LIST OF ABBREVIATIONS

The metric system is adopted as standard. You should use the international system of units. If non-standard abbreviations must be used they should be defined in the text.

Use the fundamental quantity	with appropriate prefix:	minute	min
kilo	k	hour	h
mega	M	day, week, month, year	day, week,
giga	G		month, year
tera	T	Units of temperature:	
milli	m	Celsius	°C
micro	μ	Kelvin	K
nano	n		
pico	p	Additional physical units:	
		dalton	Da
Units of length:		hertz	Hz
<u>meter</u>	m	joule	J
kilometer	km	volt	V
centimeter	cm	watt	W
millimeter	mm		
micrometer	μm	Relative units:	
nanometer	nm	parts/million parts	ppm
		parts/billion parts	ppb
Units of area:		parts/trillion parts	ppt
<u>square meter</u>	m^2	percentage	%
kilometer	km^2	weight	W
hectare (10 000 m²)	ha	volume	V
square centimeter	cm^2		
square millimeter	mm^2	Units of electrical conductivity:	
		siemens per meter	S/m
Units of volume:		millisiemens per meter	mS/m
<u>cubic meter</u>	m^3	$(mS/cm; \mu S/cm)$	
cubic centimeter	cm^3	ohm	Ω
<u>liter</u>	L	Units of concentration:	
milliliter	mL	mole per kilogram (liter)	mol/kg(mol/L)
microliter	μL	millimole (micromole)	mmol/kg
		per kilogram	(µmol/kg)
Units of mass:		gram per kilogram	g/kg
gram	g	milligram per kilogram	mg/kg
kilogram	kg	microgram per kilogram	μg/kg
tonne	t		
milligram	mg	Similar units for volume:	
microgram	μg	g/L, mg/L, mg/mL, μ g/L, μ g/mL	
Units of density:		Units of irradiation:	
g/cm^3 , kg/m^3 , t/m^3 , g/L , kg/L		watt per square meter	W/m^2
Units of pressure:		Units of photon flux density:	
pascal	Pa	mol per square meter per second	$mol/m^2/s$
megapascal	MPa	*	
		Units of yield, sampling and rate:	
Units of time:		kilogram per hectare	kg/ha
second	S	tonnes per hectare	t/ha
		-	

liter per hectare	L/ha	gram per kilogram	g/kg
gram per hectare	g/ha	milligram per kilogram	mg/kg
gram per square meter	g/m^2		

Unis of cation exhance capacity (CEC):

mmol of chemical equivalent per kilogram of soil or another materials Similar units for volume of cation exchange. mmol_/kg

Content of nutrients in plants, soils and another materials is necessary to state always as pure element (C, N, P, K, Ca, S, Fe, etc.), so dose of nutrients or compounds, for example 1 g S applied in the form of calcium sulphate (CaSO₄). You should use the dose of nutrients as pure element per specified area, or weight soil, container, etc. and you should use the slash, for example 110 kg N/ha, or write 110 kg N per ha. You should **not** use the indexes as 110 kg N/ha, (1 g N/container, 10 mg Cu/kg soil).

Forms of nutrients:

Nitrite nitrogen	NO_2^N
Nitrate nitrogen	NO_3^N
Ammonia	NH_4^+-N
Total nitrogen	N_{tot}
Sulfur in sulfate	N_{tot} SO_4^{2-} -S

You should use the content of organic matter in soils (topsoil, soil organic matter, etc.) entirely as C. You should specify the form of determined element, possibly the method of determination, by using subscripts. For example, content of carbon determined by oxidometric methods as C_{ox} , futhermore C_{org} , C_{tot} , C_{ox} humic acids and its solubility C_{hwe} , etc.

You should use the FAO guidelines (Food and Agriculture Organization) for characterization of habitat conditions (soil type description according WRB – World References Base for Soil Resources 2006 version, soil textural class), as well as altitude, average rainfall and temperature, and if possible coordinates as well.

You should assess the weather v different years and months according to recommendatons of the World Meteorological Organization (WMO) – according to deviations from long-term average or normal

You should use the method of nutrients determination in soil, for example content of P (Olsen, Egner, Mehlich III, etc.), as P_{Olsen} , P_{Egner} etc. You should not use the symbol of magnesium (Mg) for 1000 kg (megagram), but use as the unit tonne

You should not use the symbol of magnesium (Mg) for 1000 kg (megagram), but use as the unit tonne (t). Don't use the symbol M for the expression of amount of substance, but use the mol (mmol, μ mol). To simplify the expression of contents, use relative units, especially % (10⁻²) and ppm (10⁻⁶). If it is possible you should keep the same unit in tables and graphs (in any case you should not use absolute and relative units, such as g/kg and %)

Statistical symbols and abbreviations

analysis of variance	ANOVA	standard deviation (sample)	SD
coefficient of variation	CV	standard error	SE
degree of freedom	df	standard error of the differences	
F-distribution	F	of means	SED
least significant difference	LSD	standard error of mean	SEM
sample size	п	t-(or Student) test	t
probability	P	mean	\boldsymbol{x}
simple correlation coefficient	r		
simple correlation of determination	r^2	Additional use symbols	
multiple correlation coefficient	R	dry weight (matter)	DW (DM)
multiple correlation of determination	R^2	fresh weight	FW (FM)
variance (sample)	s^2	water use efficiency	WUE