table 5.1: Speedup achieved after applying all the optimizations.

channels 1024 2048 4096 8192 16384 32768 65536

legacy multifit cpu 1.00 1.00 1.00 1.00 1.00 1.00 1.00
legacy multifit gpu 0.62 1.22 1.77 2.09 1.89 2.10 2.23
multifit cpu 1.25 1.38 1.35 1.35 1.33 1.34 1.34
multifit gpu 0.96 1.57 2.09 2.56 2.31 2.54 2.67
multifit gpu swap 0.42 0.73 1.10 1.15 1.11 1.21 1.23
multifit cpu swap 0.45 0.48 0.51 0.50 0.50 0.50 0.50

There are few things to further develop, some are architecture dependent and some are algo-
rithmic dependent:

• GPU: Dynamic parallelism to better exploit the available resources.

• GPU: Parallelise matrix operations further, however that needs to be properly measured as
matrices being used are quite small.

• Algorithmic: Update the Cholesky instead of recomputing it.

DEEP-EST 19

CERN openlab Report 2018

Bibliography

[1] P Adzic, R Alemany-Fernandez, Carlos Almeida, N Almeida, Georgios Anagnostou, M.G.
Anfreville, Ivan Anicin, Zeljko Antunovic, Etiennette Auffray, S Baccaro, S Baffioni, D Barney,
L.M. Barone, Pierre Barrillon, Alessandro Bartoloni, S Beauceron, F Beaudette, K.W. Bell,
R Benetta, and The CMS Electromagnetic Calorimeter Group. Reconstruction of the signal
amplitude of the cms electromagnetic calorimeter. 46:23–35, 07 2006. 6

[2] R. Bro and S. d. Jong. A fast non-negativity- constrained least squares algorithm. Journal of
Chemometrics, 11:393–401, 1997. 6

[3] Donghui Chen and Robert J. Plemmons. Nonnegativity constraints in numerical analysis. In
in A. Bultheel and R. Cools (Eds.), Symposium on the Birth of Numerical Analysis, World
Scientific. Press, 2009. 6

[4] Charles L Lawson, 1938 Hanson, Richard J., Society for Industrial, and Applied Mathematics.
Solving least squares problems. Philadelphia : SIAM, [rev. ed.] edition, 1995. ”This SIAM
edition is an unabridged, revised republication of the work first published by Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1974”–T.p. verso. 6, 7

[5] Do Q Lee. Numerically efficient methods for solving least squares problems. 8

[6] Wikipedia. Cholesky decomposition — Wikipedia, the free encyclopedia. http://en.

wikipedia.org/w/index.php?title=Cholesky%20decomposition&oldid=856784026, 2018.
[Online; accessed 28-August-2018]. 17

[7] Wikipedia. Matrix decomposition — Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/w/index.php?title=Matrix%20decomposition&oldid=856974701,
2018. [Online; accessed 30-August-2018]. 8

DEEP-EST 20

http://en.wikipedia.org/w/index.php?title=Cholesky%20decomposition&oldid=856784026
http://en.wikipedia.org/w/index.php?title=Cholesky%20decomposition&oldid=856784026
http://en.wikipedia.org/w/index.php?title=Matrix%20decomposition&oldid=856974701
http://en.wikipedia.org/w/index.php?title=Matrix%20decomposition&oldid=856974701

	Contents
	List of Figures
	List of Tables
	From physics to... Physics
	Local energy reconstruction
	Problem statement
	Fast non negative least square algorithm (FNNLS)
	Implementation details
	GPU porting
	Optimizations
	Numerical
	Algorithmic

	Results
	Test01: GPU vs CPU
	Test02: GPU vs CPU, Optimized Matrix multiplication

	Profiling and further optimizations
	Finding CPU hotspots
	Matrix multiplication
	Updating the Cholesky

	Conclusions
	Bibliography

