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Abstract

Some of the main challenges in scientific computing today deal with performance-preserving
portability of software and reproducibility of the final results; likewise, with the advent of modern
cloud computing, these, along with other issues like deployment, are also found in the sider
software and computing world. Containers can help solve all of these issues by packing the
software along with its dependencies together, in an easy-to-distribute and lightweight format.
Herein we investigate the utility of Singularity, a HPC targeted container solution which overcomes
the main issues with deploying more mainstream solutions such as Docker.

Singularity is found to be both suitable and easy to deploy with the current set-up at CERN.
The performance costs are minimal in accordance with the previously reported figures for Singu-
larity and does indeed behave well when submitted through Slurm. This report also considers
the new possible extensions to the software-infrastructre enabled by containers that can run on
several different systems without any additional compilation or configuration. Lastly, specific use-
cases such as Fire Dynamics Simulator and Warp are containerised and deployed to the users.
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1. Introduction

Whilst processing data from the Large Hadron Colider (LHC) may be the most famous part of
CERN computing, it is far from being alone. CERNs beam department constantly have to run
simulations to see if the LHC is upgradable; the theorists have to run simulations to compare
theory with the experiments as well as to guide the experimentalists’ further search; In addition,
simulations must be done for other experiments’ design such as a future collider. Other depart-
ments such as engineering also need to perform simulation for constructions at CERN or fire
simulations for verifying safety aspects in an ever changing environment such as at CERN.

Unlike most of the LHC data processing, which can be done on single machines without any
special equipment given that the throughput per day is high enough, these all need access to
High Performance Computing (HPC) equipment so that the calculations can communicate.

The current trend in scientific computing is that users are becoming less and less faithful to
a single site, and that there are fewer and fewer applications that run. The end result of this
is that we have very complicated softwares that need to run several places on potentially very
different clusters. This is where the need for containers comes in from the user perspective. It
would be very convenient if there was an easier way to move software around. Sure, on your
personal machine it very often works to ./configure; make; make install;. This, however, is
often not the case with HPC clusters, and often the users will find limitations to what they can do
themselves. Sys admins limited in time and often not responding immediately, this often results
in unexplored options.

Such problems can be easily solved by using virtual machines (VMs) or containers such as
Docker. However, in HPC, due to the communication needs this is ill advisable, and, until recently,
impossible1. As we will explain in more detail in section 4, the standard in the software industry,
Docker, is unsuitable for HPC loads due to missing networking capabilities and other performance
impacting features. Whilst there are several other solutions out there, like CharlieCloud, Shifter.
This project focused on Singularity, the arguably most mature solution.

Moreover, enabling containers could also expand the use-case for HPC clusters. Deep learn-
ing is becoming omnipresent, even in high energy physics. With work such as RDMA-Tensorflow
and OSU-Caffe being done, i.e. taking industry standard deep learning libraries and optimising
them for the HPC architecture, should also make the move to heterogenous HPC cluster an at-
tractive choice for the training phase. Currently, it would be non-trivial to make such a move at
the time-scales CERN operates at due to the need for consistency of the environments. How-
ever, a containerised environment could make such a move possible. This would allow for a more
centralised, and thus more budget friendly, allocation of computing resources.

This report is organised as follows: chapter 2 introduces the basics of batch and high perfor-
mance computing followed by a quick overview of the set-up at CERN in chapter 3. Afterwards
follows chapter 4a discussion about containers, both HPC oriented and not. The final part out-
lines the work done to enable Singularity containers on the cluster as well as building containers
in chapter 5 as well as appendix A which gives a full recipe for containerising the Warp appli-
cation. This is completed with results, chapter 6; and discussion, conclusion in chapters 7 and
8.

1 MVAPICH has recently released MVAPICH2-VIRT which enables MPI communications through virtualisation layers
such as containers and VMs, albeit at a performance cost.

Evaluation of Containers for HPC — Aleksander Wennersteen 1



CERN openlab Report 2018

2. Batch and High Performance Comput-
ing

On modern computers users are used to clicking, or typing on the command line, to run a pro-
gram. It launches instantaneously. This is in contrast to so-called batch computing. Here, you
submit your program, typically called a job, which will run at some point in the future. This model
is used in HPC so that the cluster is always utilised the most, and also so that users who need a
large number of nodes can get their job executed at some point.

There are many types of batch jobs. For example cron jobs, which are tasks the system
administrator has set to run on the machine every day, for example, are batch jobs. These can do
things like empty the temporary files folder on the computer, or ensure that a part of the system
is operational. Another example would be from High Throughput Computing (HTC) which is what
most of CERNs compute needs can be classified as. HTC is characterised by the need to ensure
a maximal amount of processed data over a long period of time.

Herein, however, we are only concerned with High Performance Computing (HPC) jobs. Here,
the key thing is to provide an incredible amount of compute power, but over a short period of time.
In order to obtain such compute power one must spread the computation out across multiple
machines. This is more difficult, not just for the programmer, but also for the container, due to
all the communication happening between the machines. In order to program effectively in this
way programmers usually use the Message Passing Interface (MPI). Too much isolation, which
is often what is wanted elsewhere, can result in a big loss of performance due to the networking.
We will come back to this in chapter 4.

Usually a HPC cluster will have a distributed memory setup consisting of multiple nodes, a
collection of CPUs, each node having a shared memory setup over several cores, see Fig. 2.1.

Figure 2.1: The memory layout of a typical HPC cluster. On the left is part of a cluster depicting
the individual nodes with their interconnects giving a distributed memory unit. The right hand side
shows an individual node composed of 8 cores with a shared memory.

Normally, in order to transfer data from one machine to another, one must go via the kernel,
which will take care of a lot of underlying details. However, this introduces a lot of overhead. Thus,
in HPC one usually uses Remote Direct Memory Access (RDMA). This requires some special
hardware as well as software, but allows the communication to bypass the kernel and simply
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allow one computer to directly access the memory of a remote machine in the same manner as
it would access its own memory. Furthermore, HPC clusters often upgrade their networking to
either low latency Ethernet cables or Infiniband interconnects.

The last part of a HPC cluster is the scheduler and resource manager. These days one
often uses the same software for both, such as SLURM. Such software will take care of the job
submission and allocation of computing resources on the cluster, and will try to give users access
to resources in a way such that performance is optimised by e.g. giving the user machines which
are physically close, or even with a network topology that suits the job. In the case of Slurm,
Slurm also takes care of setting up MPI so that if the program is launched with Slurm then Slurm
will find the correct version of MPI to run the program with rather than having to launch it with e.g.
mpirun.

It is primarily the last two features, RDMA and the scheduler, that makes the introduction
of any sort of containerisation difficult in HPC centres. Providing any sort of virtualisation is of
course a contradiction towards performance, take RDMA which relies on direct hardware access.
Afterall, the operating system is also a virtualisation level, and we always want to bypass it with,
e.g., RDMA for performance reasons. Scheduling, on the other hand, might be less an obvious
obstacle. The problem here lies more in the fact that common solutions such as Docker relies on
daemons, thus making the process of scheduling more complicated.

Evaluation of Containers for HPC — Aleksander Wennersteen 3
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3. Setup

The compute infrastructure at CERN batch consists of OpenStack managed virtual machines
where each machine runs Puppet and Foreman for configuration management. This unified
approach across the different machines makes it very easy to manage the system. Overall,
this integration of cloud computing approaches allows CERN to take advantage of all the new
technologies which are appearing in the open source market, often backed by large companies.

Puppet makes it very easy to modularise the set-up so that one can take advantage of in-
heritance to set-up more specialised machines. Moreover, the puppet manifests can access the
global namespace such that the module setting up a specific software can be kept entirely sep-
arate to the manifest defining the machine it runs in. The machine manifest can then decide to
redefine the variables used to set-up the software by referring to the global namespace in the
environment that the machine lives in. For details see the Puppet documentation [1].

The HPC clusters at CERN are hyperconverged with CephFS shared file system and uses
Slurm for job submission and cluster management. One cluster has low latency Ethernet whereas
the other cluster has Infiniband interconnects, both support Remote Direct Memory Access
(RDMA). There is also a third cluster used for lattice QCD by the theory group at CERN, this
cluster is not included when this report refers to the current CERN HPC set-up. For an overview
of the HPC setup see [2]. The further details of the setup not being relevant to this report we will
not go into any details.

Evaluation of Containers for HPC — Aleksander Wennersteen 4
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4. Containers

Containers have hit thes software industry hard the last few years. They allow us the escape
”dependency hell” and to let developers know that once they have got their program to run, it
will run in the same way independently1 of where it is being run. They are a form of operating
system level virtualisation and thus provide some isolation from the host, although not as much
as a hypervisor based virtual machine. This can be seen as a disadvantage, especially from the
point of view of security, but also as an advantage. This is especially true in HPC where we can
allow less isolation from the host machine as although we are concerned about security, we can
trust our users and software more than the average cloud computing vendor.

The past couple of years containers have become omnipresent in computing due to the ever
changing software stack which tends to rely on different versions of the same libraries or even
programming languages. High Performance Computing centres have also started looking into
this; both for the benefits of the system administrators, the users, and for reproducability for the
wider community. Sadly, the standard solutions used in industry, such as Docker, have been
found to be unsuitable for the needs of the HPC community.

Containers allow users to set up and try out software on their own machines, where they have
root privileges and do not need to worry about affecting other people, pack it into a container and
transfer the ready-made container to the cluster for running. Compared to the current solution
of setting up the machines again on the cluster including potentially requesting updates from the
system administrator is clearly much quicker and easier.

4.1 Docker

For a solid introduction to all aspects of Docker, as well as many issues regarding containers in
general, see [3]. Docker is the industry standard and is therefore very well supported. Unfor-
tunately, Docker is unsuitable for a variety of reasons, and, thus far, so are other solutions like
runc and containerd (i.e. Open Container Initiative based solutions) as well as HPC specific ap-
plications like Shifter, also based on Docker. What is important to realise here is that is not the
container iteself that is unsuitable, but the daemon. This is why Singularity, for instance, can run
Docker images, giving the exact same benefits as using a regular Singularity image. Singularity,
on the other hand, is simply a process, which makes it no different than other programs and will
follow the rules already set on the cluster.

Summarised, the problems with docker are:

1. Privilege escalation

(a) User is root inside the container

2. Too isolated for performance

(a) Lack of direct access to host, must go via daemon

(b) Unnecessary overhead induced by daemon
1No virtualisation is being performed by any of the current container technologies so one is still limited to running Linux

on Linux and Microsoft on Microsoft, 64-bit on 64-bit, however, you can run Scientific Linux on CentOS, for example.
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(c) Need for network bridges — unsuitable for MPI2

3. Daemon process does not integrate well with Slurm or other schedulers.

4.2 HPC Containers

Recall that we said that containers were a form of virtualisation, like virtual machines and the
operating system for instance. Now that we talk about HPC specific containerisation, the reader
should recall from chapter 2 that in HPC we like to bypass the kernel, i.e. a virtualisation layer.
This is actually one of the key differences between HPC-specific and ”regular” containers. Most
of the time, one would like slightly more separation and virtualisation in containers, to achieve
similar levels of security as virtual machines and also be equally host independent. In HPC,
however, most users would much prefer to run bare-metal if they could, with the same effort and
portability. Indeed, many of the key features of Singularity is bypassing the virtualisation layer.

For a full overview of Singularity see the documentation [4] and the paper [5]. Note that there is
both a users documentation and one for system administrators. Neither version is comprehensive
by itself.

The following comparison table is presented, comparing some advantages and drawbacks of
container technologies.

Shifter CharlieCloud Docker Singularity
Privilege Model Chroot UserNS Root Daemon UserNS
No trusted or privileged daemons No Yes No Yes
No process supervision No Yes No No
Sys Admin can limit capabilities No No No Yes
No additional network config Yes Yes No Yes
Access to host file system Yes Yes Yes Yes
Native GPU support No No No Yes
MPI and Infiniband support Yes Yes No/No Yes
Works with all major schedulers No Yes No Yes

The reader should, however, keep in mind that of these, thus far, Singularity is the most com-
monly supported and seemingly is the more mature technology and ecosystem. Nevertheless,
sysadmins will have to expect to support multiple container technologies until one emerges as
the winner.

2The latest MVAPICH2-VIRT overcomes this too some extent, but still more latency than what is generally acceptable.
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Figure 4.1: A comparison between virtual machines (VMs), standard containers (Docker) and
HPC containers (Singularity). Note that the VM is completely isolated, Docker has very limited
access to the physical hardware and runs on a daemon, Singularity has no daemon and is less
isolated. Source: [6]

Evaluation of Containers for HPC — Aleksander Wennersteen 7
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4.2.1 MPI in Singularity
MPI is perhaps the most ubiquitous member of the HPC software family, almost the definition
of HPC codes one might even say. As such, it perhaps the main ingredients of a HPC con-
tainer. Singularity has built in support for open MPI [5], and also work with the MPICH based MPI
implementations.

The Open MPI/Singularity workflow works as follows:

1. mpirun is called by the resource manager or the user directly from a shell

2. Open MPI then calls the process management daemon (ORTED)

3. The ORTED process launches the Singularity container requested by the mpirun command

4. Singularity builds the container and namespace environment

5. Singularity then launches the MPI application within the container

6. The MPI application launches and loads the Open MPI libraries

7. The Open MPI libraries connect back to the ORTED process via the Process Management
Interface (PMI)

This is also illustrated in Fig. 4.2. At this point the processes within the container run as they
would normally directly on the host. This entire process happens behind the scenes, and from
the user’s perspective running via MPI. Moreover, Singularity parses command-line arguments in
such a way that it feels natural, meaning that, if you forget all about what Singularity is, and just
write the command like you would naively, it works.

Figure 4.2: The ORTED daemon, or ”MPI daemon” for all intents and purposes herein, commu-
nicates via the Process Management Interface (PMI) with the MPI libraries inside the container.
This means that for MPI purposes the software inside the container behaves like normal software
in user-space. Not that this refers to Open MPI, which is the best supported MPI distribution with
Singularity. MPICH based MPI implementations are slightly different and slightly easier in a way.
Similarly, it is slightly different when Slurm manages the MPI communication but the principles
remain the same. Source: [6].

Fig. 4.3 places the container into the hardware. Note how Singularity sits right on top of
the kernel like a normal process, but also at the same level as the root file system. Both whilst
keeping the ability to communicate to the host file system. Compare this to Fig. 4.1, which also
shows the situation for hypervisor based VMs and Docker-like containers.

Evaluation of Containers for HPC — Aleksander Wennersteen 8
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Figure 4.3: How Singularity fits into the computer. Notice that there is no ”Singularity daemon”
running and that the container has direct access to the file system. Singularity runs as process
in user space with all the associated benefits when it comes to accessing hardware. Source: [6].

4.3 Singularity images and deployment

One main point of discussion is whether to allow loop devices or not. These are the standard im-
ages that singularity produce. It consists of a single file, say CentOS.img, that contains everything
needed for singularity to run it. The loop devices version has the advantage that the container is
permanent unless the --writable option is passed. They do, however, have a known potential
security issue [7, 8] that could allow an attacker to obtain root access. This immutability property
means that the container, once created, is reproducible. One can expect that the result given by
any software running inside the container will be the same. Moreover, if it ran once, it will run
again.

The other possibility is to use so-called directory based images. These are created when the
--sandbox option is passed during the build process. This results in a folder, say CentOS.simg

that contains the same information as the previous image, CentOS.img. This does not require
loop devices, but, the folder is just a regular folder on the computer and can thus be modified at
any time, assuming a writable file system.

There are three sources of containers to be expected:

1. Provided by the HPC team for ease of setup

2. Provided by the users or externally as portable containers

3. Provided by CERN in general.

The first case is easy, the containers can be put somewhere on the file system for the users. In the
second case the users will themselves transfer the container to their home directory. However, in
the last case, also potentially in the first case, it would be useful to have some form of a central
registry for containers. Indeed, this route has already been taken elsewhere. CERN has an
excellent solution for this case, the CERN Virtual Machine File System (CVMFS). It is a read-only
file system and repository where CERN, puts their software to be available from anywhere that
mounts CVMFS, such as all the CERN compute machines! This approach to distributing images
have already been implemented by the Open Science Grid and CERN experiments have ran
tests.

Evaluation of Containers for HPC — Aleksander Wennersteen 9
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This would make it easy to deploy and update containers for the users, and also have the
added benefits of not having to allow loop devices, a potential security vulnerability. The read-
only property also ensures the consistency of the container as it is used by multiple users.

4.3.1 A minimal Singularity Container
To show exactly how easy it is to produce a container the following example is provided. For more
examples, see the appendices.

BootSt rap: yum
OSVersion: 7
MirrorURL: h t t p : / / m i r r o r . centos . org / centos−\%{OSVERSION}/\%{OSVERSION} / os /$ basearch /
I n c l u d e : yum

%r u n s c r i p t
echo ” This i s executed wi th the \ ” s i n g u l a r i t y run\ ” command only ”

%post
echo ” The con ta ine r i s being b u i l t ”

%environment
% sets up the environment a t the end of the b u i l d process .
% works f o r both s i n g u l a r i t y run and s i n g u l a r i t y exec .

%f i l e s
% Imports f i l e s a t b u i l d t ime t h a t become a pa r t o f the image .

Listing 4.1: A minimal CentOS 7 container

This will for instance successfully execute singularity exec centos.img echo "Hello World!",
but will not contain most of the even most standard Linux utilities.

Evaluation of Containers for HPC — Aleksander Wennersteen 10
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5. Implementing and Puppetising

The installation of singularity is very simple. In our case, it was already prepared and it was
simply a matter of enabling it in puppet. That amounted to setting the variable singularity =

true in the environment for the appropriate machine. For details on how to install Singularity we
simply refer to the Singularity documentation [4].

5.1 Puppetising

As already mentioned, CERN machines are configured via Puppet, hence, any changes we make
must be puppetised. We already mentioned the first change, namely enabling Singularity in the
correct environment.

Next, experience suggested that we make the following change in the hostgroup found at
it-puppet-hostgroup-bi/data/hostgroup/bi/hpc/batch/workernode/test.yaml1:

s i n g u l a r i t y : : n u m \ l oop\ dev i ces : ”\%{ f a c t s . processors . count}
mount\ home = no

The first is needed to allow loop devices, i.e. non-directory-based images and the second dis-
ables automatic mounting of the Linux home directory. The first change will be discussed several
places elsewhere as it does present a potentially major security issue [7]. The latter prevents
some subtle changes to the container environment, such as settings and variables polluting the
Container, or more obvious ones such as refusing to run due to missing base-directory inside
the container or having the container software overwritten by the home directory. This happens
because the home directory on the host takes priority when mounted.

For a full overview of Singularity see the documentation [4]. Note that there is both a users
documentation and one for system administrators. Neither version is comprehensive by itself.

Now, this singularity::num loop devices variable does not exist in puppet by default, obvi-
ously. To define it we create a file called it-puppet-module-singularity/code/manifests/config.pp

along with some other files referenced therein. This combination allows CERN IT to have a cen-
tral Singularity configuration which, for instance, does not allow loop devices by default. We can,
however override them in our workernodes.

c lass s i n g u l a r i t y : : c o n f i g (
$ se tu id = $ s i n g u l a r i t y : : s e t u i d ,
$ a l l ow p i d ns = $ s i n g u l a r i t y : : a l l o w p i d n s ,
$ enab le over lay = $ s i n g u l a r i t y : : e n a b l e o v e r l a y ,
$conf ig passwd = $ s i n g u l a r i t y : : c o n f i g p a s s w d ,
$ con f ig group = $ s i n g u l a r i t y : : c o n f i g g r o u p ,
$ c o n f i g r e s o l v c o n f = $ s i n g u l a r i t y : : c o n f i g r e s o l v c o n f ,
$mount proc = $ s i n g u l a r i t y : : m o u n t p r o c ,
$mount sys = $ s i n g u l a r i t y : : m o u n t s y s ,
$mount dev = $ s i n g u l a r i t y : : m o u n t d e v ,
$mount home = $ s ingu la r i t y : :mount home ,
$mount tmp = $ s ing u la r i t y : :moun t tmp ,

1This is a good example of the Puppet set-up, allowing for a lot of specialisation yet minimising code repetition. Reading
from right to left we see that we are in the test environment of a hpc-batch workernode. In order to put this into all the
machines, make the changes in workernode.yaml one level up.
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$mount host fs = $ s i n g u l a r i t y : : m o u n t h o s t f s ,
$ b ind path = $ s i n g u l a r i t y : : b i n d p a t h ,
$ u s e r b i n d c o n t r o l = $ s i n g u l a r i t y : : u s e r b i n d c o n t r o l ,
$mount slave = $ s i n g u l a r i t y : : m o u n t s l a v e ,
$ c o n t a i n e r d i r = $ s i n g u l a r i t y : : c o n t a i n e r d i r ,
$ s e s s i o n d i r p r e f i x = $ s i n g u l a r i t y : : s e s s i o n d i r p r e f i x ,
$num loop devices = $ s i n g u l a r i t y : : n u m l o o p d e v i c e s ,

) i n h e r i t s s i n g u l a r i t y {

f i l e { ’ / e tc / s i n g u l a r i t y ’ :
ensure => d i r e c t o r y ,

}

f i l e { ’ / e tc / s i n g u l a r i t y / s i n g u l a r i t y . conf ’ :
ensure => f i l e ,
content => template ( ’ s i n g u l a r i t y / s i n g u l a r i t y . conf . erb ’ ) ,

}

f i l e { ’ / e tc / s i n g u l a r i t y / i n i t ’ :
ensure => f i l e ,
content => template ( ’ s i n g u l a r i t y / i n i t . erb ’ ) ,

}

f i l e { ’ / e tc / s i n g u l a r i t y / de fau l t−nsswi tch . conf ’ :
ensure => f i l e ,
content => template ( ’ s i n g u l a r i t y / de fau l t−nsswi tch . conf . erb ’ ) ,

}
}

These are all the variables that Singularity allows the administrator to set, as well as ensuring
that certain files exists. The alfanumerical default value is then set in the init file specified.

Together, these changes enable Singularity and allows for full customisation down to the type
of node. It also showcases the utility of Puppet.

5.2 Building Containers

Afterwards it became a matter of creating containers and finding out how they work. Example
containers are provided as appendices at the end of the report and can be consulted along with
[4]. Remember that the

There are 4 main sections in a Singularity recipe:

1. post – The post section is what is being executed during build time. This is where one
installs software and generally sets up the container.

2. runscript – The runscript is what is executed with the singularity run command.

3. files – Files to be included from the local machine where the container is built.

4. environment – Setting up the environment, e.g. modifying the PATH.

The author found it very useful to use modules when building containers despite the fact that
each container was created with one use case. This is probably often the case when a modulefile
already exists, especially if it comes packed together with the application itself, such as the MPI
versions from the CERN repository. Otherwise, use the %environment section of the recipe. That
also ensures the reproducability of not just the container, but also the recipe.

Similarly, it is advisable to specify --writable when setting up the container initially as it
will allow the builder to run the container as singularity shell --writable later. In this mode the
container can be modified. This way the build process does not terminate because of a missing
dependency.
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6. Results

A main result was the confirmation of what is promised by the Singularity developers. Indeed,
Singularity integrates well with MPI and Slurm, even on Infiniband networks. It can run all the MPI
versions used at CERN currently and, to the extent we were able to check, different versions of
MPI can be used inside/outside the container assuming that the versions are somewhat compat-
ible. Note that this becomes even better when submitted through Slurm as the setup performed
by Slurm at launch time sets up Singularity and MPI in the correct fashion. We also confirmed
that Singularity left no extra network trace such as the network bridging often found with added
virtualisation layers, in stead it is able to connect directly onto the existing infrastructure provided
by the host.

Containers for Fire Dynamics Simulator and a container containing Python + MPI + Warp, a
library needed for some of the physicists, were produced and shipped to the users. With these as
templates, making containers in the future should be easier. See the appendices for examples.

We were also able to verify the possibility of running Singularity in the following modes:

1. MPI running outside the container;

2. MPI processes inside the container, including Slurm managed MPI;

3. A mixture of MPI processes inside and outside the container;

4. Hybrid MPI (outside) and OpenMP (inside) for node and thread level parallelism.

Nevertheless, running MPI processes inside the container is not recommended. Only a toy ex-
ample ran nicely, and based upon external reports, such as the Singularity documentation [4]
most uses will require a modification. See the discussion coming up in section 7.6.

As will be shown in the following benchmarks, the performance penalty for using containers
is minimal. As can be seen from Fig. 6.1, the differences between the container and bare-metal
are indeed so small that occasionally the container ran faster. This is also true for the example
using Python + MPI in the form of mpi4py.

The data presented is the average difference over 3 runs on the low-latency Ethernet cluster.
Therefore, Fig. 6.2 is cut off at 65kb message size as the run-time continues to scale linearly
with the exponentially growing message sizes. These very large run-times, together with the
low number of runs used, also explain the apparent outlier 1mb message size data point. The
variance in individual MPI runs are on the same scale as the difference, hence without a larger
sample size such results are not statistically unlikely. Overall the results agree with previous
studies.

Running two containers on the same host (processor core) that need to communicate is actu-
ally slower than having the MPI processes run on different cores. This is nothing to be concerned
about. Whereas in ”normal” container usage, say Docker for microservices on a server, you would
often like to run several containers on the same processor for isolation. This is, however, not a
HPC use-case. In HPC we only run a single software at a time, any thing else would result in
unnecessary performance degradation.
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Figure 6.1: The difference in run-time of the OSU allgather benchmark between the containerised
and bare-metal versions. The benchmark ran on a low-latency Ethernet cluster using Open MPI
3.0.0 and mpi4py for the python version. Note how, especially for message sizes above 65kb, the
induced latencies vary a lot. Significantly more runs would probably have smoothed the graph,
although here one sees how the variance is in fact comparable to the difference between the two
versions.
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Figure 6.2: The bare-metal run-time of the OSU allgather benchmark that was ran on a low-
latency Ethernet cluster using Open MPI 3.0.0 and mpi4py for the python version. Note how all
datapoints behave nicely, with the python version having some extra latency induced.
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7. Discussion

7.1 Performance

Consistent with other reports we saw no significant performance degradation using Singularity.
This was true not only for the standard OSU benchmarks but also from a Python version using
mpi4py. We also checked for any extra network bridges or similar, of which there were none.

For further benchmarking results comparing Singularity to bare-metal the reader should con-
sult the extensive literature available. A starting point is the Singularity paper. These are pure
MPI benchmarks that only does message passing. In other words, they measure the pure per-
formance drop in the message passing. Furthermore, Singularity should not notably affect pure
computing performance, see [9] which benchmarks container performance for IO, CPU, GPU,
network latency and RAM.

This could enable more users to take advantage of the cluster in a performant way resulting
in a higher utilisation of the resources and less waiting time for the users. In particular it could be
possible that users could be allowed access to the clusters on a case by case basis where time
is critical for them but the speedup required is insufficient to warrant regular access. Currently,
it would likely take too long to set-up the software on the machine in addition to the processing
of access granting. This would, of course, require some extra steps such as having a more
homogeneous accounting and budgeting system. Nevertheless, the author does not see any
challenges in implementing this provided that such a solution is deemed interesting.

7.2 Choice of container

Although no other containers were evaluated the author does feel that for now singularity is the
best choice for production HPC. This is based upon reading comparison articles and looking for
documentation online. Although other options are seemingly gaining traction, only Singularity
seems to be widely supported around the HPC community for now. Singularity is also both open
source and possess the capability of running Docker images. This means that not only will CERN
have to possibility to stay in control of the software should it be necessary, but it is also capable
of running the industry-standard images for ease of portability.

7.3 Issues with Singularity

Singularity has built in support for MPI, in particular, openMPI; nonetheless, no problems were
found using MVAPICH2 or MPICH. The version which is the most supported is openMPI 2 and
3. For these, no problems with MPI versions inside/outside the container have been found or
elsewhere reported. However, for other versions of MPI, the recommended steps would be to
keep the same version both inside and outside the container. This is also true in other cases
such as Infiniband libraries.
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7.4 Implementation

As shown in section 5, enabling Singularity on the cluster was effectively trivial. Moreover, few
problems were encountered whilst building and running the containers apart from general issues
with installing software. One important takeaway was that initially, as an inexperienced container
builder, it was tricky to determine which errors came from problems with Singularity, wrong host
set-up, wrong container set-up, or wrong Slurm/MPI parameters. The problem was never with
Singularity.

7.5 Integration with other submission systems at CERN

Singularity containers have already been successfully submitted through the normal batch ser-
vice, HTCondor, and the BOINC serivce LHCHome. In a future utopia one can imagine a world
where a user who does not really care about where her job is ran could submit a job with BOINC
in mind that offloads to the regular batch or HPC service when those clusters are underutilised.
This would allow for faster computations from the users perspective and would make it easier to
justify buying larger clusters for CERN batch services.

7.6 Running nested MPI processes

Even though it was not experienced, the author would like to mention that certain applications
has been reported to need an extra ssh wrapper inside the container which does extra forwarding
to allow the container to ssh into a different container. This should not be needed whenever
MPI/Slurm is used in the standard manner, but it should be checked for programs that manage
this manually through ssh or similar methods. In this case it might happen that the application
tries to look for the containerised software outside the container.

The need to for a ssh wrapper also arises if one uses the model of running MPI both inside and
outside the container. The wrapper is used for having the internal (with respect to the container)
MPI communicate with the global MPI processes, i.e. internode communication.Note that Slurm
managed jobs, at least with Open MPI, seems to be able to handle this mixed mode.

For example, one can run srun -N 8 Singularity exec CentOS.img mpiexec -np 8 foo

to run the program foo on eight cores inside a node, and on eight nodes. In this case only 8
singularity images are used. Referring back to Fig. 2.1; each of the eight nodes on the left hand
side would run one Singularity container in the shared memory of the node which again would
spawn 8 MPI processes, one per core. Note that this model is not particularly portable, but could,
in theory, be slightly faster than running 8 singularity containers on the same node. The author
advises benchmarking on the user side in case such an option is considered, as benchmarking
this was outside the scope of this project.
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8. Conclusions

Altogether, Singularity seems to be a sufficiently mature framework and is indeed supported by
more and more HPC centres. The benefits are clear, both from the users’ point of view with ease
of portability and reproducibility, and from the system administrators’ point of view for having a
cluster which will be easier to manage. As promised, containers provide a level of separation
but without the performance and space cost of a virtual machine along with modularisation and
reproducibility. Singularity in particular packs this in a way that unlike, say, Docker, is acceptable
to run on a HPC cluster from a security point of view, with respect to integrating with schedulers
and in terms of performance preservation.

Furthermore, Singularity integrates well with Slurm; in fact, a Slurm managed job was much
easier to set-up than a job launched with mpirun. It also does seemingly not put any restrictions
on the user in terms of e.g. hybrid MPI + OpenMP jobs. Likewise, Singularity can make use of
RDMA both over Ethernet and Infiniband and is ready for the future when it comes to native GPU
support. This ease of compatibility with external, HPC-specific hardware hopefully also indicates
that it will be easy to integrate with any future development in computer hardware.

In order to give the users maximal flexibility, it is recommended to allow loop device based
images as well as facilitating for distribution of directory based images through CVMFS. Lastly,
when building images, in HPC there is always a trade-off between portability and performance;
this also applies to containers and is something to be considered when building containers.

Future work

Sticking strictly to the Singularity side more work is needed in making more containers of real
applications and benchmarking them. This will benefit from the ongoing attempt to collect user
application benchmarks at CERN HPC. Furthermore, the author regrettably did not realise that a
further experiment combining MPI and OpenMP would have been useful due to the rather com-
mon model of using MPI for internode communication by OpenMP for intranode communication.
Along with the nested MPI version presented above this should be benchmarked. Open MPI and
Singularity has done work on both ends for better integration, testing should now be done to see
how this affects the stability of jobs, and whether or not Slurm affects this. Testing of MVAPICH2-
virt should also be done, and its capabilities being taken into account when considering changes
in the CERN architecture.

The rest of the future work goes more out to the general evolution of the CERN computing
framework, and several of the future enhancements that I have mentioned throughout are indeed
being considered and even worked on. In particular there already is some support for unpacking
container images on CVMFS and the plan for opportunistic allocation of HPC resources is also
being pursued.

Lastly, as alluded in the introduction and throughout the report, exploring whether a container-
ised submission flow could help reduce cost and increase computer power should be considered.
With Singularity one can centralise much of the computing resources used for offline processing,
from plain CPUs to GPUs, much of it can be brought onto a common infrastructure.
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A. Warp Container

This is the recipe for the Warp container that was produced, and is provided as an example
of a full container recipe ready for the user. What is interesting here is also the installation
of Open MPI 3 with mpi4py in the container as this has before been proven difficult. See
https://github.com/singularityware/singularity/issues/1689.

BootSt rap: yum
OSVersion: 7
MirrorURL: h t t p : / / m i r r o r . centos . org / centos−%{OSVERSION}/%{OSVERSION} / os /$ basearch
I n c l u d e : yum

%post
mkdir −p / hpcscratch /
yum −y i n s t a l l yum−u t i l s
yum−conf ig−manager −−add−repo h t t p : / / l i n u x s o f t . cern . ch / i n t e r n a l / repos / hpc7−s tab le /

x86 64 / os
yum−conf ig−manager −−add−repo h t t p : / / l i n u x s o f t . cern . ch / i n t e r n a l / repos / batch7−qa /

x86 64 / os
yum−conf ig−manager −−add−repo h t t p : / / l i n u x s o f t . cern . ch / / epel / 7 / x86 64
rpm −−impor t h t t p : / / l i n u x s o f t . cern . ch / epel /RPM−GPG−KEY−EPEL−7
yum−conf ig−manager −−add−repo h t t p : / / l i n u x s o f t . cern . ch / / cern / centos / 7 / os / x86 64
yum −y i n s t a l l openssh
yum −y i n s t a l l gcc
yum −y i n s t a l l gcc−c++
yum −y i n s t a l l make
yum −y i n s t a l l wget
yum −y i n s t a l l which
yum −y i n s t a l l environment−modules
yum −y i n s t a l l munge
yum −y i n s t a l l f r ee i pm i
yum −y i n s t a l l −−nogpgcheck i n s t a l l slurm−l i bpmi −17.11.7−2. mvapich2 patched . e l7
yum −y −−nogpgcheck i n s t a l l openmpi300
yum −y i n s t a l l −−nogpgcheck l i b i b v e r b s
rm / etc / modu le f i l es / mpi / . nodeset t ings | | t r ue

cat >> / e tc / modu le f i l es / mpi / . nodeset t ings << EOF
#%Module
setenv MV2 USE RDMA CM 1
setenv MV2 USE IWARP MODE 1
EOF

yum −y i n s t a l l g i t
yum −y i n s t a l l python36
yum −y i n s t a l l python36−devel
wget h t t p s : / / boo ts t rap . pypa . i o / get−p ip . py
python36 get−pip . py

l n −s / usr / b in / python3 .6 / usr / l o c a l / b in / python3

. / usr / share / Modules / i n i t / sh
module load mpi / openmpi / 3 . 0 . 0

p ip i n s t a l l mpi4py
p ip i n s t a l l numpy
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p ip i n s t a l l sc ipy
p ip i n s t a l l h5py
p ip i n s t a l l python−d a t e u t i l

yum −y i n s t a l l l ibX11−devel

g i t c lone h t t p s : / / b i t b u c k e t . org / dpgrote / p y g i s t . g i t
cd p y g i s t
python36 setup . py con f i g
python36 setup . py i n s t a l l

p ip i n s t a l l Forthon
mkdir −p / warp
cd / warp
wget h t t p s : / / b i t bu c k e t . org / berke ley lab / warp / downloads / Warp Release 4 . 5 . tgz
t a r −xv f Warp Release 4 . 5 . tgz
cd warp
g i t p u l l
cd pywarp90

cat >> / warp / warp / pywarp90 / setup . l o c a l . py << EOF
i f p a r a l l e l :

l i b r a r y d i r s += [ ’ / usr / l o c a l / mpi / openmpi / 3 . 0 . 0 / l i b 6 4 ’ ]
l i b r a r i e s += [ ’ mpi ’ , ’ mpi mpifh ’ ]

EOF

cat >> / warp / warp / pywarp90 / Makef i le . l o c a l 3 . pympi << EOF
FCOMP = −F g f o r t r a n
FCOMPEXEC = \−\−fcompexec f t n
EOF

make clean
make pclean
make i n s t a l l 3
make clean
make p i n s t a l l 3
make pclean

cd / warp / warp / warp tes t /
python3 r u n a l l t e s t s . py

The Warp container will be used by physicists at CERN who run simulations for the Advanced
WAKEfield Experiment (AWAKE).
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B. Minimal CERN HPC container

Here we present a starting point for creating a Singularity container for CERN HPC.

BootSt rap: yum
OSVersion: 7
MirrorURL: h t t p : / / m i r r o r . centos . org / centos−%{OSVERSION}/%{OSVERSION} / os /$ basearch
I n c l u d e : yum

%post
mkdir −p / hpcscratch /

%s e t t i n g up CERN yum repos
yum −y i n s t a l l yum−u t i l s
yum−conf ig−manager −−add−repo h t t p : / / l i n u x s o f t . cern . ch / i n t e r n a l / repos / hpc7−s tab le /

x86 64 / os
yum−conf ig−manager −−add−repo h t t p : / / l i n u x s o f t . cern . ch / i n t e r n a l / repos / batch7−qa /

x86 64 / os
yum−conf ig−manager −−add−repo h t t p : / / l i n u x s o f t . cern . ch / / epel / 7 / x86 64
rpm −−impor t h t t p : / / l i n u x s o f t . cern . ch / epel /RPM−GPG−KEY−EPEL−7
yum−conf ig−manager −−add−repo h t t p : / / l i n u x s o f t . cern . ch / / cern / centos / 7 / os / x86 64

% genera l l y needed basic f u n c t i o n s
yum −y i n s t a l l make
yum −y i n s t a l l wget
yum −y i n s t a l l which
yum −y i n s t a l l openssh
yum −y i n s t a l l environment−modules
yum −y i n s t a l l vim
yum −y i n s t a l l g i t

% GCC and C++ headers
yum −y i n s t a l l gcc
yum −y i n s t a l l gcc−c++

% i n s t a l l i n g MPI
yum −y i n s t a l l munge
yum −y i n s t a l l f r ee i pm i
yum −y i n s t a l l −−nogpgcheck i n s t a l l slurm−l i bpmi −17.11.7−2. mvapich2 patched . e l7
yum −y −−nogpgcheck i n s t a l l openmpi300
yum −y i n s t a l l −−nogpgcheck l i b i b v e r b s

% requ i red MPI modu le f i l e se t tup due to cu r ren t c o n f i g u r a t i o n
rm / etc / modu le f i l es / mpi / . nodeset t ings | | t r ue

cat >> / e tc / modu le f i l es / mpi / . nodeset t ings << EOF
#%Module
setenv MV2 USE RDMA CM 1
setenv MV2 USE IWARP MODE 1
EOF

% I n s t a l l i n g python3 .6 as python3 and p ip
yum −y i n s t a l l python36
yum −y i n s t a l l python36−devel
wget h t t p s : / / boo ts t rap . pypa . i o / get−p ip . py
python36 get−pip . py
l n −s / usr / b in / python3 .6 / usr / l o c a l / b in / python3
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First, the container sets up the required CERN yum repos, although other repos can be used.
The advantage of the CERN repos is that they are known to be configured correctly. For example,
some of these pre-compiled MPI versions, the Ubuntu ones, do not support multithreading by
default. Other times the main reason to go for a container is that the CERN repos do not contain
the wanted software and/or versions, so other repos should be considered.

Then several standard things are installed, such as Vim, Git, GCC, OpenMPI and the modules
package. The modules package is not strictly needed as the recipe can specify in %environmnt

all the paths, but since the CERN MPI versions comes with a modulefile this seems easier.
Just remember to source /usr/share/Modules/init/sh, or another shell such as bash, before
attempting to module load.

Lastly Python 3.6 along with pip is installed. This was largely done because of the missing
pip in the CERN repo Python version. Applications not needing Python can of course remove
this. Similarly, Vim was included mostly for the benefit of the container developer. The author well
knows the annoyance of having to rebuild the container upon realising that there was in fact no
text editor in the container and not having passed the --writable.
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