
UP versus NP
Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

https://orcid.org/0000-0001-8210-4126

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? A precise statement
of the P versus NP problem was introduced independently in 1971 by Stephen Cook and Leonid
Levin. Since that date, all efforts to find a proof for this problem have failed. Another major
complexity class is UP. Whether UP = NP is another fundamental question that it is as important
as it is unresolved. To attack the UP = NP question the concept of NP-completeness is very
useful. If any single NP-complete problem is in UP, then UP = NP. Quadratic Congruences is a
well-known NP-complete problem. We prove Quadratic Congruences is also in UP. In this way,
we demonstrate that UP = NP.

2012 ACM Subject Classification Theory of computation → Complexity classes, Theory of
computation → Problems, reductions and completeness, Mathematics of computing → Number-
theoretic computations

Keywords and phrases Polynomial Time, NP, UP, NP-complete, Quadratic Congruences

1 Introduction

P versus NP is a major unsolved problem in computer science [1]. It is considered by many
to be the most important open problem in the field [1]. It is one of the seven Millennium
Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize
for the first correct solution [1]. It was essentially mentioned in 1955 from a letter written
by John Nash to the United States National Security Agency [1].

In 1936, Turing developed his theoretical computational model [8]. The deterministic
and nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [8]. A
nondeterministic Turing machine could contain more than one action defined for each step
of its program, where this one is no longer a function, but a relation [8].

Another huge advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet
[2]. A complexity class is a set of problems, which are represented as a language, grouped
by measures such as the running time, memory, etc [2].

In the computational complexity theory, the class P contains those languages that can
be decided in polynomial time by a deterministic Turing machine [5]. The class NP consists
in those languages that can be decided in polynomial time by a nondeterministic Turing
machine [5].

Another major complexity class is UP . The class UP has all the languages that are de-
cided in polynomial time by a nondeterministic Turing machines with at most one accepting
computation for each input [10]. It is obvious that P ⊆ UP ⊆ NP [8]. Whether P = UP

is a fundamental question that it is as important as it is unresolved [8]. All efforts to solve
the P versus UP problem have failed [8]. Nevertheless, we prove UP = NP .

mailto:vega.frank@gmail.com
https://orcid.org/0000-0001-8210-4126

XX:2 UP versus NP

2 Motivation

The biggest open question in theoretical computer science concerns the relationship between
these classes: Is P equal to NP? In 2012, a poll of 151 researchers showed that 126 (83%)
believed the answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question
may be independent of the currently accepted axioms and therefore impossible to prove or
disprove, 8 (5%) said either do not know or do not care or don’t want the answer to be
yes nor the problem to be resolved [4]. It is fully expected that P 6= NP [8]. Indeed, if
P = NP then there are stunning practical consequences [8]. For that reason, P = NP

is considered as a very unlikely event [8]. Certainly, P versus NP is one of the greatest
open problems in science and a correct solution for this incognita will have a great impact
not only for computer science, but for many other fields as well [1]. In this way, a proof
of UP = NP is a huge step forward in the direction of solving definitely this outstanding
problem [8]. Indeed, this would solve many mathematical and computational problems that
remain unsolved [8].

3 Summary

We prove the problem Quadratic Congruences is in UP . We deduce this from itself definition
of a polynomial verifier for the class UP that complies the language Quadratic Congruences.
We guarantee this since we define the uniqueness of the certificate based on the statement
when there is a finite set of positive integers, then there must be only one minimum [7].
In addition, we define this finite set of positive integers as the set of certificates from an
instance of Quadratic Congruences. Moreover, we show that this verifier can decide its
inputs in polynomial time. In this way, we guarantee the problem Quadratic Congruences
can be considered as a UP language. Since Quadratic Congruences is a well-known NP-
complete and UP is closed under reductions, then we demonstrate that UP is equal to NP

[3].

4 Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings
over Σ [8]. A Turing machine M has an associated input alphabet Σ [8]. For each string w

in Σ∗ there is a computation associated with M on input w [8]. We say that M accepts w if
this computation terminates in the accepting state, that is, M(w) = “yes” [8]. Note that M

fails to accept w either if this computation ends in the rejecting state, or if the computation
fails to terminate [8].

The language accepted by a Turing machine M , denoted L(M), has an associated al-
phabet Σ and is defined by

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w [8]. For
n ∈ N we denote by TM (n) the worst case run time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [8]. We say that M runs in polynomial
time if there exists k such that for all n, TM (n) ≤ nk + k [8].

Frank Vega XX:3

I Definition 1. A language L is in class P when L = L(M) for some deterministic Turing
machine M which runs in polynomial time [8].

We state the complexity class NP using the following definition.

I Definition 2. A verifier for a language L is a deterministic Turing machine M , where

L = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [5]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L. This information
is called certificate.

Observe that, for polynomial time verifiers, the certificate is polynomially bounded by
the length of w, because that is all the verifier can access in its time bound [5].

I Definition 3. NP is the class of languages that have polynomial time verifiers [5].

In addition, we can define another complexity class called UP .

I Definition 4. A language L is in UP if every instance of L with a given certificate can
be verified by a polynomial time verifier, and this verifier machine only accepts at most one
certificate for each problem instance [6]. More formally, a language L belongs to UP if there
exists a polynomial time verifier M and a constant c such that

if x ∈ L, then there exists a unique certificate y with |y| = O(|x|c) such that M(x, y) =
“yes”,

if x /∈ L, there is no certificate y with |y| = O(|x|c) such that M(x, y) = “yes” [6].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[5]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗ is
polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there exists a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [5]. A language L ⊆ {0, 1}∗ is NP–complete
if

1. L ∈ NP , and
2. L′ ≤p L for every L′ ∈ NP .

If any single NP–complete problem can be solved in polynomial time, then every NP

problem has a polynomial time algorithm [2]. No polynomial time algorithm has yet been
discovered for any NP–complete problem [1].

5 Results

I Definition 5. QUADRATIC CONGRUENCES
INSTANCE: Positive integers a, b and c, such that we have the prime factorization of b

where b is not prime.
QUESTION: Is there a positive integer x such that x < c and x2 ≡ a(mod b)?
We denote this problem as QC. QC ∈ NP–complete [3]. Indeed, Schoof (1985) gives an

algorithm for finding x with running time O(ln10 b) when b is prime [9].

XX:4 UP versus NP

I Theorem 6. QC ∈ UP .

Proof. We will show QC can be verified by a polynomial time verifier M , and this verifier
machine only accepts at most one certificate for each problem instance [6]. Given a certificate
x for the instance 〈a, b, c〉 of the problem QC, our polynomial time verifier M will verify
whether x is the minimum positive integer such that x complies with x < c and x2 ≡
a(mod b). Certainly, if 〈a, b, c〉 ∈ QC, then there exists a unique certificate x with |x| =
O(|〈a, b, c〉|c) such that M(〈a, b, c〉, x) = “yes” where c is a constant and | . . . | is the bit-
length function. The uniqueness of the certificate is valid since there must be only one
minimum positive integer x which complies with x < c and x2 ≡ a(mod b). Moreover, x is
polynomially bounded by 〈a, b, c〉, because of the itself definition of the problem QC as an
NP language. Furthermore, if 〈a, b, c〉 /∈ QC, there is no certificate x with |x| = O(|〈a, b, c〉|c)
such that M(〈a, b, c〉, x) = “yes”. Actually, this will be true due to when 〈a, b, c〉 /∈ QC then
there is no possible positive integer x, which is the minimum or not, such that x < c and
x2 ≡ a(mod b). Finally, we will only need to prove the verifier M decides in polynomial
time. Given a certificate x for the instance 〈a, b, c〉 of the problem QC, we can check in
polynomial time whether x < c and x2 ≡ a(mod b) because QC is in NP . Now, how M can
verify when x is the minimum positive integer such that x < c and x2 ≡ a(mod b)?

Suppose that x is not the minimum. Therefore, there must be a positive integer i such
that 0 ≤ i < x and i2 ≡ a(mod b). However, this will also imply x2− i2 ≡ (x− i)× (x + i) ≡
0(mod b) by the properties of congruences [7]. Hence, this will imply x− i or x+ i is multiple
of b or the two numbers are factors of a multiple of b [7]. Indeed, if we want to check whether
a positive integer x is the minimum such that x < c and x2 ≡ a(mod b), then we will need
to verify whether there is no possible positive integer i such that 0 ≤ i < x and x − i or
x + i is multiple of b or the two numbers are factors of a multiple of b. Nevertheless, we
cannot verify this if 2 × x − 1 ≥ b. Certainly, in the case of 2 × x − 1 ≥ b: If x = b, we
can take the positive integer i = 0 as a disqualification or if x 6= b, then we can take some
candidate i such that x − i = b when x > b or some candidate i such that x + i = b when
x < b. In addition, this positive integer i that we can take as a disqualification will always
comply with 0 ≤ i < x. In this way, when 2 × x − 1 < b then there is no possible positive
integer i such that 0 ≤ i < x and x− i or x + i is multiple of b.

Therefore, if 2×x−1 < b, then the only chance to find a disqualification is when the two
numbers x− i and x + i are factors of a multiple of b where 0 ≤ i < x. However, this can be
checked in polynomial time because we have the prime factorization of b. We already know
the sum of both numbers x−i and x+i is equal to 2×x. We could split the number b within
two factors a1 > 1 and a2 > 1 such that a1 × a2 = b and a1 × x1 + a2 × x2 = 2 × x where
x1 and x2 are positive integers greater than 0. We can find the possible values of x1 and x2
in a feasible way, because this kind of Diophantine equations can be solved in polynomial
time [3]. Certainly, if there is a solution of some positive integers x1 > 0 and x2 > 0 which
satisfies the equation a1 × x1 + a2 × x2 = 2 × x such that a1 > 1 and a2 > 1 comply
with a1 × a2 = b, then x will not be the minimum certificate since there will exist another
positive integer 0 ≤ i < x where x− i = a1×x1 and x + i = a2×x2. The number of distinct
divisors a1 and a2 of b that we must check with that equation is polynomially bounded by
the logarithm of b [11]. If b is written as the product of prime factors: b = pnp×qnq ×rnr . . .

then the number of distinct divisors is equal to (np + 1)× (nq + 1)× (nr + 1) . . . [11].
In fact, Hardy proved that a “typical” number b has about log log b distinct divisors

[11]. Only a tiny proportion has many more divisors than this [11]. Since we can check in
polynomial time when x is not the minimum, then our verifier M will be polynomial and
has the properties that guarantee the problem QC can be considered as a UP language. J

Frank Vega XX:5

I Theorem 7. UP = NP .

Proof. Since QC is complete for NP , thus all language in NP will reduce to UP [8]. Since
UP is closed under reductions, it follows that UP = NP [8]. J

6 Conclusions

There is a previous known result which states that P = UP if and only if there are no one-
way functions [8]. Indeed, for many years it has been accepted the P versus UP question as
the correct complexity context for the discussion of the cryptography and one-way functions
[8]. For that reason, the proof of Theorem 7 negates this current idea and also the belief that
UP = NP is a very unlikely event. In addition, this demonstration might be a shortcut to
prove P = NP , because if anybody proves that P = UP , then this person would be proving
the difficult P versus NP problem at the same time [1]. Furthermore, if we obtain a possible
proof of P 6= NP , then this work would also contribute to show P 6= UP .

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No.
4, 2017.

2 Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press, 2 edition, 2001.

3 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

4 William I Gasarch. Guest column: The second P ? NP poll. ACM SIGACT News, 43(2):53–
77, 2012.

5 Oded Goldreich. P, Np, and Np-Completeness. Cambridge: Cambridge University Press,
2010.

6 Lane A. Hemaspaandra and Jorg Rothe. Unambiguous Computation: Boolean Hierarchies
and Sparse Turing-Complete Sets. SIAM J. Comput., 26(3):634–653, 2006. doi:10.1137/
S0097539794261970.

7 Trygve Nagell. Introduction to Number Theory. New York: Wiley, 1951.
8 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
9 René Schoof. Elliptic curves over finite fields and the computation of square roots mod p.

Mathematics of computation, 44(170):483–494, 1985.
10 Leslie G. Valiant. Relative Complexity of Checking and Evaluating. Information Processing

Letters, 5:20–23, 1976.
11 David G. Wells. Prime numbers: the most mysterious figures in math. John Wiley & Sons,

Inc., 2005.

http://dx.doi.org/10.1137/S0097539794261970
http://dx.doi.org/10.1137/S0097539794261970

	Introduction
	Motivation
	Summary
	Basic Definitions
	Results
	Conclusions

