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Abstract
The standard model of physics classifies particles into elementary leptons and hadrons composed of quarks.
In this article the existence of an alternate ordering principle will be demonstrated giving particle energies to
be  quantized  as  a  function  of  the  fine-structure  constant,  α.  The  quantization  can  be  derived  using  an
appropriate wave function that acts as a probability amplitude on the electric field. The value of α itself can
be approximated numerically by the gamma functions of the integrals for calculating particle energy.
The model may be used to calculate other particle properties as well, in particular particle interaction, giving
quantitative terms for strong, Coulomb and gravitational force.
One input parameter derived from the electron mass is required for the calculations.

1 Introduction
Particle  zoo is  the  informal  though fairly common nickname to  describe what  was formerly known as
"elementary particles". The standard model of physics [1] divides these particles into leptons, considered to
be  fundamental  "elementary particles"  and  the  hadrons,  composed  of  two  (mesons)  or  three  (baryons)
quarks. Well hidden in the data of particle energies lies another ordering principle, based on a description of
particles as electromagnetic objects. 
Particles  are  interpreted  as  some  kind  of  standing  electromagnetic  wave  originating  from  a  rotating
electromagnetic field with the E-vector pointing towards the origin. Neutral particles are supposed to exhibit
nodes separating corresponding equal volume elements of opposite polarity. To obtain quantifiable results,
the electromagnetic field will be modified with an appropriate exponential function, Ψ(r, ϑ, φ), serving as
probability amplitude of the field. The two integrals needed to calculate energy in point charge and photon
representation exhibit the following two relations:  
1) Their product - resulting from energy conservation - is characterized by containing the product of the two
gamma functions Γ+1/3 |Γ-1/3| ≈ α-1/(4π), 
2) their ratio features a quantization of energy states with powers of 1/3 n over some base α0, a relation that
can be found in the particle data with α0 = α  as:

Wn /We  ≈ 3 /2( yl
m)-1/3 Π k=0

n α^(-1/3k )          n = {0;1;2;..}       (1)

with We = energy of electron 1, Wn = energy of particle n and yl
m representing the angular part of Ψ(r, ϑ, φ).

For spherical symmetry y0
0 = 1 holds, corresponding particles are e, µ, η, p/n, Λ, Σ and Δ  2. 

Apart from calculating energies the model may be used to describe other particle properties. At distances
comparable to particle size, typically femtometer for hadrons, direct interaction of particle wave functions
has to be expected. Interpreting this as strong interaction and considering the basic spatial characteristics of
the functions may provide a possible explanation why leptons, in particular the tauon, are not subject to this
interaction.  Expanding the incomplete gamma function appearing in the integrals for calculating particle
energy gives quantitative terms for the strong and Coulomb interaction. The model may offer approaches for
calculating gravitational interaction as well, in particular the 3rd power relationship of α-coefficients  can be
expanded to give a value for Planck energy.
The following equations basically use two parameters, one for energy (β) based on We as reference and free
parameter of the model and a second (σ) which is a function of angular momentum. To focus on the more
fundamental relationships the discussion of minor aspects of the model parameters is exiled to an appendix,
related topics to be marked as [A]. Typical accuracy of the calculations presented is ~ 0.001 (e.g. due to
approximations of Γ-functions) which would be also the order of magnitude of possible QED corrections.

2 Results
2.1 Basic calculations
The model is essentially based on a single assumption: 

1 Factor 3/2 is supposed to represent an anomaly of the electron, see [A2,3]
2 The relation of the e, µ, π masses with α was noted in 1952 by Y.Nambu [2]. M.MacGregor calculated particle and 
constituent quark mass as multiples of α and related parameters [3]. This article is a shortened + modified version of [4].
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Particles can be described by using an appropriate exponential wave function, Ψ(r), that acts as a 
probability amplitude on an electromagnetic field. 
An appropriate form of Ψ can be deduced from three boundary conditions:
1.) To be able to apply Ψ to a point charge Ψ(r = 0) = 0 is required, this may be considered by a term such as:

Ψ (r) ~ exp(
−β /2

r y ) (2)

2.) To ensure integrability an integration limit is needed. This may be achieved by Ψ(r) being the solution of 
a 2nd order differential equation of approximate general form 

 −ΔΨ (r)  +  
β /2

r x+1 ∇ Ψ (r) −  
β /2

σ r x+2 Ψ (r)  = 0 (3)

giving for particle n:

Ψ n(r)=exp(−(βn /2

r x
+[(β n/2

r x )
2

– 4
βn/2

σ r x ]
0.5

)/2) (4)

3.) Ψ should be applicable regardless of the expression chosen to describe the electromagnetic object. In 
particular requiring a point charge and a photon representation of a localized electromagnetic field (particle) 
to have the same energy, the exponent of r is required to be x=3 (see (15)), giving finally:

Ψ n(r)=exp(−(βn /2

r3
+[(β n/2

r3 )
2

– 4
βn/2

σ r 3 ]
0.5

)/2) (5)

Up to the limit of the real solution of (5), r = rl, with

rl = (σ β/8)1/3 (6)

in all integrals over Ψ(r) given below equ. (7) may be used as approximation for (5) 

Ψ n(r<rl ) ≈ exp(−βn /2

r 3 ) (7)

Phase will be neglected on this approximation level, properties of particles will be calculated by the integral 
over Ψ(r)2  3 times some function of r and can be given by:

∫
0

r l

Ψ (r)2 r−(m+1)dr  ≈ ∫
0

r l

exp(−β /r l
3)r−(m+1)dr  = Γ (m /3, β /r l

3
)  β−m/3

3
  =  ∫

β/r l
3

∞

t
m
3

 −1
e−t dt  β−m/3

3
(8)

with m = {..-1;0;1;..}. The term Γ(m/3, β/rl
3)) denotes the upper incomplete gamma function, given by the 

Euler integral of the second kind with β/rl
3 as lower integration limit. For m ≥ 1 the complete gamma 

function Γm/3 is a sufficient approximation, for m ≤ 0 the integrals have to be integrated numerically.
Coefficient βn is a particle specific factor, proportional to particle energy W as βn ~ Wn

-3 (12) , for particle n it
may be given as partial product of a value for a reference particle, βref carrying the dimensional term βref  

times particle specific dimensionless coefficients, αn, of succeeding particles representing the ratio of βn and 
βn+1:

βn = βref Πk=1
n α k  = βdim Π k=0

n αk   (9)

Coefficient σ is related to the angular part of the wave function Ψ and thus to angular momentum. The 
relationship between rl  and σ is given by (6). Replacing rl by using the Euler integral, equation (8), for m= -1

rl  ≈ 1.5133 |Γ-1/3| βn
1/3/3 α-1    4  [A1,2] (10)

σ may be given as:

σ = 8 rl,n
3 /βn = 8(1.5133 |Γ-1/3|/3 α-1)3  = 1.772E+8 [-]      [A1,2] (11)

Particle energy is expected to be equally divided into electric and magnetic part, Wn = 2Wn,el = 2Wn,mag . To 

3  hence factor 2 in (2)ff
4 rl = 1.5133 α-1 rm , with rm = |Γ-1/3| βn

1/3/3 being the coordinate of the approximate maximum of W(r), see fig.1
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calculate energy, the integral over the electrical field E(r) of a point charge is used as a first approximation. 
Using (8) for m = 1 gives:

Wpc,n = 2ε0∫
0

∞

E (r)2 Ψ n(r)2 d3 r = 2b0∫
0

rl ,n

Ψ n (r)
2 r−2 dr = 2 b0 Γ1/3 βn

-1/3 /3     5 (12)

Using equation (8) for m = -1 to calculate the Compton wavelength, λC, in the expression for the energy of a 
photon,  hc0/λC , gives the following expression for λC :

λC,n  ≈ ∫
0

λC , n

Ψ n (r)2 dr = ∫
β / λC, n

3

∞

t -4/3e-t dt  βn
1/3

/3 ≈  36 π2  |Γ-1/3| βn
1/3 /3 (13)

to be used in:

WPhot,n = hc0/λC,n  =
hc0

∫
λC , n

Ψ n(r )2dr

=
3hc0

36 π 2
|Γ−1/ 3|βn

1/3 (14)

The energy of a particle has to be the same in both photon and point charge description. Equating (12) with 
(14) and rearranging to emphasize the relationship of α with the gamma functions ( Γ1/3 = 2.679; |Γ-1/3| = 
4.062) gives (note: h => ħ):

4 π Γ 1/3|Γ−1/3|
0.998

 = 
9hc0

18 π b0

=
ħ c0

b0

= α-1       (15)

Figure 1: Example for particle energy Wn calc (r) (normalized) vs lg(r) according to equ. (12); rm,n: see note 4;
rW/2 => radius of the integral (12) at Wn(r) ~ Wn/2; r l see (6); black line: Ψe(r)

2.2 Quantization with powers of 1/3n over α
Inserting (9) in the product of the point charge and photon expression of energy, Wn

2, gives:

W n
2  = 2b0 hc0  

∫
r l , n

Ψ n(r)2r−2 dr

∫
λC, n

Ψ n(r)2 dr

~
1

βn
2/3 ~

α0
1/3 α1

1/3 .....α n
1/3

α0 α1 ....α n

          n = {0;1;2;..} (16)

The last expression of (16) is obtained by expanding the product Πn
- 2/3 included in βn

- 2/3 with Πn
1/3 From this

term it is obvious that a relation αn+1 = αn
1/3 such as given by equation (1) yields the only non-trivial solution

for Wn
2 where all intermediate particle coefficients cancel out and Wn becomes a function of coefficient α0

only. By comparison with experimental data α0 may be identified as α0  = αe ≈  α9  and the α-product can in
general be given by:

α3 α1 ....α ^(9 /3n)α ^(3 /3n)

α9 α3 α1 ....α ^(9 /3n)
= α ^(3/3n)/α9                                   n = {0;1;2;..} (17)

The corresponding term for particle energies will be given by (using (15)):

5 b0 = e2/(4πε) to be used as abbreviation in the following
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W n  = 
4 π b0

2

α
 
∫
r l , n

Ψ n (r)
2 r−2 dr

∫
λC, n

Ψ n(r)2 dr

 = ((2b0)
2 Γ1/3

2

9 [α 4 π  |Γ−1/3|Γ1 /3] βn
2/3 )

0.5

 = 

 = 2b0

Γ 1/3

3 βn
1/3

 = 2b0

Γ 1/3

3 βdim
1/3

α ^(1.5/3n
)/α 4.5  ≈ W e  

3
2

 Πk=0
n α^(-1/3k )

     n = {0;1;2;..}      (18)

giving equation (1) for spherical symmetry. In the last term of (18) the additional factor 3/2 has to be inserted
ad hoc to represent the anomaly in the product (9) due to the energy ratio of e, µ, Wµ /We = 1.5088 α-1 [A2] 6.
Equation (9) has to be adjusted accordingly:

βn = βe(2/3)3  Πk=0
n α ^(3 /3k)  = βdim α e(2 /3)3  Πk=0

n α ^(3/3k)  = βdim Πn   
7

          n = {0;1;2;..}      (19)

A fit  of  We will  give  βdim  = 2.12E-24 [m3].  Extending the model  to energies below the electron with a
coefficient of α3 in (1) gives a state of energy ~ 0.2eV which is roughly in a range expected for a neutrino [5].

2.3 Non-spherical symmetric states
Up to here only spherical symmetry, y0

0, and Ψ(r) is considered. The ratio of the volume integrals attributed
to spherical harmonic Y1

0 and Y0
0  gives a factor of 1/3. Assuming Y1

0 to be a sufficient approximation for the
next angular term and  Wn ~ 1/rn ~ 1/Vn

1/3 (V = volume) to be applicable for non-spherically symmetric states
as well, will give W1

0/W0
0 = 31/3 =1.44 = (y1

0 )-1. A change in angular momentum is expected for this transition
which is actually observed with ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2.
Results for particles assigned to y0

0,  y1
0 are presented in table 1.

Table 1: Particles up to tauon energy8; values for y0
0 (bold), y1

0; col. 3: energy values of [6] except*: Wcalc

calculated using the slighty more precise [A(37)] in place of (19); ** Using [A, 40]

6 While the origin of factor 3/2 is unclear, the difference to 1.5088 can be given by [A(36)].
7 Factor (2/3)3 reproduces factor 3/2 in (1,) to be canceled by an extra (3/2)3 in αe ≈ (3/2)3 α9 (see (38)).  ͔Πn for brevity.
8 up to Σ'0 all resonance states given in [6] as **** included; Exponent of -3/2, 27/2 for Δ and tau is equal to the limit of
the partial products in (1) and (19); rl calculated with (6);
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n

J

-1 2E-7 * - 1/2 1.5E+10

0 0.51  Reference 1.0001** 1/2 8877

1 105.66 1.0000 1/2 42.9

1 139.57 1.0918 0 29.8
K 495 0

2 547.86 0.9933 0 8.3

2 775.26 1.0124 1 5.8

2 782.65 1.0028 1 5.8
K* 894 1

3 938.27 1.0016 1/2 4.8

n 3 939.57 1.0003 1/2 4.8
958 0

1019 1

4 1115.68 1.0106 1/2 4.0

5 1192.62 1.0046 1/2 3.8

Δ ∞ 1232.00 1.0025 3/2 3.7
1318 1/2

3 1383.70 0.9796 3/2 3.3

4 1672.45 0.9724 3/2 2.8

N(1720) 5 1720.00 1.0046 3/2 2.7

∞ 1776.82 1.0026 1/2 2.5

W
n,Lit      

 
[MeV] 

 Π
k=0

n α (̂-1/3k)                 
equ (1)

 Π
n
 
                                                 

equ (19),(37) W
calc

/ W
Lit

 
rl [fm]

ν  α+3

e+- (3/2)3 α9

µ+-  α-1  α9α3

π+-  1.44 α-1  α9α3/3

η 0  α-1α-1/3  α9α3α1

ρ0  1.44 (α-1α-1/3)  α9α3α1 /3
ω0  1.44 (α-1α-1/3)  α9α3α1 /3

p+-  α-1α-1/3α-1/9  α9α3α1α1/3

 α-1α-1/3α-1/9  α9α3α1α1/3

η'

Φ0

Λ0  α-1α-1/3α-1/9α-1/27  α9α3α1α1/3α1/9

Σ0  α-1α-1/3α-1/9α-1/27α-1/81  α9α3α1α1/3α1/9α1/27

 α-3/2  α27/2

Ξ

Σ*0  1.44 (α-1α-1/3α-1/9)  α9α3α1α1/3 /3
Ω-  1.44 (α-1α-1/3α-1/9α-1/27)  α9α3α1α1/3α1/9 /3

 1.44 (α-1α-1/3α-1/9α-1/27α-1/81)  α9α3α1α1/3α1/9α1/27 /3
tau+-  1.44 (α-3/2)  α27/2 /3



2.4 Upper limit of energy
In the simple picture sketched in the introduction the rotating E-vector might be interpreted to cover the
whole angular range in the case of spherical symmetric states while a p-like state of an Y 1

0-analogue might
be interpreted as forming a double cone. Going to higher Yn

0-analogue states will close the angle of the cone
leaving the original vector in the angular limit case, which might be interpreted as an instantaneous snapshot
of time-averaged lower states, The maximum of the W(r) curve of spherical symmetric states of fig.1 will
shift towards rl until it reproduces the shape of Ψ(r) itself, i.e. rm, =>  rl. 
This is equivalent to σ approaching approximately unity.  Since a bound state requires  σ > 1 an upper limit
for the angular contribution to the particle energy may be given by 1.51 α -1 and possible other components
included in rl, σ according to (10), (11) such as Γ-1/3/3 or 2. The maximum angular contribution to Wmax may
be estimated as being approximately:
 1.5133 α-1  <  ΔWmax, angular   <  σ1/3 (20)

From (19) follows an estimate for the total upper limit of energy as:

We 1.51332 α-2.5  = 4.12E-8 [J]   <  Wmax  <  We 1.5133 α-1.5 σ1/3 = 1.72E-7[J] (21)

This corresponds to a factor 2.0 - 5.5 relative to the mass of the Higgs boson [6].

2.5 Expansion of the incomplete gamma function Γ(1/3,βn/r3)
The series expansion of Γ(1/3,βn/r3) in the equation for calculating particle energy (12) gives [7]:

Γ (1/3,  β n/(r3))  ≈ Γ 1/3  - 3( βn

r3 )
1/3

+ 3
4 (

βn

r 3 )
4 /3

 = Γ 1/3  - 3
βn

1/3

r
 + 3

4

βn
4/ 3

r4 (22)

and for the potential energy / electrostatic part of Wn(r),  Wn,pot(r) = Wn(r)/2:

W n, pot (r) ≈ W n /2  - b0

3 βn
1/3

3 βn
1/3 r

 + b0
3
4

β n
4/3

3 βn
1/3 r4

 = W n /2  - 
b0

r
 + b0

βn

4 r4
      (23)

The 2nd term in (23) drops the particle specific factor βn and gives the electrostatic energy of two elementary
charges  at  distance r.  The 3rd term is  an approximately appropriate  choice for the 0 th order term of  the
differential  equation  below  and  is  supposed  to  be  responsible  for  the  localized  character  of  an
electromagnetic  object.  In  chpt.  3.3  some  arguments  are  given  that  demonstrate  a  relationship  of  the
properties of the wave functions used in this model with the  “strong force” of the standard model. It may be
assumed that the 3rd term of (23) represents this strong force.

2.6 Differential equation
The approximation Ψ(r<rl) of equation (7) provides a solution to a differential equation of type

−
r
6

d2 Ψ (r)

dr2
 +  

βn/2

2r 3

dΨ (r)
dr

 − 
βn /2

r 4
Ψ (r)  =  0  (24)

However the correct discriminant form of Ψ(r) of equ. (  5  ) would be provided by a slightly different equation:

−r
d2 Ψ (r)

dr2
 +  

βn/2

r3

dΨ (r)
dr

 − 
βn /2

σ  r 4
Ψ (r)  = 0 (25)

To test if this type of differential equation is related to conventional terms used in quantum mechanics, a
quantum mechanical term for kinetic energy for the 2nd order term, using We => Γ- Γ+ 2 b0 /(9 r) which is an
approximation for r ≈ rm  to replace me = We /co

2, and a slightly altered (1/σ, r-3) 3rd term of (23) for the 0th and
1st order term are used to give a rough approximation for the differential equation as

−( 9ħ2 c 0
2 r

Γ-1/3 Γ +1/32b0
)d2 Ψ (r)

dr2
 +  

b0 βe

4 r3

dΨ (r)
dr

 −  
b0 βe

4 σ  r 4
Ψ (r)  = 0 (26)

In particular for σ -> 1 this yields roughly appropriate order of magnitude results for r ~ rm. In general better
suited mathematical approaches for providing a term such as (5), in particular as far as the angular term is
concerned, have to be considered.
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2.7 Gravitation
Defining the Planck-energy WPl

 as 

WPl
  = c0

2 (b0 /G)0.5 = c0
2 (αhc0/G) (27)

gravitational attraction FG in the classical limit can be expressed as:

FG  = 
b0W n W m

W Pl
2

1

r2 (28)

Expression (28) is a restatement of Newton's law with no additional insight unless an expression for WPl
  

independent of G would be at hand. Expanding relationship (19) to higher powers of αe i.e. αe
3 = (1.51333 α9)3

provides just that. The relationship is quantitative if using 

0.9994
W Pl

W e

 = 1.5133−2 α−102 = 2.039 E+21 (29)

i.e. using (αe
3)-1/3 times the angular limit factor according to (20) in the form 1.5133 α-1 *2.

Using [A(35)] to express factor 1.5133 gives (FG, FC = gravitational, Coulomb forces):

( W e

W Pl
) = (FG ,e

FC ,e
)calc

 = [ (4 π )
2 Γ -

4 α12

2 ]
2

 = 1.00072  (FG ,e

FC ,e
)exp

 = 
G W e

2

c0
4 b0

   9 (30)

3 Discussion
3.1 Additional particle states
In general  it  is  not  expected that  partial  products  can explain all  values  of  particle  energies  and linear
combination states have to be considered. 
The first particle family that does not fit to the partial product scheme are the kaons at ~ 495MeV. Assuming
them to be a linear combination of two π-states with a supposed charge distribution of +|+, -|- and +|- would
yield  the  basic  symmetry properties  of  the  four  kaons as  given  below,  providing  two neutral  kaons  of
different structure and parity:

   +         -         -          +
K+     +       + K-    -        - KS

o    +      + KL
o     +        -  (+/- = charge)

   +         -         -    -
Analogous, for the charged kaons, K+, K-, a configuration for wave function sign equal to the configuration
for charge of KS

o  and KL
o might be possible, giving two analogous variants of + and - parity of otherwise

identical particles. Such configurations for the kaons might give a simple explanation for the unusual decay
modes observed in the experiments.

3.2 Gravitation
In chapter 2.7 an example using the Planck energy is given that the model may be used to construct simple
models for gravitational force that provide values in the correct range of order of magnitude.
From (18) it is not obvious if and at which energy a ground state exists though the electron or neutrino would
be obvious choices. The ground state should be distinguished by the existence of a dimensionless parameter
αground

3 that  does  not  represent  another  particle  state  but  has  some  more  fundamental  significance.
Relationship (29) seems to provide just that. 
For giving a detailed mechanism within this model particles might interact via direct contact in place of
boson-mediated interaction. The particles are not expected to exhibit  a rigid radius. Within the limits of
charge and energy conservation a superposition of many states might be conceivable, extending the particle
in space with radius rl,n appropriate for energy of each superposition state, enabling interaction at distance r l.
The wave function of a particle might contribute an additional factor to lower total Ψ values on site of a
second particle thereby reducing particle energy and resulting in an attractive force .  The appearance of the
angular limit term of (20) in (29) may reflect the instantaneous character of such an interaction 10. 

9 Using [A, 39] for calculating We would give G as:

Gcalc  = 
c0

4

εc

210 π11 /3

9
Γ-

14

Γ +
2

α30  = 1.0013Gexp

10 The term (Γ-1/3 α3)4 in expression (30) indicates a relationship with the 3rd term of (22).
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3.3 Short range interaction - strong force
In this model,  on the length scale of particle radius, the wave functions of two particles should start  to
overlap and exert some kind of direct interaction. As demonstrated in table 1, last column, for hadrons the
model yields particle radius in the range of femtometer, the characteristic scale for strong interaction and it
seems likely to identify strong interaction with the interaction of wave functions. Interaction via overlapping
of  wave  functions  constitutes  the  basis  of  chemical  bonding and has  been  examined extensively [8].In
general wave functions are signed (not to be confused with electrical charge), for particles above the ground
state regions of different sign exist,  separated by nodes. There are two major requirements for effective
interaction:
1) Comparable size and energy of wave functions,
2) sufficient net overlap: In the overlap region of two interacting wave functions sign should be the same
(bonding)  or  opposite  (antibonding)  in  all  overlapping regions.  If  regions  with same  and opposite  sign
balance to give zero net overlap, no interaction results.
From condition 1) and the data of table 1 it is obvious that the wave functions of neutrino and electron will
not show effective interaction with hadrons due to mismatch of size and energy. In the case of the tauon the
second rule is crucial. According to this model the tauon is exceptional by being at the end of the partial
product series for y1

0 and should consequently exhibit a high, potentially infinite number of nodes, separating
densely spaced volume elements of alternating wave function sign. Though having particle size and energy
in the same order of magnitude as other hadrons, such as the proton, the frequent change of sign of the tauon
wave function will prohibit net overlap and effective interaction.

Conclusion
Using  the  exponential  function  Ψ(r,ϑ,φ)  as  probability  amplitude  for  the  electric  field  E(r)  gives  the
following results:
- a numerical approximation for the value of the fine-structure constant α,
- a quantization of energy levels given by a partial product of terms α^(-1/3n),
- qualitative explanations for particle properties such as the lepton character of the tauon or the decay of
   kaons,
- a possibility to quantitatively express the gravitational constant in terms of electromagnetic constants and
   electron energy,
- an indication of a common base for strong force, electromagnetism and mass/gravitation, given by a
  common set of coefficients and the expansion of the incomplete gamma function.
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Appendix

[A1] Angular momentum / 2π
A simple relation with angular momentum J for spherical symmetric states, applying a semi-classical approach using 

J  = r2 x p(r1)  = r2W n(r1)/c0 (31)

and assuming  |r2| = |r1| and Wkin,n = 1/2 Wn,   gives the integral:

|J| = ∫
0

rl , n

J n(r)dr = 2
b0

c0

 ∫
0

r l , n

Ψ 2n(r)
2 r−1 dr (32)

From (8) follows for m = 0:

∫
0

rl , n

Ψ 2π ,n(r )
2r−1 dr = 1/3∫

8 /σ

∞

t -1 e -tdt ≈  5.45  ≈  α-1/8π (33)

yielding the constant α-1/8π. Inserting (33) in (32) would provide:

 |J| = 2
b0

c0

 
α -1

8π
= 1/2 [ħ] 1/(2π) (34)

To get the expected value of 1/2 [ħ] either assumption |r2| = |r1| or the assumption of equ. (12), that the Coulomb law
originating from the interaction of 2 particles can be used as first approximation has to be dropped, introducing a factor
2π in either (32) or (12).  The whole complex of  angular  part  of the wave function, wave function phase,  angular
momentum, magnetic moment needs to be worked out thoroughly before this questions may be settled.

[A2] Coefficient ~1.5
The value of 1.51 α-1 in rl, σ originates from the relationship with J through equ. (33) and is obviously close to the ratio
Wµ/We = 206.8 = 1.5088 α-1. The source of this anomaly is supposed to be the electron rather than the muon, which is a
middle term of product (19) and the equations will be arranged accordingly in (19) by factor (2/3)3 representing a
general factor of all particles to be canceled by a factor (3/2)3 in αe. Several options for  ~1.51 involved in this model
have been be considered: 3/2, Γ- /Γ+ = 1.516, π/2 = 1.571, 1.5088 etc. The value 1.5133 has been chosen due to  
1.  a possible geometrical interpretation (using(15))

1.516 α-1 Γ- /3 =  Γ- /Γ+  4π Γ- Γ+/0.998   Γ- /3 = 1
0.998

 
4 π Γ -

3

3
   =>      1.5133 = 1.516 * 0.998 (35)

connecting the one and three dimensional features of this model.
2. Factor 1.5088 of the ratio Wµ/We being subject to a 3rd power relationship of the same kind as the α coefficients:

(1.5133
1.5088)

3

 = (1.5133
1.5 ) (36)

indicating that the particle specific term of  β and the components of σ are not correctly separated yet even in the case of
spherical symmetric states.

[A3] Particle parameter β
Apart from the particle coefficients αn, parameter β may be analyzed further. To avoid introducing additional parameters
one might test an approach giving β as function of b0 and σ. A suitable expression will be:
β ~ σ b0

2 and since (36) will be used within the particle specific factor, coefficient 1.5133 of σ will be placed there,
giving for the general term: (i.e. excluding the electron) 11:

 βn  = β dim
#  

2

(2 π)
3  

σ

1.51333  b0
2Πk=0

n [α3( 1.5133
1.5 )]^( 3

3k)          n = {1,2,...} (37)

for the electron:

 βe  = β dim
# ∗ 2(2 π)3  σ

1.51333
 b0

2  [  3
2

 α3(1.5133
1.5 )]

3
         (38)

the particle specific factor is given in bold.
Using this expression the remaining term β#

dim = 2.856 E+25 [m/J2] yields a simple term if a unit system with symmetric
splitting of c0 into constants ε and μ, is used, i.e. in SI units the modification:

c0
2  = (εc μc)-1 (39)

11 Factor 2π in (36)f is related to the topic in [A1]
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with 
εc = (2.998E+8 [m²/Jm] )-1 = (2.998E+8)-1 [J/m] 
μc = (2.998E+8 [Jm/s²] )-1 = (2.998E+8)-1 [s2/Jm] 
i.e. the numerical values for c0, 1/εc, 1/μc are identical, the units of εc, μc are expanded by [Jm] for the
convenience of this model. From b0  follows for the square of the elementary charge:  ec

2 = 9,67E-36 [J2]
This allows to give βdim* as: 

 βdim
#  = (2

3)
3

1
ec εc

= 2.856 E+25  [m/J2] (40)

and

 βdim
# b0

2  = (2
3 )

3
1

(4 π)2  (e c

εc
)

3

= 1.520 E-30 [m3] (41)

turning all equations into ab initio expressions using electromagnetic constants only.
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