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Abstract

We propose a novel neural network architecture called Hierarchical Latent Autoencoder to
exploit the underlying hierarchical nature of the CMS Trigger System for data quality monitoring.
Given the hierarchical cascaded design of the CMS Trigger System, the central idea is to learn the
probability distribution of the Level 1 Triggers, modelled as the hidden archetypes, from the ob-
servable High Level Triggers. During evaluation, the learned parameters of the latent distribution
can be used to generate a reconstruction probability score. We propose to use this probability
metric for anomaly detection since a bounded number from zero to one has better interpretability
in quantifying the severity of a fault. We selected a particular Level 1 Trigger and its correspond-
ing High Level Triggers for our experiments. The results demonstrate that our architecture does
reduce the reconstruction error on the test set from 9.35 10 © when using a vanilla Variational
Autoencoder to 4.52 10 © when using our Hierarchical Latent Autoencoder. Hence, we suc-
cessfully show that our custom designed architecture improves the reconstruction capability of
variational autoencoders by utilizing the already existing hierarchical nature of the CMS Trigger
System.

Keywords: anomaly detection, autoencoders, latent variables, representation learning
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Introduction

The Compact Muon Solenoid (CMS) experiment at CERN captures a high-energy particle
collision every 25 nanoseconds from the Large Hadron Collider (LHC). The collision data is thus
produced at a staggering rate of 40 MHz. Hence, the CMS experiment employs a trigger system
to reduce the event rate while keeping the physics reach of the experiment. This CMS trigger
system acts like an event filter to output a reasonable event rate so that it can be stored for
extensive offline analysis and record keeping.

The CMS experiment has been designed with a 2-level trigger system. The Level 1 or L1
Triggers are implemented on custom designed electronics: FPGAs and ASICs. Level 1 Triggers
have around 4 microseconds to take the decision of accepting or discarding an event. It is re-
sponsible for scaling down the input rate from 40 MHz to 100 kHz. The second level of the trigger
system are the High Level Triggers (HLT). These are implemented in software running on a com-
puter farm. These are based on the same code and principles that are used for offline event
reconstruction and analysis albeit with much simplified configuration. The HLT runs over the full
detector information and takes advantage of certain regions of interests to speed up the recon-
struction and reject events as early as possible since it has about 160 milliseconds to perform
event selection. It is required to scale the L1 Triggers incoming rate down from 100 kHz to 1 kHz.
With this cascaded hierarchical design in place, the CMS trigger system is able to regulate the
huge data deluge from the LHC collisions.

Furthermore, the quality of the experimental data can be kept in check by monitoring the
trigger system to identify problems in the detector if any. Generally problems in the detector or
sub-detectors manifest themselves as abnormal trigger rates. Currently, the CMS experiment
deploys a rate monitoring software which reports the rates of trigger events for the selected list of
triggers, primary datasets and streams. An alarm indicates if there is an abnormal value for one
or a group of selected triggers. However, the current trigger monitoring strategy in place relies on
a field expert making it manual and subjective. The current system neither exploits the correlation
between the triggers nor considers the contextual information.

The primary of the objective of this project is to research ways to design and develop a better
anomaly detection approach for the CMS trigger system. Certainly, there is a deficit of contextual
information at the moment. The most promising yet ignored aspect in this regard is the cascaded
hierarchical design of the CMS trigger system. The High Level Triggers are seeded by the Level 1
Trigger paths. Likewise, the L1 triggers are linked with the performance of HLTs. HLTs are corre-
lated amongst themselves as well, since they make use of the infrastructure that often overlaps.
Whereas several random triggers misbehaving can be a result of statistical fluctuation, a group of
correlated triggers misbehaving in a coherent manner must be an indication of a real fault in the
system.

Examples:
SingleMuon HLT and SingleElectron HLT are off: statistical fluctuation
SingleMuon HLT and DoubleMuon HLT, SingleMuon L1 are off: sub-detector problem

On narrowing our focus, we can exploit this naturally present hierarchical structure in the
trigger system. We can use behaviour of the Level 1 Trigger system to make probabilistic as-
sumptions on the behaviour of the High Level Triggers.

Deep Representation Learning for Trigger Monitoring 1

LA A E RRLE HEE _BREE LN LR R B Y TR BRI RBEE EEE BN LR RN RRY JFEE ETEE ETEE BN BN -



CERN OpenLab Report 2018

Data

The LHC works by injecting the collider with high energy protons and then smashing them
at a speed close to light. Each injection is called a fill and successive sessions of experiments
are termed as runs. During a particular run, the rate of each L1 and HLT trigger is monitored,
thereby, recording a value approximately every 23s (an interval of time called Lumisection or LS).
The monitored rates essentially depend on the intensity of the beams during the collisions. A
proxy for this variable is the number of concurrent pp interactions measured in each crossing
and is called the Pile-Up (PU). An average measurement of the PU number is provided for each
LS together with the trigger rates. Our dataset consists of rates of the Level 1 and High Level
triggers for each Lumisection and its corresponding pile-up number. The general trend is that
with decreasing pile-up, we will have fewer particles and hence fewer collisions. Fewer collisions
will result in lower trigger rates. Hence, a general decreasing trend is observed when plotting
trigger rate versus pile-up.

HLT_lsoMu20_eta2p1_MediumChargedlsoPFTau27_eta2p1_TightID_CrossL1

.0005

E : CMS 4 runs:

X 0.003—-- -Rate-Monitoring Il 304737 (1866 b)
> = ) [ 304738 (1866 b)
E : ‘ f(x} =0.00003 + x*0.00003 i i 304739 (1 866 b]
80'0025 _ 304740 (1866 b)
S — — linear Fit {3.05)
5 0.002|-

® =

° C

£0.0015

oy ,

] -

@ =

Q —

5 0.001

[1H]

E

=)

§0

=

g

[=%

Figure 1: Trigger Rates vs Pile-up

For our purposes of study, we chose a Level 1 Trigger that seeds only four High Level Triggers:

Level 1 Trigger:
L1_Mu18er2p1_Tau24er2p1
Corresponding High Level Trigger:
HLT _IsoMu20_eta2p1_MediumChargedlsoPFTau27 eta2p1_CrossL1
HLT _IsoMu20_eta2p1_LooseChargedisoPFTau27_eta2p1_TightID_CrossL1
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HLT _IsoMu20_eta2p1_MediumChargedlsoPFTau27 _eta2p1_TightID_CrossL1
HLT _IsoMu20_eta2p1_TightChargedlsoPFTau27_eta2p1_TightID_CrossL1

We extract the trigger rates and corresponding pile-ups only from those runs where these
triggers were fired together. We end up with 32 runs which are then split into training, validation
and test set. The first 31 runs arranged chronologically go into the training and validation set.
The last run goes into the test set. Hence, we have 6101 lumisections with the trigger rates and
their corresponding pile-up in the training set. Similarly, for the last run in the test set we have
2837 lumisections with the trigger rates and their corresponding pile-up.

L1_Mul8er2pl_Tau24er2pl
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Figure 2: L1 Trigger Rate across Lumi-sections

However, our experimental data is not large enough when compared to standard deep learn-
ing datasets. Hence, we need to keep the number of weights or parameters of our network
comparatively low. In our experiments, the best performing model whose results are reported
here has in fact only 3420 parameters. This solves the data problem as well as enables quicker
iterative and experimental development.

Since we are effectively dealing with time-series data, it makes sense to add the contextual
information to the input of the neural network. We do this by using the standard sliding win-
dow technique. Each lumisection having the trigger rate and pile-up is padded with the past n
lumisections. We use a sliding window of size 10 in our experiments which means every input
consists of 10 consecutive lumisections. In the future, we plan to incorporate recurrent cells in
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our network which will do away with the need of pre-processing the input data using this sliding

window method.
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Related Work

The success of deep learning is tied to learning really good data representations [1]. The key
difference between deep learning models and machine learning systems is that they have built-in
automatic feature engineering which enables them to learn the best possible features for a given
task. However, the most of the widely used models of today are unable to explain, extract or
exploit the discriminative information from the data. This is where representation learning comes
in. Representation learning aims to identify, disentangle and extract the underlying concepts
hidden in the data. Powerful algorithms learn such representations, explaining the factors of
variation behind the data, using generic priors. We hypothesize that domain knowledge can be
used to design and implement such priors to learn better representations.

Task A Task B Task C
output ) ( ) ( )

shared
subsets of (&
factors
C )
input ( )

Figure 4: lllustration of Representation Learning from [2]

Autoencoder is the quintessential representation learning model. It has an encoder and a
decoder network connected through a bottleneck layer. The encoder transforms the input data
into representations in the bottleneck layer. The decoder takes these representations from the
bottleneck layer and tries to convert them back to the original input. An autoencoder is trained
with the objective of reconstructing the input data as faithfully as possible. However they can
also be designed in a way that forces the learned representations to have some nice and useful
properties. One such architecture that comes closest to our proposed approach is the Deforming
Autoencoders [3].

The variational autoencoder [4] forces an additional probability constraint at the bottleneck
layer of the autoencoder. The model makes the assumption that the latent variables to be learned
at the bottleneck layer are from some tractable probability distribution. In general, a Gaussian
distribution is assumed. However the presence of latent variable modelling and assumption of
priors in the variational autoencoder opens up the possibility of using specific domain knowledge
to design better representations to be encoded in the latent space. Hence, we propose to exploit
the implicit hierarchical nature of the CMS trigger data and utilize the domain knowledge of the
trigger system to design a better architecture apt for the task at hand.

Deep Representation Learning for Trigger Monitoring 5
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Proposed Approach

We propose to model the triggers as a mixture of archetypes [5]. Keeping in mind the hier-
archical cascaded design, the Level 1 triggers are modelled as the hidden or latent archetypes
and the High Level Triggers are modelled as the observable variables. The task is to learn the
the prior probability distribution of the Level 1 triggers given the High Level Triggers and use the
learned probability distribution of the Level 1 triggers to reconstruct the High Level Triggers.

We propose a modified version of the Variational Autoencoder architecture which aims to
exploit the existing hierarchy in the CMS trigger system. Our Hierarchical Latent Autoencoder
replaces the Kullback-Leibler divergence loss with a L2 loss which will force the network to learn
the Level 1 trigger rate in its latent space. Hence, the encoder learns to probabilistically represent
Level 1 Trigger rates given the High Level Triggers rates. The decoder learns to reconstruct the
High Level Trigger rates given the prior probability distribution of the Level 1 Trigger rates. The
detailed architectural diagram of the Hierarchical Latent Autoencoder is provided in Figure 5.

n

Figure 5: Hierarchical Latent Autoencoder

In general, anomaly detection using learning models is performed by measuring the distance
between the predicted behaviour and the actual observed behaviour. This requires manually
setting up a threshold which separates the normal and anomalous events. However, with our
Hierarchical Latent Autoencoder we can assign a Probabilistic Anomaly Score using the learned
mean and sigma of the latent space. This score will define the probability of a Level 1 Trigger
behaving in a certain way given the observed behaviour of the corresponding High Level Trig-
gers. This does away with the whole process of selecting the threshold by trial and error. This
probabilistic metric ranging from zero to one is more convenient for humans to understand and
interpret as well as quantify the severity of a fault; much better when compared to an unbounded
and continuous number representing the distance metric [6].

Deep Representation Learning for Trigger Monitoring 6
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Implementation Details

The Hierarchical Latent Autoencoder was implemented using Pytorch [7]. Pytorch was cho-
sen for this project since it provides greater flexibility than many other popular frameworks and
improves debugging productivity to a large extent.

To avoid the curse of dimensionality and enable rapid experimentation, the HLAE is kept
as shallow as possible by keeping the number of trainable parameters in the network under
control. This also insures against over-fitting since the HLAE is trained over a huge number of
epochs. Hence, the network has one hidden layer in the encoder which generates the activations
in the form of the mean and standard deviation. Similarly, the decoder consists of one equivalent
hidden layer which generates the input reconstruction. All in all, the HLAE implemented here for
experimental purposes has only 3420 trainable parameters.

As explained in the section above, the network is trained using gradient descent on two dif-
ferent losses deployed at two distinct layers. A mean-squared loss is applied at the last sigmoid
layer of the decoder which forces the network to accurately reconstruct the input High-Level Trig-
ger rates. Another L2 loss is exerted at the bottleneck layer which generates the Level 1 Trigger
rates from the learned mean and standard deviation in the previous layer. This forces the bottle-
neck layer to learn the probabilistic distribution of the Level 1 Trigger given the prior distribution
of the input High Level Trigger rates.

The Adam optimizer with a learning rate of 10 2 is used for training the network. Since the
network is shallow enough to ensure that no over-fitting occurs, it is trained over a thousand
epochs. The training data is further split into validation and train set at a ratio of 0.2. The dataset
is small enough to be used in its entirety for gradient descent, thereby reducing noise and also
leading to a faster convergence. The training and validation loss over the thousand epochs are
plotted in the Figure 6 on a log scale.
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Figure 6: Hierarchical Latent Autoencoder Training and Validation Loss
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Experimental Results

The hierarchical latent autoencoder was trained with the High Level Trigger and Level 1 Trigger
rates as the input to the network. The objective was to reconstruct the High Level Trigger rate
given the Level 1 Trigger rate. The figures given below visualize the reconstruction ability of the
trained network on the test set.

The experimental results demonstrate that the HLAE successfully learns the probability dis-
tribution of the Level 1 Trigger rates to be able to reconstruct the High Level Trigger rates using
this as its prior. Furthermore, our proposed method also reduces the reconstruction error signifi-
cantly. The mean squared error in reconstructing the High Level Triggers on the test set using a
vanilla Variational Autoencoder is 9.35 10 . And the mean squared error for our hierarchical
latent autoencoder is 4.52 10 6.
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Outlook

Going forward, we can use kernel density estimation to learn the probability distribution of
the latent variables i.e. the L1 Trigger rates. And then use Kullback-Leibler divergence loss to
force the latent space to assume the estimated distribution of the latent variables. Whereas the-
oretically, it might not lead to any improvements but it will solidify and reinforce the mathematical
foundations of the model. A direction of general improvement would be use to recurrent units
in our network since it can effectively capture the time dependency in our data. Another direc-
tion to undertake in the future would be to train the model on several different groups of Level 1
Triggers and their corresponding High Level Triggers by implementing the ideas used in Condi-
tional Variational Autoencoders [8]. This line of research is still being explored. However, there is
potential in learning better representations by exploiting the latent hierarchies in our tasks if any.
Correspondingly, we have successfully exploited the existing latent hierarchies in the CMS trigger
system using our Hierarchical Latent Autoencoder.

Deep Representation Learning for Trigger Monitoring 10
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