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SUMMARY OF PROJECT  
 
This work provides reagents to develop specific inhibitors of the macrodomains of PARP14, for potential use 
for cancer and/or inflammation. Targeting the macrodomains of PARP14 is an alternative targeting strategy 
to PARP catalytic domain inhibitors that may allow greater inhibitor selectivity, and an alternative cellular 
effect. 
This package includes protein purification protocols, crystal structures of the 2nd and 3rd macrodomain of 
PARP14 in complex with small molecule chemical starting points, in vitro assays to measure ligand binding 
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to the macrodomains, as well as validation of a PARP14 antibody and reagents to generate PARP14 knock-
out cell lines (CRISPR-Cas9). 
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SCIENTIFIC BACKGROUND  
 
There are at least 17 PARP enzymes in the human genome most of which can either mono- or poly-ADP-
ribosylate their substrates [1,2]. PARPs are the writers of the ADP-ribose post-translational modification. 
One of the several evolutionary conserved readers of ADP-ribosylation are the macrodomains. PARP14 is 
a large gene with multiple interaction domains including RRM (RNA recognition motif) domains, three 
macrodomains, a WWE domain and a C-terminal PARP domain. PARP14 therefore contains multiple 
reader domains and a writer domain for mono-ADP-ribosylation. PARP14 is also known as BAL2, B 
aggressive lymphoma protein 2. 
 
 
 

 
 
 
 
PARP14 was identified as a co-activator of STAT6 that enhances STAT6-mediated gene transcription in 
response to IL-4 [3,4]. PARP14 assists the release of HDAC2 and HDAC3 from promoters, freeing the 
promoters for STAT6 binding [5]. IL-4/STAT6 signalling is important both for the development of T cells 
into differentiated subtypes and for the stimulation of B cells. As a consequence there are links between 
PARP14 and lymphomagenesis and with immune system regulation. 
 
In B cells, in response to IL-4, PARP14 induces pro-survival factors [6], and is a promoter of B-lymphoid 
oncogenesis [7]. PARP14 suppresses the expression of the pro-apoptotic kinase JNK1, and in myeloma 
cells PARP14 overexpression prevented apoptosis induced by JNK2 knockdown [8]; myeloma cells were 
found to have high expression of PARP14, which was associated with poor survival. PARP14 is also highly 
expressed in many solid tumours, especially HCC, and is a poor prognosis marker in Renal Clear Cell 
Carcinoma [9,10]. A rare PARP14-TFE3 translocation has also been found in RCC, involving the first two 
exons of PARP14 [11]. 
 
 For inflammatory disease, it was shown that PARP14-/- mice are healthy, but showed reduced IgE and 
lung pathology in an allergic airway disease model [12]. The data suggested that PARP14 promoted Th2 
differentiation and allergic airway disease [12]. PARP14-/- mice have reduced Th17 differentiation and Tfh 
development, an effect that was also seen with PARP inhibitors [13]. It is also notable that PARP14 is a 
component of stress granules [14]. Overall the data suggests PARP14 as a target for allergic asthma as 
well as allergic airway disease [12,15], and generally in allergic inflammation [16–18].  
 
There have been several recent efforts to find inhibitors of the PARP14 PARP domain [19–21]. The study 
of Peng et al. [19] was interesting for showing that in principle PARP14 chemical inhibition (of its catalytic 
domain) in HepG2 cells could show a similar effect on JNK1 phosphorylation and PARP1 cleavage as 
PARP14 knock-down by siRNA. 
 
Better PARP14 PARP domain inhibitors could be effective, but it may require synthesising inhibitors that 
are selective over the other 17-18 PARPs. An alternative strategy would be to inhibit localisation of 
PARP14 to respective target sites via inhibition of its macrodomains. Due to the low homology of PARP 
macrodomains to other human macrodomains, and the relatively low affinity of PARP macrodomains for 
ADP-ribose, this offers a route to specific PARP14 modulators. 
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RESULTS – THE TEP 

 

Proteins purified: PARP14 Macrodomains 1, 2, and 3 
 
We have expressed and purified the following constructs of human PARP14, all in E. coli: 
 

Construct ID Residue range Domain Tag 

PARP14A-c028 Gly789 – Lys979 PARP14 MD1 N-terminal His6 

PARP14A-c001 Ser794 – Asp984 PARP14 MD1 
N-terminal His6, C-terminal AVI 

(for biotinylation) 

PARP14A-c030 Ala994 – Asn1191 PARP14 MD2 N-terminal His6 

PARP14A-c002 Ala994 – Asn1191 PARP14 MD2 
N-terminal His6, C-terminal AVI 

(for biotinylation) 

PARP14A-c032 
Phe1208 – 

Gly1388 
PARP14 MD3 N-terminal His6 

PARP14A-c003 
Phe1208 – 

Gly1388 
PARP14 MD3 

N-terminal His6, C-terminal AVI 
(for biotinylation) 

A construct of the PARP domain was 
published in Wahlberg et al. [22]. 

PARP 
N-terminal His6 

 

 

Structures 
 
PARP14 MD2 and MD3 were previously crystallised bound to ADP-ribose. We have established 
crystallisation systems for PARP14 MD2 and MD3 bound to inhibitors, giving high-resolution diffraction 
in both cases. 
 

PARP14 MD2 
The wild-type PARP14 MD2 sequence failed to yield a co-crystal structure with inhibitors from the GeA-
69 series, so a set of surface-entropy-reduction (SER) mutant constructs were created as below. One of 
these constructs (PARP14A-c013) generated a 1.6 Å resolution structure bound to MnK2-13, the 
sulfonamide analogue of GeA-69(PDB ID 5O2D). Superimposition of the PARP14 MD2‒MnK2-13 co-crystal 
structure with the ADP-ribose bound structure (PDB ID 3Q71) revealed an allosteric binding mode of the 
GeA-69 series to this domain.  
 

Construct ID Residue range Mutation Tag 

PARP14A-c011 Ala994 – Asn1191 

p.K1048S, 
p.K1106S, 
p.K1154S, 
p.K1158S, 
p.K1162S 

N-terminal His6 

PARP14A-c013 Ala994 – Asn1191 

p.K1048S, 
p.K1154S, 
p.K1158S, 
p.K1162S 

N-terminal His6 

PARP14A-c014 Ala994 – Asn1191 

p.K1106S, 
p.K1154S, 
p.K1158S, 
p.K1162S 

N-terminal His6 

PARP14A-c015 Ala994 – Asn1191 p.K1048S 
N-terminal His6 

 

https://doi.org/10.1038/nbt.2121
https://www.rcsb.org/structure/5O2D
https://www.rcsb.org/structure/3Q71
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Figure 1.  (A) Overlay of bound ADP-ribose (Green sticks) (PDB ID 3Q71) superimposed with PARP14 MD2 (brown 
sheets and helices, grey loops) in complex with MnK2-13 (cyan sticks) structure (PDB ID 5O2D). (B) H-Bonding 
displayed in co-crystal structure of PARP14 MD2 (brown sticks) and MnK2-13 (cyan sticks) structure (PDB ID 5O2D). 
 

PARP14 MD3 
The PARP14 MD3 construct PARP14A-c032 was used for crystallisation of this domain. Optimisation of 
experimental conditions gave a reliable crystallisation system suitable for soaking inhibitors, which 
routinely generated high-resolution co-crystal structures. A fragment screen by X-ray crystallography 
generated the following chemical starting points for PARP14 MD3.  
 

PDBID 
Ligand/ 

Compound ID 
Binding Location Binding pocket 

Resolution 
(Å) 

5QHT 

 
FM010005a 

 

 

1.1 

5QHU 

 
FM001707a 

 

 

1.1 

5QHV 

 
FM001999a 

 

 

1.1 

file://///hestia/share/ResInf/TEPs/Oxford%20TEPs/2018%20TEPs/presented%20to%20TEPEG/Hyperlink%20=%20https:/www.rcsb.org/structure/3Q71
file://///hestia/share/ResInf/TEPs/Oxford%20TEPs/2018%20TEPs/presented%20to%20TEPEG/Hyperlink%20=%20https:/www.rcsb.org/structure/5O2D
file://///hestia/share/ResInf/TEPs/Oxford%20TEPs/2018%20TEPs/presented%20to%20TEPEG/Hyperlink%20=%20https:/www.rcsb.org/structure/5O2D
https://www.rcsb.org/structure/5QHT
https://www.rcsb.org/structure/5QHU
https://www.rcsb.org/structure/5QHV
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5QHW 

 
XS106503b 

 

 

1.1 

5QHX 

 
FM001875a 

 

 

1.1 

5QHY 

 
FM001884a 

 

 

1.1 

5QHZ 

 
FM010067a 

 

 

1.1 

5QI0 

 
FM002036a 

 

 

1.1 

5QI1 

 
FM002044a 

 

 

1.1 

https://www.rcsb.org/structure/5QHW
https://www.rcsb.org/structure/5QHX
https://www.rcsb.org/structure/5QHY
https://www.rcsb.org/structure/5QHZ
https://www.rcsb.org/structure/5QI0
https://www.rcsb.org/structure/5QI1
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5QI2 

 
FM001702a 

 

 

1.1 

5QI3 

 
FM001958a 

 

 

1.1 

5QI4 

 
FM001909a 

 

 

1.2 

5QI5 

 
FM002207a 

 

 

1.1 

5QI6 

 
FM001942a 

 

 

1.1 

5QI7 

 
FM002062a 

 

 

1.1 

https://www.rcsb.org/structure/5QI2
https://www.rcsb.org/structure/5QI3
https://www.rcsb.org/structure/5QI4
https://www.rcsb.org/structure/5QI5
https://www.rcsb.org/structure/5QI6
https://www.rcsb.org/structure/5QI7
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5QI8 

 
XS097881b 

 

 

1.1 

5QI9 

 
FM002205a 

 

 

1.1 

5QIA 

 
FM010020a 

 

 

1.1 

The doi for the electron density map analysis is: 10.5281/zenodo.1247822 
IMPORTANT: Please note that the existence of small molecules within this TEP only indicates that chemical matter 
can bind to the protein in a functionally relevant pocket. As such, these molecules should not be used as tools for 
functional studies of the protein unless otherwise stated as they are not sufficiently potent or well-characterised to 
be used in cellular studies. The small molecule ligands are intended to be used as the basis for future chemistry 
optimisation to increase potency and selectivity and yield a chemical probe or lead series. 

 

Assays 
 

AlphaScreen 
We developed an AlphaScreen-based assay using a peptide that is biotinylated and ADP-ribosylated. For 
MD2 the optimal concentrations of protein and peptide were 400 nM and 25 nM, and for MD3 the 
optimal concentrations were 200 nM and 50 nM. With these concentrations good assay performance was 
observed. 

 
Figure 2. (A) Molecular structure of the biotinylated and ADP-ribosylated 11 residue peptide designed for 
macrodomain screening by AlphaScreen. (B) Dose-response titration results of PARP14 MD2 and MD3 and the 
macrodomain AlphaScreen peptide shown in (A) for determining the optimal assay concentrations of protein and 
peptide.  

https://www.rcsb.org/structure/5QI8
https://www.rcsb.org/structure/5QI9
https://www.rcsb.org/structure/5QIA
https://doi.org/10.5281/zenodo.1247822
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Figure 3. GeA-69 and MnK2-13 IC50 determination for PARP14 MD2 by AlphaScreen. 
 

Biolayer Interferometry (BLI) measurement of inhibitor binding 
The biotinylated proteins available using the expression systems above enable binding of PARP14 MD2 
or MD3 to streptavidin-coated surfaces, for use in techniques such as Biolayer Interferometry (BLI) or 
Surface Plasmon Resonance (SPR). 

 
 

Figure 4. Determination of binding kinetics of GeA-69 to PARP14 MD2 by Biolayer Interferometry (BLI). 
 

Isothermal Titration Calorimetry (ITC) 
It was possible to measure binding of MD2 to nucleotides (with ligand in the syringe) or to inhibitors (with 
ligand in the cell). 

 
 
Figure 5. Example of measuring the thermodynamic binding profile of GeA-69 to PARP14 MD2 by Isothermal 
Titration Calorimetry (ITC). Raw injection heats are shown, with the data fitting to a binding isotherm (one site 
binding model) in the inset. 
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Chemical Matter 
Seventeen molecules were identified binding to PARP14 MD3 in the fragment screen (shown above). 
The carbazole-based molecule GeA-69 was identified as an allosteric inhibitor of PARP14 MD2 ADP-ribose 
binding by library screening using the above-mentioned AlphaScreen assay. 
 
A limited SAR exploration of the carbazole-based inhibitors of PARP14 MD2 was performed with ~110 
compounds synthesised and screened in collaboration with the groups of Prof. Dr. Franz Bracher 
(Department Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität, München) and 
Prof. Paul Brennan (SGC, Oxford); this data was published in Bioorg. Med. Chem. (2018) [23]. 
 
 

 
 
 
Figure 6. Chemical matter for PARP14 MD2 and MD3. (A) Molecular structure of GeA-69 and MnK2-13 targeting 
PARP14 MD2. (B) Superimposed fragments targeting the ADP-ribose binding site of PARP14 MD3. As reference for 
the position of the fragments, PARP14 MD3 in complex with ADP-ribose (PDB ID 4ABK) [24] was superimposed with 
the corresponding fragment structure and the ADP-ribose shown as atom-coloured sticks in low transparency in the 
model. Phe1371 is targeted by all fragments.  
 

PARP14 Antibody 
A commercially available monoclonal mouse PARP14 antibody C-1 (Santa Cruz Biotechnology, sc-
377150) was validated by Western blot. 
 
 

 
 
 
Figure 7. Testing PARP14 expression and knock-down in HeLa and U-2 OS cells by Western Blotting. The PARP14 
antibody was used 1:750 in 5 % milk/TBS-T. Details of the PARP14 targeting siRNAs #1 and #2 are in Nicolae et al. 
[25]. 
 
 

https://doi.org/10.1016/j.bmc.2018.03.020
https://www.rcsb.org/structure/4ABK
https://www.scbt.com/scbt/product/parp-14-antibody-c-1
https://doi.org/10.1093/nar/
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CRISPR reagents 
We designed the following reagents which were successfully used to knock-out PARP14 in HeLa and U-2 
OS cells.  
 

Plasmids for PARP14 gene editing using the CRISPR-Cas9 system 

Construct ID 
PARP14 target sequence 

(fwd, 5’  3’) 
Cas9 type Vector 

pSpCas9(BB)-2A-Puro-PARP14-c002 CGGCGAGTGTGAGGTCCGCC wild-type 
pSpCas9(BB)-2A-Puro  

(addgene #48139) 

pSpCas9(BB)-2A-Puro-PARP14-c004 TCAAGTTCTTCGGGGGGTCG wild-type 
pSpCas9(BB)-2A-Puro  

(addgene #48139) 

pSpCas9n(BB)-2A-Puro-PARP14-c001 CTCCCGACCTCTTCGGGCTC nickase 
pSpCas9n(BB)-2A-Puro v2.0  

(addgene #62987) 

pSpCas9n(BB)-2A-Puro-PARP14-c003 CGGCGAGTGTGAGGTCCGCC nickase 
pSpCas9n(BB)-2A-Puro v2.0  

(addgene #62987) 

pSpCas9n(BB)-2A-Puro-PARP14-c005 TCAAGTTCTTCGGGGGGTCG nickase 
pSpCas9n(BB)-2A-Puro v2.0  

(addgene #62987) 

pSpCas9n(BB)-2A-Puro-PARP14-c006 TGTACTTCCAGAGCCCGAAG nickase 
pSpCas9n(BB)-2A-Puro v2.0  

(addgene #62987) 

Note: sgRNAs target the exon 1 of PARP14 on chromosome 3, transcript ENST00000474629.  

 

 
Figure 8. Generation of PARP14 knock-out HeLa and U-2 OS cell lines by CRISPR-Cas9 using the above-mentioned 
sgRNAs. (wt = heterogeneous parental cell line; D8 and E9 = clonal wild-type cell lines generated with GFP-targeting 
sgRNAs; PARP14 was knocked-out in the HeLa clones 21, 50 and the U-2 OS clone 23 using the sgRNA combination 
pSpCas9n(BB)-2A-Puro-PARP14-c001 and -c003 while the U-2 OS clone 65 was derived by transfection with sgRNA 
pSpCas9(BB)-2A-Puro-PARP14-c002.) 
 

There are also commercially available reagents for generating PARP14 knockout cell lines from Santa Cruz 
Biotechnology (Cat. # sc-402812) and BioCat (Cat. # KN220878-OR). We have not tested these reagents. 

 
Publications 
The inhibitor of PARP14 MD2 (GeA-69) and the crystal structure of PARP14 MD2 with the related 
compound MnK2-13 have been published [26]. Some initial structure-activity relationship data for the 
development of GeA-69 has also been published [23]. 
 

Future Plans 
An examination of the role of PARP14 in the response to replication stress and DNA damage is in progress. 

 

CONCLUSION  
The protein materials, assay protocols and initial chemical matter provide a starting point for evaluating the 
alternative strategy of targeting PARP14 macrodomains, for potential use in cancer or allergic inflammation. 
 

FUNDING INFORMATION  
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ADDITIONAL INFORMATION 
Structure Files 

PDB ID Structure Details Fragment Supplier 

5O2D PARP14 macrodomain 2 with ligand MnK2-13  

5QHT PARP14 macrodomain 3 with fragment N13417a Key Organics 

5QHU PARP14 macrodomain 3 with fragment N08149b Alfa Aeasar 

5QHV PARP14 macrodomain 3 with fragment N13681a Asinex 

5QHW PARP14 macrodomain 3 with fragment N13729a ChemBridge 

5QI0 PARP14 macrodomain 3 with fragment N13734a Apollo Scientific 

5QI1 PARP14 macrodomain 3 with fragment N13856a Enamine 

5QI6 PARP14 macrodomain 3 with fragment N13979a Crea-Chim UAB 

5QI3 PARP14 macrodomain 3 with fragment N13857a ChemBridge 

5QI4 PARP14 macrodomain 3 with fragment N13848a Enamine 

5QI8 PARP14 macrodomain 3 with fragment N13987a Maybridge 

5QI9 PARP14 macrodomain 3 with fragment N14095a Enamine 

5QHX PARP14 macrodomain 3 with fragment N13660a Enamine 

5QHY PARP14 macrodomain 3 with fragment N13844a Maybridge 

5QHZ PARP14 macrodomain 3 with fragment N13767a IBScreen 

5QI2 PARP14 macrodomain 3 with fragment N13462a Enamine 

5QI5 PARP14 macrodomain 3 with fragment N14015a IBScreen 

5QI7 PARP14 macrodomain 3 with fragment N13888a Specs 

5QIA PARP14 macrodomain 3 with fragment N13605a Crea-Chim UAB 

 

Materials and Methods 
 
Protein expression and purification 
 
Macrodomain proteins (PARP14 MD1, MD2, MD2SERmut and MD3) were expressed using constructs that add 
tobacco etch virus (TEV) protease-cleavable His6-tags. Transformed BL21(DE3)-R3-pRARE cells were grown at 
37 °C in LB medium (Miller) supplemented with appropriate antibiotics until OD600 reached 0.5‒0.6, then 
cooled to 18 °C and supplemented with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at an OD600 of 
0.8 to induce protein expression overnight. For purification of in vivo biotinylated macrodomain proteins, the 
constructs were transformed into BL21(DE3)-R3-BirA cell line (BL21 derivative coexpressing BirA using a pACYC 
coexpression vector). Cells were grown at 37 °C in LB medium (Miller) until OD600 reached 0.5–0.6, then cooled 
to 18 °C and supplemented with 0.5 mM D-biotin dissolved in 10 mM bicine (pH 8.3) and 0.5 mM IPTG at an 
OD600 of 0.8 to induce protein expression overnight. Cell pellets re-suspended in lysis buffer (50 mM HEPES 
(pH 7.4), 500 mM NaCl, 20 mM imidazole, 5 % glycerol, 0.5 mM tris(2-carboxyethyl)phosphine [TCEP], 1:2,000 
Calbiochem protease inhibitor cocktail set III) were quickly thawed on ice and lysed by high pressure 
homogenisation. Following cell lysis, DNA was precipitated with 0.15 % polyethyleneimine (PEI) and insoluble 
cell debris was removed by centrifugation (36000×g, 1 h, 4 °C). His6- (-biotin) tagged proteins were purified 
using Ni-Sepharose resin (GE Healthcare) and eluted stepwise in binding buffer with 40–250 mM imidazole. A 
high salt wash with 1 M NaCl was combined with the first elution step including 40 mM imidazole. As required, 
the His6-tag was removed from the macrodomain proteins at 4 °C overnight using recombinant TEV protease 
(used 1:40 -1:100 (w/w)) before gel filtration (Superdex 75 16/60, GE Healthcare) in GF buffer (25 mM HEPES 
(pH 7.4), 300 mM NaCl, 5 % glycerol, 0.5 mM TCEP). Proteins with removed His6- tag were additionally passed 
over Ni-Sepharose resin as a final purification step. In the case of PARP14 MD2 and MD3 purification for 
crystallisation, TEV His6-tag cleavage after the first Ni-IMAC purification step was combined with overnight 
dialysis using SnakeSkin® Dialysis Tubing, 3500 MWCO (Thermo Scientific). The dialysed sample was passed 
over Ni-Sepharose resin before purification by gel filtration (Superdex 75 16/60) and further purification steps. 
For PARP14 MD3 the GF buffer contained 20 mM HEPES (pH 7.4), 300 mM NaCl, 10 % glycerol and 0.5 mM 
TCEP. Apart from Ni-IMAC rebinding, all purification steps were carried out at 4 °C. 
 

https://www.rcsb.org/structure/5O2D
https://www.rcsb.org/structure/5QHT
https://www.rcsb.org/structure/5QHU
https://www.rcsb.org/structure/5QHV
https://www.rcsb.org/structure/5QHW
https://www.rcsb.org/structure/5QI0
https://www.rcsb.org/structure/5QI1
https://www.rcsb.org/structure/5QI6
https://www.rcsb.org/structure/5QI3
https://www.rcsb.org/structure/5QI4
https://www.rcsb.org/structure/5QI8
https://www.rcsb.org/structure/5QI9
https://www.rcsb.org/structure/5QHX
https://www.rcsb.org/structure/5QHY
https://www.rcsb.org/structure/5QHZ
https://www.rcsb.org/structure/5QI2
https://www.rcsb.org/structure/5QI5
https://www.rcsb.org/structure/5QI7
https://www.rcsb.org/structure/5QIA
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AlphaScreen assay 
 
Assays were performed with minor modifications from the manufacturer’s protocol (PerkinElmer) [27,28]. All 
reagents were diluted in buffer containing 25 mM HEPES (pH 7.4), 100 mM NaCl, 0.5 mM TCEP, 0.1 % BSA and 
0.05 % CHAPS and allowed to equilibrate to RT before addition to plates. The assays were run in 20 µL volumes 
in low-volume 384-well plates (ProxiPlate™-384 Plus, PerkinElmer) at RT. To determine ideal assay 
concentrations of the corresponding macrodomain protein and the macrodomain AlphaScreen peptide (a 
biotinylated and ADP-ribosylated 11 residue sequence), 4 µL volumes of peptide (0-16 μM; final assay 
concentration: 0-3.2 μM) were incubated with 4 µL volumes of His6-tagged macrodomain protein (0-16 μM; 
final assay concentration: 0-3.2 μM) in 4 µL buffer for 30 min at RT in foil-sealed plates. For compound 
screening and IC50 characterisation, 12 µL of a solution containing peptide and His6-tagged macrodomain 
protein in the pre-determined assay concentrations in assay buffer were incubated for 30 min at RT with 50 nL 
or 100 nL compound solution (pre-dispensed into the assay plate from 10 mM or 50 mM DMSO stocks using 
an Echo 550 (Labcyte)). Then, 8 µL of streptavidin-coated donor beads (7 μg/ml) and nickel chelate acceptor 
beads (7 μg/ml) (Perkin Elmer AlphaScreen™ Histidine (Nickel Chelate) Detection Kit) were added under low 
light conditions and plates were incubated for 60 min at RT protected from light. Plates were read on a 
PHERAstar FS plate reader (BMG Labtech) using an AlphaScreen 680 excitation/570 emission filter set. 
Alternatively for counterscreening of the compounds, 12 µL of 75 nM biotinylated and His6-tagged linker 
peptide (PerkinElmer) was added to 50 nL or 100 nL of the compounds and plates were processed as described 
above.  
 

Biolayer Inteferometry 
 
Kinetic ligand-binding measurements were performed using an Octet RED384 BLI instrument (fortéBio) [29]. 
Superstreptavidin (SSA) biosensors were loaded with biotinylated macrodomain protein and equilibrated for 
120 sec in assay buffer (25 mM HEPES (pH 7.4), 100 mM NaCl, 0.01 % Tween 20). Association and dissociation 
were monitored for 240 sec each in assay buffer at 25 °C. For compound characterisation, compounds were 
typically prepared as seven 1:1 serial dilutions starting from 10 µM or 50 µM. Binding to the reference sensors 
(no protein attached) was subtracted before calculations and data was processed using the fortéBio analysis 
software provided by the manufacturer.  

 
Crystallisation of PARP14 MD2 with MnK2-13 
 
Surface entropy reduction (SER) mutations were introduced into PARP14 MD2 (A994−N1191) by the 
overlapping PCR method. Several mutants were prepared, of which construct PARP14A-c013 with K1048S, 
K1154S, K1158S, and K1162S mutation could be crystallized with MnK2-13. For protein crystallization, purified 
PARP14A-c013 was buffer exchanged into 20 mM HEPES (pH 7.4), 500 mM NaCl, 5% glycerol, and 0.5 mM 
TCEP, and concentrated to 16 mg/mL, using 10 kDa MWCO centrifugal concentrators (Millipore). MnK2-13 
inhibitor dissolved to 50 mM in DMSO was added to a final concentration of 1.0 mM (2 % DMSO) and incubated 
on ice for approximately 30 min. The sample was centrifuged at 14,000 rpm for 10 min at 4 °C prior to setting 
up 150 nL volume sitting drops at three ratios (2:1, 1:1, or 1:2 protein−inhibitor complex to crystallization 
solution). A crystal was obtained with a 1:2 ratio of protein to a crystallization solution consisting of 0.8 M 
sodium phosphate monobasic, 0.8 M potassium phosphate dibasic, and 0.1 M HEPES at pH 7.5 and was 
cryoprotected in mother liquor supplemented with 25 % ethylene glycol before flash-freezing in liquid nitrogen 
for data collection. Diffraction data were collected at the Diamond Light Source (Harwell, UK) beamline I02. 

 
Crystallisation of PARP14 MD3 with fragments 
 
PARP14 MD3 apo was crystallised by mixing on pre-cooled sitting drop crystallisation plates 100 nL of 
30 mg/mL protein in 20 mM HEPES (pH 7.4), 300 mM NaCl, 10 % glycerol, 0.5 mM TCEP with 50 nL of reservoir 
solution containing 80 mM KBr and 30 % PEG2000MME and adding 15 nL of a crystal seed solution obtained 
from a previous crystallisation experiment, diluted 1:500 from the stock in 90 mM KBr and 30 % PEG2000MME. 
The seeds were prepared from a single crystal growing in 90 mM KBr and 30 % PEG2000MME which was 
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smashed to seeds using a 3 mm PTFE seed bead (Fisher Scientific) using standard laboratory vortex at full 
speed in 100 µL reservoir solution. Crystal growth was completed after 24 hours with incubation at 4 °C.  
PARP14 MD3 apo crystals were soaked with compounds from the DSPL2.0 library consisting of 776 fragments 
at 500 mM in DMSO-d6 (and a subset in ethylene glycol). Soaking was performed by acoustically transferring 
17.5 nL of compound solution to the crystallisation drop using an Echo 550 (Labcyte) [30] resulting in a final 
compound concentration of 50 mM with 10 % DMSO, calculated based on the initial drop volume. Crystals 
were incubated for 4-6 hours at 4 °C and then harvested (without cryoprotection) and cryocooled before X-
ray diffraction data collection on the beamline I04-1 at Diamond Light Source (Harwell, UK).  
Coordinates and structure factors for all data sets are deposited in the RCSB Protein Data Bank. Data collection 
and refinement statistics are available from the PDB pages. 

 
Structure determination 
 
PARP14 MD2 
The diffraction data collected from a PARP14 MD2-MnK2-13 co-crystal was processed using MOSFLM [31] and 
AIMLESS [32]. The structure was solved by molecular replacement using PHASER [33] and a published structure 
of PARP14 MD2 (PDB ID 3Q71) as a search model. There was one molecule of PARP14 MD2 in the asymmetric 
unit. Coot [34] and REFMAC5 [35] were used for building the model and refinement. MOLPROBITY [36] was 
used for model validation and analysis.  
 
PARP14 MD3 
X-ray diffraction data collected for the PARP14 MD3 fragment screen was processed using the Diamond 
autoprocessing pipeline, utilising xia2 [37] and DIALS [38], and programs from the CCP4 suite [39]. Electron-
density maps were generated using the XChemExplorer [40] via DIMPLE [41]. Ligand restraints were generated 
with AceDRG [42] and ligand binding was detected with PanDDA [43], with ligands built into PanDDA event 
maps. Iterative refinement and manual model correction was performed using REFMAC5 [35] and Coot [34], 
respectively. 
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TEP IMPACT 
 
Publications arising from this work: 
Parts of this work have been published in two journal articles: Schuller et al. (2017) [26] and Moustakim et al. 
(2018) [23]. 
 
We respectfully request that this document is cited using the DOI value as given above if the content is 
used in your work.  
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