
P versus NP

Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

https://orcid.org/0000-0001-8210-4126

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? A precise statement
of the P versus NP problem was introduced independently in 1971 by Stephen Cook and Leonid
Levin. Since that date, all efforts to find a proof for this problem have failed. To attack the P =
NP question the concept of NP-completeness is very useful. If any single NP-complete problem
is in P, then P = NP. Quadratic Congruences is a well-known NP-complete problem. We prove
Quadratic Congruences is also in P. In this way, we demonstrate that P = NP.

2012 ACM Subject Classification Theory of computation → Complexity classes, Theory of
computation → Problems, reductions and completeness, Mathematics of computing → Number-
theoretic computations

Keywords and phrases Polynomial Time, NP, UP, NP-complete, Quadratic Congruences

1 Issues

P versus NP is a major unsolved problem in computer science [1]. It is considered by many
to be the most important open problem in the field [1]. It is one of the seven Millennium
Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize
for the first correct solution [1]. It was essentially mentioned in 1955 from a letter written
by John Nash to the United States National Security Agency [1].

In 1936, Turing developed his theoretical computational model [2]. The deterministic
and nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [2]. A
nondeterministic Turing machine could contain more than one action defined for each step
of its program, where this one is no longer a function, but a relation [2].

Another huge advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet
[5]. A complexity class is a set of problems, which are represented as a language, grouped
by measures such as the running time, memory, etc [5].

In the computational complexity theory, the class P contains those languages that can
be decided in polynomial time by a deterministic Turing machine [9]. The class NP consists
in those languages that can be decided in polynomial time by a nondeterministic Turing
machine [9]. Another major complexity class is UP . The class UP has all the languages
that are decided in polynomial time by a nondeterministic Turing machines with at most
one accepting computation for each input [16]. It is obvious that P ⊆ UP ⊆ NP [14].
Whether P = UP or UP = NP are fundamental questions that they are as important as
they are unresolved [14]. In this work, we prove the complexity class P is equal to NP . In
this way, we solve one of the most important open problems in computer science.

mailto:vega.frank@gmail.com
https://orcid.org/0000-0001-8210-4126

XX:2 P vs NP

2 Motivation

The biggest open question in theoretical computer science concerns the relationship between
these classes: Is P equal to NP? In 2012, a poll of 151 researchers showed that 126 (83%)
believed the answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question
may be independent of the currently accepted axioms and therefore impossible to prove or
disprove, 8 (5%) said either do not know or do not care or don’t want the answer to be
yes nor the problem to be resolved [8]. It is fully expected that P 6= NP [14]. Indeed, if
P = NP then there are stunning practical consequences [14]. For that reason, P = NP is
considered as a very unlikely event [14]. Certainly, P versus NP is one of the greatest open
problems in science and a correct solution for this incognita will have a great impact not
only for computer science, but for many other fields as well [1].

3 Summary

We prove the problem Quadratic Congruences is in UP . We deduce this from itself definition
of a polynomial verifier for the class UP that complies the language Quadratic Congruences.
We guarantee this since we define the uniqueness of the certificate based on the statement
when there is a finite set of positive integers, then there must be only one minimum [13].
In addition, we define this finite set of positive integers as the set of certificates from an
instance of Quadratic Congruences. Moreover, we show that this verifier can decide its
inputs in polynomial time. In this way, we guarantee the problem Quadratic Congruences
can be considered as a UP language. Moreover, we use the properties of this polynomial
verifier to search a solution for an instance of this problem. This is possible since we can start
from a candidate that might not be a solution and then, we will start decreasing this value
until we found the minimum possible value which might be a certificate or not. In addition,
we show this algorithm can be done in polynomial time. Since Quadratic Congruences is a
well-known NP-complete and P is closed under reductions, then we demonstrate that P is
equal to NP [7].

4 Significance

No one has been able to find a polynomial time algorithm for any of more than 300 important
known NP–complete problems [7]. A proof of P = NP will have stunning practical con-
sequences, because it leads to efficient methods for solving some of the important problems
in NP [4]. The consequences, both positive and negative, arise since various NP–complete
problems are fundamental in many fields [4]. This result explicitly concludes supporting the
existence of a practical solution for the NP–complete problems because P = UP = NP .

Cryptography, for example, relies on certain problems being difficult. A constructive
and efficient solution to an NP–complete problem such as 3SAT will break most existing
cryptosystems including: Public-key cryptography [11], symmetric ciphers [12] and one-way
functions used in cryptographic hashing [6]. These would need to be modified or replaced
by information-theoretically secure solutions not inherently based on P–NP equivalence.

There are enormous positive consequences that will follow from rendering tractable many
currently mathematically intractable problems. For instance, many problems in operations
research are NP–complete, such as some types of integer programming and the traveling
salesman problem [7]. Efficient solutions to these problems have enormous implications for
logistics [4]. Many other important problems, such as some problems in protein structure
prediction, are also NP–complete, so this will spur considerable advances in biology [3].

Frank Vega XX:3

But such changes may pale in significance compared to the revolution an efficient method
for solving NP–complete problems will cause in mathematics itself. Stephen Cook says:
“ . . .it would transform mathematics by allowing a computer to find a formal proof of any
theorem which has a proof of a reasonable length, since formal proofs can easily be recognized
in polynomial time.” [4].

Research mathematicians spend their careers trying to prove theorems, and some proofs
have taken decades or even centuries to find after problems have been stated. For instance,
Fermat’s Last Theorem took over three centuries to prove. A method that is guaranteed to
find proofs to theorems, should one exist of a “reasonable” size, would essentially end this
struggle.

Indeed, with a polynomial algorithm for an NP–complete problem, we could solve not
merely one Millennium Problem but all seven of them [1]. This observation is based on once
we fix a formal system such as the first-order logic plus the axioms of ZF set theory, then
we can find a demonstration in time polynomial in n when a given statement has a proof
with at most n symbols long in that system [1]. This is assuming that the other six Clay
conjectures have ZF proofs that are not too large such as it was the Perelman’s case [1].

Besides, a P = NP proof reveals the existence of an interesting relationship between
humans and machines [1]. For example, suppose we want to program a computer to create
new Mozart-quality symphonies and Shakespeare-quality plays. When P = NP , this could
be reduced to the easier problem of writing a computer program to recognize great works
of art [1].

5 Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings
over Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each string w

in Σ∗ there is a computation associated with M on input w [2]. We say that M accepts w if
this computation terminates in the accepting state, that is, M(w) = “yes” [2]. Note that M

fails to accept w either if this computation ends in the rejecting state, or if the computation
fails to terminate [2].

The language accepted by a Turing machine M , denoted L(M), has an associated al-
phabet Σ and is defined by

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w [2]. For
n ∈ N we denote by TM (n) the worst case run time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in polynomial
time if there exists k such that for all n, TM (n) ≤ nk + k [2].

I Definition 1. A language L is in class P when L = L(M) for some deterministic Turing
machine M which runs in polynomial time [2].

We state the complexity class NP using the following definition.

I Definition 2. A verifier for a language L is a deterministic Turing machine M , where

L = {w : M(w, c) = “yes” for some string c}.

XX:4 P vs NP

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [9]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L. This information
is called certificate.

Observe that, for polynomial time verifiers, the certificate is polynomially bounded by
the length of w, because that is all the verifier can access in its time bound [9].

I Definition 3. NP is the class of languages that have polynomial time verifiers [9].

In addition, we can define another complexity class called UP .

I Definition 4. A language L is in UP if every instance of L with a given certificate can
be verified by a polynomial time verifier, and this verifier machine only accepts at most one
certificate for each problem instance [10]. More formally, a language L belongs to UP if
there exists a polynomial time verifier M and a constant c such that

if x ∈ L, then there exists a unique certificate y with |y| = O(|x|c) such that M(x, y) =
“yes”,

if x /∈ L, there is no certificate y with |y| = O(|x|c) such that M(x, y) = “yes” [10].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[9]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗ is
polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there exists a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [9]. A language L ⊆ {0, 1}∗ is NP–complete
if

1. L ∈ NP , and
2. L′ ≤p L for every L′ ∈ NP .

If any single NP–complete problem can be solved in polynomial time, then every NP

problem has a polynomial time algorithm [5]. No polynomial time algorithm has yet been
discovered for any NP–complete problem [1].

6 Results

I Definition 5. QUADRATIC CONGRUENCES
INSTANCE: Positive integers a, b and c, such that we have the prime factorization of b

where b is not prime.
QUESTION: Is there a positive integer x such that x < c and x2 ≡ a(mod b)?
We denote this problem as QC. QC ∈ NP–complete [7]. Indeed, Schoof (1985) gives an

algorithm for finding x with running time O(ln10 b) when b is prime [15].

I Theorem 6. QC ∈ P .

Proof. We will show QC can be verified by a polynomial time verifier M , and this veri-
fier machine only accepts at most one certificate for each problem instance [10]. Given a
certificate x for the instance 〈a, b, c〉 of the problem QC, our polynomial time verifier M

will verify whether x is the minimum positive integer such that x complies with x < c and

Frank Vega XX:5

x2 ≡ a(mod b). Certainly, if 〈a, b, c〉 ∈ QC, then there exists a unique certificate x with
|x| = O(|〈a, b, c〉|c) such that M(〈a, b, c〉, x) = “yes” where c is a constant and | . . . | is the
bit-length function. The uniqueness of the certificate is valid since there must be only one
minimum positive integer x which complies with x < c and x2 ≡ a(mod b).

Moreover, x is polynomially bounded by 〈a, b, c〉, because of the itself definition of the
problem QC as an NP language. Furthermore, if 〈a, b, c〉 /∈ QC, there is no certificate x

with |x| = O(|〈a, b, c〉|c) such that M(〈a, b, c〉, x) = “yes”. Actually, this will be true due to
when 〈a, b, c〉 /∈ QC then there is no possible positive integer x, which is the minimum or
not, such that x < c and x2 ≡ a(mod b). Finally, we will only need to prove the verifier
M decides in polynomial time. Given a certificate x for the instance 〈a, b, c〉 of the problem
QC, we can check in polynomial time whether x < c and x2 ≡ a(mod b) because QC is in
NP . Now, how M can verify when x is the minimum positive integer such that x < c and
x2 ≡ a(mod b)?

Suppose that x is not the minimum. Therefore, there must be a positive integer i such
that 0 ≤ i < x and i2 ≡ a(mod b). However, this will also imply x2− i2 ≡ (x− i)× (x + i) ≡
0(mod b) by the properties of congruences [13]. Hence, this will imply x − i or x + i is
multiple of b or the two numbers are factors of a multiple of b [13]. Indeed, if we want to
check whether a positive integer x is the minimum such that x < c and x2 ≡ a(mod b), then
we will need to verify whether there is no possible positive integer i such that 0 ≤ i < x and
x− i or x + i is multiple of b or the two numbers are factors of a multiple of b. Nevertheless,
we cannot verify this if 2 × x − 1 ≥ b. Certainly, in the case of 2 × x − 1 ≥ b: If x = b, we
can take the positive integer i = 0 as a disqualification or if x 6= b, then we can take some
candidate i such that x − i = b when x > b or some candidate i such that x + i = b when
x < b. In addition, this positive integer i that we can take as a disqualification will always
comply with 0 ≤ i < x. In this way, when 2 × x − 1 < b then there is no possible positive
integer i such that 0 ≤ i < x and x− i or x + i is multiple of b.

Therefore, if 2 × x − 1 < b, then the only chance to find a disqualification is when the
two numbers x − i and x + i are factors of a multiple of b where 0 ≤ i < x. However, this
can be checked in polynomial time because we have the prime factorization of b. We already
know the sum of both numbers x− i and x + i is equal to 2× x. We could split the number
b within two factors a1 > 1 and a2 > 1 such that a1 × a2 = b and a1 × x1 + a2 × x2 = 2× x

where x1 and x2 are positive integers greater than 0. We can find the possible values of
x1 and x2 in a feasible way, because this kind of Diophantine equations can be solved in
polynomial time [7]. Certainly, if there is a solution of some positive integers x1 > 0 and
x2 > 0 which satisfies the equation a1 × x1 + a2 × x2 = 2× x such that a1 > 1 and a2 > 1
comply with a1 × a2 = b, then x will not be the minimum certificate since there will exist
another positive integer 0 ≤ i < x where x− i = a1 × x1 and x + i = a2 × x2.

However, the number of distinct divisors a1 and a2 of b that we must check with that kind
of equation is polynomially bounded by the logarithm of b [17]. In general, if b is written as
the product of prime factors: b = pnp × qnq × rnr . . . then the number of distinct divisors
is equal to (np + 1) × (nq + 1) × (nr + 1) . . . [17]. In fact, Hardy proved that a “typical”
number b has about log log b distinct divisors [17]. Only a tiny proportion has many more
divisors than this [17]. Since we can check in polynomial time when x is not the minimum,
then our verifier M will be polynomial and has the properties that guarantee the problem
QC can be considered as a UP language.

QC is solvable in polynomial time if c = ∞ when the prime factorization of b is given
[7]. Therefore, we can find in polynomial time a positive integer x that is polynomially
bounded by 〈a, b, c〉 such that x2 ≡ a(mod b). If this solution x complies with x < c,

XX:6 P vs NP

then we can accept 〈a, b, c〉 ∈ QC in polynomial time. However, when x ≥ c, then we can
use our polynomial verifier M to check whether x is the minimum such that x < c′ and
x2 ≡ a(mod b) where c′ = x + 1. On the one hand, if x is the minimum, then we can reject
〈a, b, c〉 /∈ QC in polynomial time. On the other hand, if x is not the minimum, then it will
exist another positive integer i such that 0 ≤ i < x and i2 ≡ a(mod b).

In the case of 2×x− 1 ≥ b: If x = b, we can take the positive integer i′ = 0 as a possible
value or if x 6= b, then we can take some candidate i′ such that x− i′ = b×k or x+ i′ = b×k

where b × k is the closest multiple of b in relation to x. Certainly, we can find the closest
multiple of b in relation to x that is greater than 0 within the integers bx

b c× b when bx
b c > 0

or dx
b e × b. Consequently, this can be done in polynomial time. At the same time, we can

find the minimum possible value of i′′ through all the solutions of the Diophantine equations
a1 × x1 + a2 × x2 = 2 × x for every pair of divisors a1 and a2 of b such that a1 × a2 = b,
x− i = a1× x1 and x + i = a2× x2 where x1 and x2 are positive integers greater than 0. In
addition, this can be solved in polynomial time since the amount of Diophantine equations
that we must solve is poly-logarithmic in relation to b since the number of distinct divisors
of b is poly-logarithmic on b. Moreover, this kind of Diophantine equations can be solved in
polynomial time [7].

Thus, we select the minimum possible value of i such that 0 ≤ i < x and i2 ≡ a(mod b)
from the candidates i′ and i′′ that we found. Since we select the minimum possible value
of i such that 0 ≤ i < x and i2 ≡ a(mod b), then we accept 〈a, b, c〉 in QC if and only if
i < c. In this way, we can guarantee the problem QC belongs to P , because the search of
the possible values of i′ and i′′ can be done in polynomial time. J

I Theorem 7. P = NP .

Proof. Since QC is complete for NP , thus all language in NP will reduce to P [14]. Since
P is closed under reductions, it follows that P = NP [14]. J

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No.
4, 2017.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

3 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. Journal of Computational Biology, 5(1):27–40, 1998.

4 Stephen A Cook. The P versus NP Problem, April 2000. at http://www.claymath.org/
sites/default/files/pvsnp.pdf.

5 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

6 Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion
attacks on secure hash functions using SAT solvers. In International Conference on Theory
and Applications of Satisfiability Testing, pages 377–382. Springer, 2007.

7 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition,
1979.

8 William I Gasarch. Guest column: The second P ? NP poll. ACM SIGACT News, 43(2):53–
77, 2012.

9 Oded Goldreich. P, NP, and NP-Completeness: The basics of computational complexity.
Cambridge University Press, 2010.

http://www.claymath.org/sites/default/files/pvsnp.pdf
http://www.claymath.org/sites/default/files/pvsnp.pdf

Frank Vega XX:7

10 Lane A. Hemaspaandra and Jorg Rothe. Unambiguous Computation: Boolean Hierarchies
and Sparse Turing-Complete Sets. SIAM J. Comput., 26(3):634–653, 2006. doi:10.1137/
S0097539794261970.

11 Satoshi Horie and Osamu Watanabe. Hard instance generation for SAT. Algorithms and
Computation, pages 22–31, 1997.

12 Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning, 24(1):165–203, 2000.

13 Trygve Nagell. Introduction to Number Theory. New York: Wiley, 1951.
14 Christos H Papadimitriou. Computational complexity. Addison-Wesley, 1994.
15 René Schoof. Elliptic curves over finite fields and the computation of square roots mod p.

Mathematics of computation, 44(170):483–494, 1985.
16 Leslie G. Valiant. Relative Complexity of Checking and Evaluating. Information Processing

Letters, 5:20–23, 1976.
17 David G. Wells. Prime numbers: the most mysterious figures in math. John Wiley & Sons,

Inc., 2005.

http://dx.doi.org/10.1137/S0097539794261970
http://dx.doi.org/10.1137/S0097539794261970

	Issues
	Motivation
	Summary
	Significance
	Basic Definitions
	Results

