
Proceedings of International Conference on Nuclear Engineering
ICONE 2018

July 22-26, 2018, London, UK

ICONE26-81574

CREATION OF AN OPENFOAM FUEL PERFORMANCE CLASS BASED ON FRED
AND INTEGRATION INTO THE GEN-FOAM MULTI-PHYSICS CODE

Carlo Fiorina∗

Andreas Pautz
Laboratory for Reactor Physics and System Analysis

École polytechnique fédérale de Lausanne
Lausanne 1015

Switzerland
carlo.fiorina@epfl.ch

andreas.pautz@epfl.ch

Konstantin Mikityuk
Laboratory for Scientific Computing and Modelling

Paul Scherrer Institut
Villigen 5232
Switzerland

konstantin.mikityuk@psi.ch

ABSTRACT
The FRED code is an in-house tool developed at the Paul

Scherrer Institut for the so-called 1.5-D nuclear fuel perfor-
mance analysis. In order to extend its field of application, this
code has been re-implemented as a class of the OpenFOAM nu-
merical library. A first objective of this re-implementation is to
provide this tool with the parallel scalability necessary for full-
core analyses. In addition, the use of OpenFOAM as base library
allows for a straightforward interface with the standard Open-
FOAM CFD solvers, as well as with the several OpenFOAM-
based applications developed by the nuclear engineering com-
munity. In this paper, the newly developed FRED-based Open-
FOAM class has been integrated in the GeN-Foam multi-physics
code mainly developed at the École polytechnique fédérale de
Lausanne and at the Paul Scherrer Institut. The paper presents
the details of both the re-implementation of the FRED code and
of its integration in GeN-Foam. The performances and parallel
scalability of the tool are preliminary investigated and an exam-
ple of application is provided by performing a full-core multi-
physics analysis of the European Sodium Fast Reactor.

INTRODUCTION
In recent years there have been rapid advances in the field

of multi-physics numerical simulation for nuclear reactors. In

∗Address all correspondence to this author.

particular a trend is observed in the creation of new solvers and
in the re-implementation of legacy solvers using modern numer-
ical libraries for the general solution of partial differential equa-
tions (PDEs) on general geometries and unstructured meshes.
Example of these activities are the Moose project [1] and the
several activities dedicated to the use and development of Open-
FOAM [2] based solvers [3].

An important example of legacy codes that would benefit
from a re-implementation based on modern libraries is that of
fuel performance codes. These codes are normally based on spe-
cific methodologies that make difficult their parallelization and
coupling with other codes. In addition, most of these codes were
not conceived for parallel calculation. Re-implementing these
tools in a modern library would address these problems by pro-
viding proper parallelization and streamlined coupling with other
”physics”. This re-implementation is however non-trivial due to
the peculiar 1.5-D representation of fuel rods, which challenges
the application of standard 3-D PDE solvers.

The laboratory for reactor physics and system behavior at
the EPFL and PSI has been developing since a few years a multi-
physics solver named GeN-Foam [4–7] and based on Open-
FOAM. OpenFOAM is distributed as a CFD toolbox but it is
built as a general object-oriented library for the finite-volume
discretization and parallel solution of PDEs. In this work, the
in-house PSI fuel performance code FRED [8] has been re-
implemented as an OpenFOAM class and coupled to the GeN-

1 Copyright c© 2018 by ASME

Foam multi-physics solver. The paper describes the details of
this re-implementation, especially for what concerns the strat-
egy for maintaining a 1.5-D description of single rods, as well as
for properly employing the OpenFOAM general parallelization
framework for this specific type of methodology.

The work is performed in the framework of the ESFR-
SMART Euratom project and aims at supporting its modeling ac-
tivities by providing a novel tool based on modern computational
methodologies and that would supplement available legacy codes
in the modeling of complex phenomena that challenge their ap-
plicability.

BACKGROUND
This work is based on two main research activities carried

out at the EPFL and at the PSI, namely: the development of a
simple fuel performance code named FRED; and the implemen-
tation of a multi-physics solver named GeN-Foam. The follow-
ing two subsections briefly describe these tools.

The GeN-Foam multi-physics solver
The GeN-Foam multi-physics solver is an OpenFOAM-

based solver for reactor transient analysis that couples [5]:
a multi-group neutron diffusion / SP3 sub-solver; a fine-
and coarse-mesh thermal-hydraulics sub-solver; a thermal-
mechanics sub-solver; and a simple sub-scale fuel model.

The neutron transport sub-solver [6, 7] is based on standard
models for neutron diffusion and SP3, including an arbitrary
group structure and the use of isotropic discontinuity factors.
Different from most legacy solvers however, these models are
implemented based on finite volume techniques for general un-
structured meshes. This has the drawback of a notably increased
computational burden. On the other hand it allows handling arbi-
trary geometries and it permits the use of standard finite volume
routines e.g. for projecting fields from and to different meshes
used for other ”physics”, and for mesh deformation. This has
been employed in GeN-Foam to couple the neutronic sub-solver
to the other sub-solvers, as well as to directly evaluate the neu-
tronic feedbacks from thermal expansions by deforming the neu-
tronic mesh according to the calculated displacements.

The thermal-mechanics sub-solver is employed to evaluate
the thermal deformations of core and structures that contribute
to the reactivity feedbacks. It combines a standard linear-elastic
displacement-based solver for structures and a simple 1-D eval-
uation of fuel expansion.

The thermal-hydraulics sub-solver is based on the standard
k-ε turbulence model for compressible or incompressible flows,
but extended to coarse-mesh applications through the use of a
porous medium approach (Vafai, 2005) for user-selected regions
inside the mesh. This allows to simulate a full primary circuit us-
ing standard CFD techniques for open spaces such as the plena in

LWRs or the pools in SFRs, while employing a coarse mesh with
dedicated sub-scale models in complex components like core and
heat exchangers. Currently, only single-phase fluid flow is al-
lowed.

Since the core is typically modeled with a coarse mesh, a
sub-scale fuel model is employed to evaluate the local temper-
ature profile in fuel and cladding, starting from the information
about the coolant temperature (from the thermal-hydraulic sub-
solver) and the volumetric power (from the neutronic sub-solver).
A 1-D radial representation of rods or plates is employed. This
simplified fuel model has represented the starting point for im-
plementing the FRED-based sub-solver, and remains as a user-
selectable sub-solver that could be used for transient analysis.

A first order implicit Euler scheme is used for time inte-
gration. The coupling between equations is semi-implicit using
Picard iteration. Three different meshes are used for thermal-
hydraulics, thermal-mechanics and neutron diffusion, while the
sub-scale fuel model is solved in each mesh cell within the fuel
zones of the thermal-hydraulics mesh. This allows for different
refinements of the meshes and reduces computational require-
ments.

The FRED fuel performance code
The FRED code [8] has been developed for the simulation

of FR and LWR fuel behavior under base-irradiation and acci-
dent conditions. The current version of the code calculates tem-
perature distribution in fuel rods, fuel-cladding gap conductance,
fission gas release, fuel rod inner pressure, and, stress-strain con-
dition of fuel and cladding. The code was evaluated in OECD
MOX fuel performance benchmarks and against the data of the
IFA-503.2 Halden tests with LWR fuel [8].

IMPLEMENTATION
The work here performed has followed two main steps,

namely: the re-implementation of the FRED code as an Open-
FOAM class and according to modern techniques for mesh
and data handling; and the integration in the GeN-Foam multi-
physics solver.

Re-implementation of FRED
The great majority of fuel performance codes (including

FRED) employ a so-called 1.5-D treatment of the fuel rod. A
pure 1-D treatment consists in axially discretizing each rod into
several slices and solving a 1-D radial problem for each of these
slices. Although this treatment is often sufficient for reactor tran-
sients, it fails in properly evaluating a longer term evolution of
the fuel. The reason for this is the impossibility to predict the
variation of gas pressure in the rod. To solve this issue, the 1.5-
D treatment is introduced in order to axially couple the different
slices by gathering the information of each slice concerning its

2 Copyright c© 2018 by ASME

temperature, gap size, central hole size, and fission gas release.
These information is combined with the size and temperatures of
gas plena to predict the evolution of gas pressure during irradia-
tion. In particular, the pressure in a rod is calculated as:

prod =
R(µ0 +µFGR)

∑slice
Vslice
Tslice

+∑plenum
Vplenum
Tplenum

(1)

where R is the universal gas constant, µ0 the moles of gas
initially the rod, µFGR the moles of released fission gases, V the
gas-filled volume associated to a slice or a plenum, and T the
temperature associated to this gas.

A 1-D treatment can be implemented in a PDE library like
OpenFOAM by simply solving a 1-D problem for each coarse-
mesh cell that belongs to the core region. The 1-D sub-scale
sub-solver will take from the other sub-solvers the information
about coolant temperature and pressure, fuel-clad heat transfer
coefficient, fuel volumetric power and fast neutron flux, and will
use this information to solve a 1-D problem for each cell. A main
challenge for re-implementing FRED (or other fuel performance
codes) originates instead from properly defining a rod in a gen-
eral unstructured (and possibly decomposed) mesh, and from the
axial coupling of the different slices of a rod.

Re-implementation of the 1D solver The re-
implementation of the FRED code follows the same logic as the
original implementation [8]. In particular, the equations for bur-
nup, temperature, swelling, creep, strains and stresses are solved
in a fully coupled way using a Newton method. In order to ac-
celerate the solution and to avoid initial stability problems, a pre-
dictor has been included for the temperature field. In particular,
the fuel and clad temperatures are calculated at the first iteration
by employing a simple finite difference method like the one em-
ployed in the basic fuel temperature model of GeN-Foam [5].
The matrix obtained at each Newton iteration is solved using a
Gaussian elimination method with pivoting.

Fuel rod representation OpenFOAM is a general li-
brary for the solution of PDEs and it employs standard algo-
rithms for the handling of unstructured meshes. In this frame-
work, a logical mesh for fuel performance analysis is an axially
extruded mesh that is discretized in the radial core direction (X-
Y plane) into a number of cells equivalent to the number of rods
that one wishes to simulate. In this way, the solver will gather
from other solvers the average value of coolant pressure, coolant
temperatures, etc., in each cell and simulate the behavior of a
slice of an average rod with those data as input. Fig. 1 shows an
example of a possible discretization strategy to simulate 6 rods
per assembly for a core with hexagonal assemblies.

6 different
rods

10 axial slices
of a rod

FIGURE 1. EXAMPLE OF A MESH FOR SIMULATING 6 RODS
IN A HEXAGONAL ASSEMBLY

Fuel rod reconstruction In spite of the use of an ap-
parently structured mesh, the general routines for the handling
of unstructured meshes will be unaware of the fact that differ-
ent cells represent axial slices of the same ”average” rods. This
problem can be overcome by performing, at the beginning of the
simulation, a loop over all the cells in the mesh in order to iden-
tify cells (viz., axial slices) with the same X-Y position in the
core and assign these cells to the same rod. In this way a map is
created that associates each cell to its own rod.

Parallelization OpenFOAM employs a standard MPI-
based domain decomposition technique for parallelization. Ac-
cording to this technique, the computational domain is split into
several sub-domains. Each sub-domain is assigned to a single
MPI thread that solves locally the PDE problem and iterates
the solution with neighboring domains by exchanging the nec-
essary information (e.g., fluxes) through artificial inter-processor
boundaries using MPI messages.

In case of a 1.5-D fuel performance solver there is no need to
exchange information between inter-processor boundaries, since
there is no local exchange of information between neighboring
cells. On the other hand a strategy is needed for gathering the
information necessary to evaluate the evolution of gas pressure
in each rod. In particular, for each rod one has to gather the
terms V

T and the released fission gases µFGR to be used in Eq. 1.
In case every rod is entirely included in one single sub-

domain of the decomposed mesh (Fig. 2), the procedure is trivial
and consists into looping over all the axial slices of each rod.
This operation is made possible by the cell-rod map that is cre-
ated at the beginning of the simulation. However, domain de-
composition is typically achieved via semi-automatic routines
that can cause single rods to be split into multiple sub-domains
of the decomposed mesh (Fig. 3). In this case, every single sub-

3 Copyright c© 2018 by ASME

FIGURE 2. EXAMPLE OF A DOMAIN DECOMPOSITION WITH
ONLY ENTIRE RODS FOR EACH DOMAIN

FIGURE 3. EXAMPLE OF A DOMAIN DECOMPOSITION WITH
SINGLE RODS SPLIT IN MULTIPLE DOMAINS

domain will contain portions of different rods. These partial rods
would be unaware of their missing portions and would be treated
as entire (short) rods unless the information about their missing
portions (contained in other sub-domains and MPI threads) is
made available via MPI messages. To solve this issue, the fol-
lowing algorithm has been implemented:

1. Each MPI thread calculates the number of rods contained in
its sub-domain.

2. A list is created with a size equal to the number of sub-
domains (and MPI threads) and containing the number of
rods for each sub-domain.

3. The total number of rods in all the sub-domains is calculated
via appropriate MPI calls. It should be noted that this does
not correspond to the total number of simulated rods in the
reactor, since rods that are split in multiple sub-domains will
be counted multiple times.

4. Three matrices are created for gathering information about
the V

T terms, the fission gas release, and the X-Y position
associated to each cell in the overall computational domain.
These matrices will have a number of rows equal to the num-

ber of sub-domains and a number of columns equal to the
total number of rods previously calculated. The two matri-
ces are filled by each MPI thread with information related to
its own sub-domain.

5. By using appropriate MPI calls, the information gathered by
each MPI thread for its own domain is scattered/gathered to
all others MPI threads. Each MPI thread will now have a
complete set of information about the V

T terms and the re-
leased fission gas µFGR in the whole computational domain,
and about their radial position (and thus the rod they belong
to).

6. Every MPI thread performs a loop over the rods it contains
and employs the previously built matrices to gather the V

T
terms and the released fission gas µFGR that belongs to the
portions of its rods in other sub-domains;

In the current implementation, this procedure is performed
once at the beginning of each time step, which results in an ex-
plicit coupling between the solution of the 1-D fuel performance
problem and the solution for the gas pressure in the rods. This
is considered to be a sufficiently accurate coupling scheme in
view of the typically slow change of gas pressure. An additional
coupling loop would be needed for specific transients involving
a strong coupling between fuel/clad behavior and gas pressure
(viz., ballooning).

According to the implemented algorithm, the time required
by each MPI thread to solve the fuel-performance problem in
its own sub-domain will essentially be proportional to the num-
ber of cells (i.e., rod slices) in the sub-domain. Limited paral-
lel inefficiencies are expected with a growing number of sub-
domains since: 1) the information that is exchanged via MPI
calls is limited and reduces proportionally with the number of
cells, which strongly limits the MPI load; 2) the number of iter-
ations for the rod pressure coupling is set to one and it does not
grow with a growing number of sub-domains. It is worth noting
that this is not the case for standard PDE solvers that solve for 3-
D problems and that employ a domain decomposition technique.
In these cases, the amount of information exchanged between
MPI threads is significant (typically, one value for each inter-
processor face and for each quantity solved for) and its relative
weight grows with the number of sub-domains. In addition, iter-
ation needs to be performed between the different domains, and
the number of iteration to achieve a target convergence grows
with the number of sub-domains.

INTEGRATION INTO GeN-Foam
The developed FRED-based class has been included in the

GeN-Foam solver. It interacts with other solvers as follows:
it takes the values of coolant temperature, coolant pressure,
coolant-clad heat transfer coefficient, and fuel volumetric power
from the thermal-hydraulic sub-solver; it solves for burnup, tem-
peratures, stresses and strains in fuel and clad; it provides back to

4 Copyright c© 2018 by ASME

FIGURE 4. COUPLING SCHEME OF GeN-Foam

the thermal-hydraulic sub-solver the power flowing from the fuel
to the coolant; and it provides to the neutronic sub-solver temper-
ature and expansion of fuel and clad. The coupling scheme fol-
lows the same logic employed for the existing simplified solver
for fuel and clad temperatures [5] and reported in Fig. 4 .

RESULTS AND DISCUSSION
The correct implementation of the developed solver has first

been verified by comparing results for a single rod with the re-
sults obtained with the original FRED implementation, which
has shown identical results. After this sanity check, the solver has
been applied for a preliminary analysis of the European Sodium
Fast Reactor (ESFR) [9], with the main objective of testing the
solver for a large scale problem, and including a coupling with
the other sub-solvers. The performances of the solver in terms
of computational requirements and parallel scalability have then
been investigated.

Application to the ESFR
The developed solver has been employed on a significant

test case by employing the ESFR core. As far as the neutronics
and thermal-hydraulics are concerned, the same computational
assumptions as in Ref. [5] have been made. As regards the fuel
behavior, 6 rods have been simulated for each assembly (corre-
sponding to 2700 rods in the core), with 10 axial slices per rod
(Fig. 1). The mesh employed for the simulation is reported in
Fig. 5. For each cell in the core, the corresponding 1-D sub-scale
FRED model is solved using a relatively rough discretization of
10 nodes.

Figs. 6, 7 and 8 report an example of results obtained at
the end of a 6 months irradiation period. Thanks to the use of a
modern library like OpenFOAM it was possible to post-process

FIGURE 5. MESH EMPLOYED FOR SIMULATING THE ESFR
FUEL

FIGURE 6. TEMPERATURES [K] OF OUTER CLAD SURFACES
AND OF FUEL CENTRAL POINT IN THE ESFR AFTER 6
MONTHS OF OPERATION

the results with a readily available and powerful tool like par-
aview [10], which represents an important asset of the developed
solver compared to the previous FRED implementation or other
legacy solvers that provide results exclusively as text files.

Performances and scalability
The time required for a solution clearly depends on the num-

ber of simulated rods, their axial discretization, and the sub-scale
radial discretization employed for fuel and clad. The objective
of this paragraph is to provide a preliminary overview about the
computational requirements expected for the developed solver,
and its scaling behavior. For these tests, a standard workstation
equipped with two 12-cores Intel Xeon E5-2650-v4 processors

5 Copyright c© 2018 by ASME

FIGURE 7. GAS PRESSURE [Pa] AND MAX VON MISES
STRESSES [MPa] IN THE CLAD IN THE ESFR AFTER 6 MONTHS
OF OPERATION

FIGURE 8. GAP SIZE [m] AND BURNUP [MWD/kg] IN THE
ESFR AFTER 6 MONTHS OF OPERATION

has been used.
As a first trivial test, computing time has been evaluated for

an increasing number of simulated rods, from 1 to a 1000. Com-
puting time has been observed to grow linearly, which is consis-
tent with the fact that rods and slices are solved sequentially by
the solver.

As a second, less trivial test, the time required for a single
time step iteration has been evaluated with a varying number of
sub-scale radial nodes in fuel and cladding. In particular, the
nodes employed in the fuel have been varied from 8 to 64, with
the nodes in the cladding correspondingly increasing from 2 to
8. Fig. 9 shows that the growth in computing time is slightly less
than cubic, with the cubic growth representing a theoretical limit
for the Gauss elimination method for matrix solution.

The last test that has been carried out for a preliminary as-
sessment of the solver performances is related to its parallel scal-
ability. As discussed previously, an essentially linear scalability
(computing time inversely proportional to the number of MPI

10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

MPI threads #

C
om

pu
ta

tio
na

l t
im

e
pe

r
ro

d
an

d
pe

r
tim

e
st

ep
 [s

]

Measured performances
Cubic behavior

FIGURE 9. SOLUTION TIME FOR A SINGLE ROD FOR A VARI-
ABLE NUMBER OF RADIAL NODES

threads) is expected, since the domain decomposition will divide
upon the different MPI threads the overall number of slices to
be solved for. However, a possibly growing MPI load and im-
balance may negatively impact the solution time. To investigate
these issues, a weak scalability test has been performed by run-
ning 20 time steps of 5 · 104 seconds for the ESFR core, with
8 radial nodes for fuel and 2 for cladding. The number of MPI
threads (and decomposed sub-domains) has been varied from 1
to 32. Results are shown in Fig. 10, which shows an essentially
linear scaling and excludes major implementation problems or
an excessive load for MPI communications. By deeper investi-
gation, it was observed that a main source of scaling inefficiency
is related to the MPI imbalance that arise from the subdivision of
the computing domain in sub-domains of non-equal size. As a
consequence, the MPI threads are forced to periodically wait for
the MPI thread with the highest number of rod slices to finish its
computation. This causes a non-optimal utilization of resources
and a less-than-linear scaling. MPI communication has also been
observed to have a non-negligible impact, which will be the sub-
ject of future studies for the authors.

From the preliminary results reported above, it is possible
to roughly estimate the computational time required for a given
problem, and for a given computational infrastructure as:

time
timere f

=
#rods

#rodsre f

#silces
#slicesre f

(#nodes)3

(#nodesre f)3
#MPIthreadsre f

#MPIthreads
(2)

where re f indicate a reference case. For the case here consid-
ered of a large SFR and 6 simulated rods for each assembly (for
a total of 2700 rods in the core), a single-core computing time

6 Copyright c© 2018 by ASME

0 5 10 15 20
0

100

200

300

400

500

MPI threads #

C
om

pu
ta

tio
na

l t
im

e
pe

r
tim

e
st

ep
 [s

]

Measured performances
Linear scaling

FIGURE 10. PARALLEL SCALABILITY FOR THE ESFR CASE

of 6 months can be estimated for a standard radial discretization
of fuel and cladding into 25 and 5 nodes, respectively, and for a
typical 1000 time steps (one per day for approximately 3 years
of irradiation). This confirms the prohibitive computing time for
single-core runs of fuel performance codes. However, and thanks
to the scalability of the developed solver, an acceptable comput-
ing time of approximately 1 week can be estimated when using
a standard 24-cores workstation. In case the good scaling behav-
ior of the solver were confirmed for a large number of cores, the
computing time would reduce to half a day on a standard 300-
cores cluster, or to several tens of minutes for HPC computations
involving several thousands of cores.

CONCLUSIONS
In this paper, the re-implementation of the FRED fuel per-

formance code as an OpenFOAM class has been presented. The
objective is to obtain an implementation of FRED which could
easily be coupled with solvers for other ”physics” and that would
feature a good parallel scalability for tackling modern full-core
multi-physics problems.

The newly implemented solver has been successfully bench-
marked with the original FRED version, which proved a correct
re-implementation of the solver, with the added value of allow-
ing the use of advanced post-processing tools like paraview. In
addition, the performances of the solver have been tested, which
allowed to verify its scalability and the possibility to perform
full core coupled simulations of a reactor core in reasonable time
scales.

Although preliminary, the work discussed in this paper rep-
resents a first promising step towards the feasibility of full-core
implicitly-coupled multi-physics simulations of nuclear reactors

including detailed fuel performance analyses. In view of the
promising results here presented, future work will be dedicated
to testing the solver on large HPC infrastructures, and to carry
out proper validation and verification.

ACKNOWLEDGMENT
The research leading to these results has received partial

funding from the Euratom research and training programme
2014-2018 under grant agreement No 754501.

REFERENCES
[1] Gaston, D., Newman, C., Hansen, G., and Lebrun-Grandi,

D., 2009. “Moose: A parallel computational framework
for coupled systems of nonlinear equations”. Nuclear En-
gineering and Design, 239(1), pp. 1768–1778.

[2] OpenFOAM, 2018. OpenFOAM. See URL
http://www.openfoam.org.

[3] SIG, 2018. OpenFOAM nuclear special interest group. See
URL https://openfoamwiki.net/index.php/
SIG_Nuclear_Simulations.

[4] Fiorina, C., and Mikityuk, K., 2015. “Application of the
new gen-foam multi-physics solver to the european sodium
fast reactor and verification against available codes”. In
Proceedings of the ICAPP 2015 Conference.

[5] Fiorina, C., Clifford, I., Aufiero, M., and Mikityuk, K.,
2015. “Gen-foam: a novel openfoam based multi-physics
solver for 2d/3d transient analysis of nuclear reactors”. Nu-
clear Engineering and Design, 294, pp. 24–37.

[6] Fiorina, C., Kerkar, N., Mikityuk, K., and Pautz, A., 2016.
“evelopment and verification of the neutron diffusion solver
for the gen-foam multi-physics platform”. Annals of Nu-
clear Energy, 96, pp. 212–222.

[7] Fiorina, C., Hursin, M., and Pautz, A., 2017. “Extension of
the gen-foam neutronic solver to sp3 analysis and applica-
tion to the crocus experimental reactor”. Annals of Nuclear
Energy, 239, pp. 419–428.

[8] Mikityuk, K., and Shestopalov, A., 2011. “Fred fuel be-
haviour code: Main models and analysis of halden ifa-
503.2 tests”. Nuclear Engineering and Design, 241,
pp. 2455–2461.

[9] Fiorini, G., and Vasilev, A., 2011. “European commission
7th framework programme: The collaborative project on
european sodium fast reactor (cp-esfr)”. Nuclear Engineer-
ing and Design, 241, pp. 3461–3469.

[10] Ahrens, James, Geveci, Berk, Law, and Charles, 2005. Par-
aView: An End-User Tool for Large Data Visualization. El-
sevier.

7 Copyright c© 2018 by ASME

