
ES-TRNG: A High-throughput, Low-area
True Random Number Generator

based on Edge Sampling
Bohan Yang, Vladimir Rožić, Miloš Grujić,

Nele Mentens and Ingrid Verbauwhede

COSIC, KU Leuven, Belgium
{firstname.lastname}@esat.kuleuven.be

Abstract. In this paper we present a novel true random number generator based on
high-precision edge sampling. We use two novel techniques to increase the throughput
and reduce the area of the proposed randomness source: variable-precision phase
encoding and repetitive sampling. The first technique consists of encoding the
oscillator phase with high precision in the regions around the signal edges and with
low precision everywhere else. This technique results in a compact implementation at
the expense of reduced entropy in some samples. The second technique consists of
repeating the sampling at high frequency until the phase region encoded with high
precision is captured. This technique ensures that only the high-entropy bits are sent
to the output. The combination of the two proposed techniques results in a secure
TRNG, which suits both ASIC and FPGA implementations. The core part of the
proposed generator is implemented with 10 look-up tables (LUTs) and 5 flip-flops
(FFs) of a Xilinx Spartan-6 FPGA, and achieves a throughput of 1.15 Mbps with
0.997 bits of Shannon entropy. On Intel Cyclone V FPGAs, this implementation uses
10 LUTs and 6 FFs, and achieves a throughput of 1.07 Mbps. This TRNG design is
supported by a stochastic model and a formal security evaluation.
Keywords: Hardware random number generators · ring oscillators · entropy · FPGA
· stochastic model

1 Introduction
True Random Number Generators (TRNGs) are essential building blocks of modern
embedded security systems. They enable various cryptographic algorithms, protocols and
secured implementations by providing secret keys, initialization vectors, random challenges
and masks. The security of these applications relies on the uniformity and unpredictability
of the utilized random numbers. A cause of failure in today’s security systems is often
traced to a design flaw or an active attack on the used TRNG [Mar03, BCC+13] rather
than to a broken cryptographic algorithm or an unprotected implementation.

True randomness cannot be obtained via computational methods. Instead, physical
phenomena such as noise in electronic devices should be the source of the unpredictable
nature of TRNGs. Due to their importance for security, TRNGs are subjected to strict
evaluations in the process of industrial certification. The SP 800-90B [TBK+18], a
special publication of the national institute for standards and technology (NIST), contains
requirements for the design and evaluation of TRNGs. According to this document, a
theoretical rationale for the unpredictable behavior of the entropy source is required. A min-
entropy estimation of the generated output and effective online tests are also mandatory.
The German BSI standard called AIS-31 [KS11] put forward a stricter requirement for the

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 267–292
DOI:10.13154/tches.v2018.i3.267-292

mailto:bohan.yang@esat.kuleuven.be,vladimir.rozic@esat.kuleuven.be,milos.grujic@esat.kuleuven.be,nele.mentens@esat.kuleuven.be,ingrid.verbauwhede@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.267-292

268 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

design and the evaluation of TRNGs. This standard requires a formal security analysis
of the TRNG design based on a stochastic model of the entropy source. The generated
random bits need to provide a Shannon-entropy level of at least 0.997/bit.

Examples of TRNGs in literature include Intel’s embedded RNG core called µRNG
[MJS+16], ASIC designs [PSR06] and FPGA implementations (e.g. [CFFA13, MKD11]).
Several types of physical phenomena are explored to design an entropy source for TRNGs,
including thermal noise [BPPT06], chaos [Gol06], timing jitter [SMS07, SPV06, WT08,
RYDV15] and metastability [VHKK08, DGH09, GP09, VD10]. Many of these TRNGs
are designed without accounting for AIS-31 compliance, so they are not supported by
stochastic models and formal security analysis. In addition, some designs use unrealistic
assumptions of the platform parameters (e.g. overestimated strength of the jitter) thereby
resulting in an overly optimistic entropy assessment.

Our goal is to develop a lightweight, AIS-31 compliant TRNG with conservative entropy
estimation. The contributions of this paper are the following:

1. We propose a novel, lightweight randomness generator called ES-TRNG: Edge-
sampling based True Random Number Generator. ES-TRNG is a timing jitter based
TRNG, suitable for both ASIC and FPGA implementations.

2. We present two design techniques to achieve a better sampling efficiency, while keeping
the simplicity of implementation. These two techniques, called variable-precision
phase encoding and repetitive sampling, are used for optimizing our ES-TRNG but
they possibly have applications in other TRNG designs.

3. We analyze the security of ES-TRNG using a mathematical model based on the
stochastic nature of the timing jitter and the sampling procedure.

4. We implement ES-TRNG on two commercial FPGAs as a case study to prove the
design concept and validate the stochastic model.

5. We discuss the dangers of using unrealistic assumptions of the jitter strength in
ring-oscillator-based TRNGs.

This paper is organized as follows. In Section 2, we present the preliminaries and
notation used in the paper. Section 3 presents the architecture of the proposed entropy
source. The security analysis based on the stochastic model of the entropy source is
presented in Section 4. A link between the stochastic model and experimental results is
provided in Section 5. Section 6 summarizes the FPGA implementation and application
of the stochastic model for finding the optimal design parameters. Section 7 presents a
comparison with the state of the art. Section 8 concludes the paper.

2 Preliminaries
2.1 TRNG design procedure
Various design criteria need to be taken into account when designing a TRNG. Conventional
design goals include resource consumption, throughput, latency, feasibility in the target
platform and design effort. An ongoing trend started more than a decade ago towards
following security criteria during the TRNG design procedure. Some essential requirements
are resistance against attacks, a stochastic model to prove unpredictability, and inner
testability of the entropy source. The indispensable design criterion is a security assessment
based on a realistic and applicable stochastic model.

Figure 1 shows both the old and the modern TRNG design procedure. An old and
obsolete design approach relies on statistical evaluations on the output of the proposed
TRNG. Most commonly used statistical test suites are NIST SP 800-22 [RSN+10], FIPS

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 269

RNG
Statistical

tests

Pass/Fail
10110001010...

Experiments
Stochastic

model

Platform

parameters
Entropy

claim

Design

parameters

VerificationsAssumptions

Obsolete method:

Modern method:

Figure 1: TRNG Design methods.

140-1 [FIP94] and DIEHARD [Mar98]. However, these test suites are only checking
statistical parameters of the generated bits. A completely deterministic pseudo-random
sequence could pass those test suites, despite having no randomness.

In a modern design approach, a stochastic model is used to evaluate the unpredictability
of the proposed TRNG design and, furthermore, is a compulsory requirement of BSI AIS-
31 [KS11]. Statistical test suites only function as a sanity check or a prototype evaluation.
The non-determinism of a TRNG should be rooted in an unpredictable physical process
that evolves over time. A notable example is the timing phase jitter in a free-running
ring oscillator. A stochastic model is a simplified abstraction of this process based on
clearly stated and verifiable assumptions. Platform and design parameters serve as inputs
to a stochastic model to enable the entropy estimation of a TRNG. Platform parameters,
such as the delays of logic gates and the jitter strength, should be evaluated for the
target platform. Design parameters, such as the sampling frequency, should be determined
according to the design requirements.

Figure 2 shows a generic architecture of a TRNG. The entropy source is the only
component in the architecture with non-deterministic behavior. All randomness is generated
by the entropy source, in some cases in the form of analog signals. A digitization module
is needed when converting these analog signals into a digital form. Implementations of the
entropy source and digitization module comprise the Digital Noise Source.

The raw random numbers are the output of the digital noise source and should be
available for inner testability. Raw random numbers are usually subject to statistical
defects, such as the bias from an ideal probability of ones and the auto-correlation between
output bits.

The post-processing module is utilized to enhance statistical and security characteristics
of the TRNG. There are two types of post-processing: the algorithmic post-processing
and cryptographic post-processing. The algorithmic post-processing is utilized to extract
entropy from the raw random numbers to increase the entropy per bit. The cryptographic
post-processing is used to provide additional security properties, such as the backtracking
resistance. We note that, according to AIS-31 [KS11], there is a minimal requirement
of entropy level on the input data of cryptographic post-processing. The output data
of the post-processing function are referred to as the internal random numbers. The
post-processing is optional and not required if the entropy of the raw random numbers is
sufficient.

The online tests, also called embedded tests or continuous tests, are used to detect

270 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

Entropy

Source
Digitization Post-processing

Raw

Random

Numbers

Internal

Random

Numbers

Online

Tests

Alarms

Total failure

Tests

Alarms

Digital Noise source

Figure 2: The generic architecture of a TRNG.

failures of the entropy source. They operate on the raw random numbers rather than
the internal random numbers for faster response and more reliable attack detection.
Online tests can be derived and implemented based on the stochastic model [KS11] or
empirically [YRM+16]. Total failure tests are implemented to detect the total breakdown
of the entropy source. They are intended to check the working status of the entropy source
and trigger an alarm immediately after the breakdown.

2.2 Notation and definitions
• Pr(a) – The probability of the event a.

• E(X) – The expected value of the random variable X.

• σ2(X) – The variance of the random variable X.

• σ(X) – The standard deviation of the random variable X.

• N (µ, σ2) – Normal distribution with mean µ and standard deviation σ.

• fµ,σ(x) – The probability density of N (µ, σ2).

fµ,σ(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 . (1)

• ρX(x) – The probability density of the random variable X defined over the domain
R.

α∫
−∞

ρX(x)dx = Pr(X ≤ α), ∀α ∈ R. (2)

• ρX|a(x) – The conditional probability density of the random variable X defined over
the domain R, given that the event a occurred .

α∫
−∞

ρX|a(x)dx = Pr(X ≤ α|a), ∀α ∈ R. (3)

• H1(X) – The Shannon entropy of a discrete random variable X with outcomes 0 and
1. If p denotes the probability Pr(X = 1), then the Shannon entropy is computed as
follows:

H1(X) = −p · log2(p)− (1− p) · log2(1− p). (4)

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 271

• H∞(X) – The min-entropy of a discrete random variable X with outcomes 0 and 1.
If p denotes the probability max

i∈{0,1}
(Pr(X = i)), then the min-entropy is computed

as follows:
H∞(X) = −log2(p). (5)

• Given a set S = [a1, b1) ∪ [a2, b2) ∪ · · · ∪ [ai, bi), where the [a1, b1) · · · [ai, bi) are
mutually disjoint real intervals, an integral of function f(x) over S is the sum of
integrals of f(x) over all intervals:

∫
S

f(x)dx =
i∑

k=1

bk∫
ak

f(x)dx. (6)

• Given a set of discrete distributions F (Θ) defined over the same domain and param-
eterized by Θ which is distributed according to the distribution G (referred to as the
mixing distribution), then the compound distribution J of F (Θ) and G is given by
integrating parameter Θ against the probability density ρG of the mixing distribution
G.

Pr(J = i) =
∫
G

Pr(F (Θ) = i)ρG(Θ)dΘ , (7)

where the integration is done across the the whole domain of G and i denotes an
arbitrary element from the domain of F (Θ).

• The probability distribution of the sum of two independent random variables is
equal to the convolution of their distributions. If f(x) and g(x) are the probability
distributions of two independent random variables, their convolution is:

(f ∗ g)(x) =
∞∫
−∞

f(x− µ)g(µ)dµ. (8)

3 ES-TRNG Architecture
In this section, we present the architecture of ES-TRNG and the design rationale over
conventional design criteria. These design criteria include: a compact implementation, a
reasonably high throughput, feasibility on various implementation platforms and a low
engineering effort. Our ES-TRNG architecture is based on high-precision edge sampling.
The randomness source of the ES-TRNG is the timing phase jitter from a free-running
ring oscillator. Two novel techniques are used to improve the throughput and reduce
the resource consumption. The first technique is called variable-precision phase encoding.
By using the selective high-precision sampling process, this technique enables a compact
implementation and a short jitter accumulation time. The second technique is repetitive
sampling, which allows multiple sampling within a single system clock cycle. Due to the
repetitive sampling, ES-TRNG can obtain a higher throughput. By using a fully digital
architecture and not relying on any technology specific components, we obtain a design
feasible on a wide range of implementation platforms.

The architecture of the digital noise source is shown in the left part of Figure 3. The
entropy source denoted by RO1 is implemented as a free-running ring oscillator with an
enable signal. The average period of RO1 is denoted by T01. The output signal of RO1
propagates through the Digitization module.

The digitization module consists of three main components, namely, a tapped delay
chain, a sampling free-running ring oscillator RO2 and a bit extractor. The average period
of RO2 is denoted by T02. The used tapped delay chain consists of four cascaded delay

272 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

RO1

RO1 enable

RO2

Tapped Delay Chain Bit

Extractor

Raw bit

Valid

Digitization

RO2 enable

D Q

Stage[2]
RST

RO2 out

Valid

D Q

RST

1

0

Stage[2]

Stage[1]

Stage[0] RO2 out

Raw

bit

RO1 out

RO2 out

Stage[0]

Stage[1]

Stage[2]

011

RO2 out

Sampling

window

t
A

0

Stage

[2:0]

Raw

bit

110, 001 1

0

111, 000 N

n/a

Stage[0]

Stage[1]

Stage[2]

Valid

1

1

0

0

t r,1 t r,2

100, 011

101, 010

Figure 3: The architecture and operation principle of the digital noise source.

elements. The first and last delay elements are used as isolation buffers to provide similar
input and output loads for the two delay elements in the middle. These middle elements
form a two-stage delay chain. The 0→ 1 delay and the 1→ 0 delay of the first stage in
the tapped delay chain are denoted by tr,1 and tf,1 respectively. Similarly, notations tr,2
and tf,2 are used for the rising delay and the falling delay of the second stage. The output
of this two-stage tapped delay chain is sampled using three FFs (Flip-Flops) at the rising
edge of the output signal of RO2.

As depicted on the right part of Figure 3, the sampled three-bit signal Stage[2 : 0]
is processed using the Bit Extractor. According to the truth table in Figure 3, the bit
extractor encodes the three-bit input Stage[2 : 0] to a single data bit called Raw bit and a
strobe signal Valid. In the notation used in this truth table, N stands for non-valid value
which is not used to generate output bits.

The lower part of Figure 3 provides the architecture of the bit extractor. This module
has a compact implementation using a single LUT and two FFs on modern FPGAs. The
simplicity of the bit extractor also results in a low latency which enables correct operation
at high clock frequencies.

3.1 Platform and design parameters
Table 1 summarizes the relevant parameters. Platform parameters are those parameters
that are specific to an implementation platform and that cannot be changed by the designer.
Their values have to be obtained experimentally. Parameter σ2

m/tm reflects the strength
of the white noise in the timing jitter. Parameters tr/f,1/2 are properties of hardware
primitives on FPGA fabric. Design parameters of the proposed TRNG are the periods T01
and T02 of RO1 and RO2, the system clock frequency, and the jitter accumulation time.

3.2 Two novel techniques
In order to achieve a compact implementation with high throughput, the proposed design
utilizes two novel techniques, namely variable-precision phase encoding and repetitive

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 273

Table 1: Platform and design parameters.
Platform parameters.

tr,1 The 0→ 1 delay of the 1st stage in the tapped delay chain
tr,2 The 0→ 1 delay of the 2nd stage in the tapped delay chain
tf,1 The 1→ 0 delay of the 1st stage in the tapped delay chain
tf,2 The 1→ 0 delay of the 2nd stage in the tapped delay chain
D The duty cycle of the free-running RO1

σ2
m/tm

The variance of a white-noise jitter accumulated
during the measurement time tm

Design parameters.
T01 The average free-running RO1 period
T02 The period of the sampling clock RO2

TCLK The period of the system clock
tA Jitter accumulation time

1 0 N 1 0 N

D0

RO1

out

ξ(t)ξ(t) -

RO2

out

Raw bit

tr,1 tr,2 tf,2tf,1
Low-precision

region

Low-precision

region

ξ(t)

Figure 4: Variable-precision phase encoding.

sampling. The central idea is to repeat the sampling and ignore all samples from the
low-precision region (the region where values 000 and 111 are sampled in the tapped delay
chain).

3.2.1 Variable-precision phase encoding

The variable-precision phase encoding technique is shown in Figure 4. This technique is
enabled by using both the tapped delay chain and the bit extractor. The bottom part of
the figure shows a single period of RO1. Symbol ξ(t) denotes the normalized time in the
unit of T01. The phase of the oscillator RO1, denoted by ξ(t)−bξ(t)c, changes periodically
increasing from 0 to 1 within a single period.

The position of the captured edge is encoded into a raw bit. Since the delays tr/f,1
and tr/f,2 of the tapped delay chain are much smaller than the oscillation period T01, the
digitization module captures the oscillator phase with high precision around signal edges
when the phase value is around 0 or D. This region is called the high precision region.
The samples from this region are encoded by either 0 or 1 depending on the phase. In
the remainder of the cycle, the edge is captured with low precision, i.e. only the correct
half-period can be determined from the captured data. This region is called the low
precision region. The samples from this region are not used (encoded as N).

The sampling of the delay chain is triggered by the rising edge of the signal RO2 out.
Due to the accumulated timing jitter, the relative sampling position follows a Gaussian
distribution. Increased accumulation time tA leads to a wider jitter distribution. The

274 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

RO1 out

RO1 enable

RO2 out

RO2 enable

System CLK

Valid

Raw bit

Stage

[0]

[2]

[1]

0

0

0

0

0

0

1

1

1

1

1

1

1 0

1

1

1

1

0

0

0

0

0

0

Edge detected

0

T
01

T
02

t
A

0

Figure 5: Timing diagrams of repetitive sampling.

expected value of the sampling time is determined by tA, the number of ignored low-
precision samples and the initial phase offset between RO1 out and RO2 out. This expected
value (the center of the Gaussian distribution) can appear at any position, as indicated at
the top of the figure.

We note that using a delay line with more than two elements would extend a region
that is sampled with high precision, at the cost of increased area and energy consumption.
A design using the precise sampling for all phase values is presented in [RYDV15].

3.2.2 Repetitive sampling

The second technique used in the proposed design is called repetitive sampling. The
proposed digitization module has a small critical path, which enables the digital noise
source operating at a higher frequency than other components. Repetitive sampling is
synchronized to the high frequency signal RO2 out, aiming to reduce the time needed to
hit the high-precision region, thereby improving the throughput. Once the high-precision
region is hit, a Valid signal is generated.

The timing diagram of the digital noise source is depicted in Figure 5 to illustrate the
repetitive sampling. The entropy source RO1 is reset before generating a bit and then
enabled for a period of time tA. The parameter tA is chosen to allow accumulating enough
jitter at the entropy source. After time tA has passed, the sampling oscillator RO2 is
enabled. The RO1 out signal edge propagating through the tapped delay chain is sampled
using RO2 out. This sampling can be repeated multiple times within a single system clock
cycle, because the frequency of a free-running RO2 can be higher than the system clock
frequency available on FPGAs. Once the tapped delay chain stages Stage[2 : 0] reach the
high-precision region, the Valid signal will be set, the raw bit will be encoded and RO1
and RO2 will be reset.

4 Security Analysis
The formal security analysis provides the theoretical guarantees for the quality of the
generated bits. These guarantees are achieved by developing an entropy estimator based

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 275

on the stochastic model of the TRNG. The conservative entropy estimator provides a lower
bound on the entropy based on the design parameters and the platform parameters. This
estimator is used early in the design stage to guide the choice of the design parameters.

4.1 Assumptions

The assumptions about the physical processes in the entropy source are the starting point
of the security analysis.

In this design the entropy is extracted from the timing jitter of a free-running ring
oscillator. Our first assumption is that some amount of white (Gaussian) noise is present
in the entropy source. The property of the white noise is that its observations are
independent of each other and independent of any other noise source in the system.
According to the central limit theorem, the variance of this noise increases linearly with
the jitter accumulation time. The platform parameter σ2

m/tm is obtained experimentally.
Our second assumption is that the value of this parameter is not overestimated. This
means that a conservative estimation of this parameter’s value must be made during the
measurement procedure.

We further assume that other noise sources are present in the entropy source. These
include flicker noise (low frequency noise), telegraph noise (popcorn noise) and the global
noise from the power supply. None of these sources are exploited in this design because
either their observations are correlated, the noise parameters are not measured or the noise
source can be manipulated by the attacker. In order to provide a conservative estimation
of entropy, the impact of these noise sources will be treated as deterministic and known to
the attacker.

In addition, we assume that the sampled raw bits are independent because the circuit
is reset before generating each bit [BL05]. We note that this doesn’t imply that the raw
bits are identically distributed.

Finally, we assume that the frequencies of the two free-running ring oscillators and the
delays of the elements in the tapped delay line are measured with sufficient precision, such
that the measurement error doesn’t significantly affect the entropy estimation.

4.2 Entropy Source.

We will analyze the entropy source using the phase model of the ring oscillator with
duty cycle D (in practice D ≈ 0.5). The phase ξ ∈ R of the RO increases over time;
integer phase values correspond to the rising edges of the output signal and the values
i + D, i = 0, 1, ... correspond to the falling edges. The entropy source is reset before
generating a new bit, so we assume that the oscillations always start from ξ(0) = 0. Phase
ξ is affected by both deterministic and white noise sources.

ξ(t) = t

T01
+ ξDeterministic(t) + ξGaussian(t) . (9)

Since the average value of the white noise is zero, the expected value of the phase after
time t is

E(ξ(t)) = t

T01
+ E(ξDeterministic(t)) . (10)

The contribution of the deterministic noise sources E(ξDeterministic(t)) cannot be
estimated with reasonable precision. Therefore, for entropy estimation we will always
consider the worst-case value of this term.

276 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

The standard deviation of the phase is greater than the standard deviation of the white
noise:

σ2(ξ(t)) = σ2
(

t

T01
+ ξDeterministic(t) + ξGaussian(t)

)
(by independence) = σ2

(
t

T01
+ ξDeterministic(t)

)
+ σ2

(
ξGaussian(t)

)
> σ2(ξGaussian(t))

= σm · t
T 2

01 · tm
. (11)

This bound on the standard deviation can be computed for any value of t, given the
physical and design parameters.

4.3 Digitization.

The ring oscillator is sampled repeatedly at moments tA, tA +T02, tA + 2T02, .. until a valid
sample is detected. We denote the phase at these moments with X0, X1, ...

Xi = ξ(tA + i · T02) , i = 0, 1... (12)

Here we introduce an approximation that will be used for estimating probabilities:
�Approximation 1:

E(Xi) ≈ E(X0) + i ·∆ξ , (13)

where ∆ξ = T02/T01. This assumption is justified by the fact that, for sufficiently high
frequencies, the impact of the correlated noise is negligible compared to other randomness
generating processes. This assumption, while not always explicitly stated, is used in
state-of-the-art stochastic models of TRNG designs [FL14, HFBN15].

For the security analysis of the digitization, we define the normalized platform pa-
rameters: dr,1, df,1, dr,2, df,2 denote the normalized delays of the tapped delay chain
(dr,l = tr,l/T01 and df,l = tf,l/T01 for l ∈ {1, 2}); D denotes the duty cycle of the entropy
source.

In order to simplify the following analysis, we denote the standard deviation of the
phase at time tA as σtA = σ(X0). We use σT02 = σ(Xi −Xi−1) to denote the standard
deviation of the superimposed phase, which is the result of the white noise accumulated
in T02. We would like to note that the white noise accumulated during the time period
between Xi and Xi−1 for any i is independent of each other and also independent of the
white noise accumulated during the accumulation time tA.

The sampling circuit maps the phase value into the output bit. We introduce the
mapping s : R→ {0, 1, N}, where the symbol N denotes that a non-valid value is detected.
Function s(x) can be formally defined as:

s(x) =

1, for x ∈ S1

0, for x ∈ S0

N, for x ∈ SN ,
(14)

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 277

where S1, S0 and SN are unions of mutually disjoint real intervals defined as:

S1 =
∞⋃

k=−∞

{
[k, k + dr,1) ∪ [k +D, k +D + df,1)

}
, (15)

S0 =
∞⋃

k=−∞

{
[k + dr,1, k + dr,1 + dr,2) ∪ [k +D + df,1, k +D + df,1 + df,2)

}
, (16)

SN =
∞⋃

k=−∞

{
[k + dr,1 + dr,2, k +D) ∪ [k +D + df,1 + df,2, k + 1)

}
. (17)

We stress that the sets S1, S0 and SN are mutually disjoint and that:

S1 ∪ S0 ∪ SN = R. (18)

For clarity reasons, we introduce the function g : R→ {0, 1}.

g(x) =
{

1, for x ∈ SN
0, for x ∈ S1 ∪ S0 .

(19)

We note that g(x) is a periodic function with the following property:
For any function f : R→ R and any A ⊂ R:∫

A∩SN

f(x)dx =
∫
A

f(x) · g(x)dx . (20)

A special case of this property is:

∞∫
−∞

f(x) ·g(x)dx =
∫
SN

f(x)dx =
∞∑

k=−∞

[k+D∫
k+dr,1+dr,2

f(x)dx+
k+1∫

k+D+df,1+df,2

f(x)dx
]
. (21)

In line with these definitions and properties, we start the analysis of the digitization by
examining the first sample taken at time tA.

The phase at the first sampling moment is a normally distributed random variable X0.
The probability density function of this variable is:

ρX0(x) = fE(X0),σtA (x). (22)

Let Yi denote the sampled values, Yi = s(Xi). For convenience, we use the notation
µi = E(Xi)− bE(Xi)c. We can compute the probabilities of Y0 as:

Pr(Y0 = 1) =
∫
S1

ρX0(x)dx , (23)

Pr(Y0 = 0) =
∫
S0

ρX0(x)dx , (24)

Pr(Y0 = N) =
∫
SN

ρX0(x)dx = 1− Pr(Y0 = 1)− Pr(Y0 = 0). (25)

To simplify the notation, we let EVi denote the event Y0 = N, · · · , Yi = N . For
example, the EV0 denotes the event Y0 = N . The second sample is only taken when EV0
occurs. The ith sample is taken when EVi−1 occurs.

278 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

Probability

Figure 6: The intuitive interpretation of the repetitive sampling.

From Equations (21) and (25), it follows that:

Pr(EV0) = Pr(Y0 = N) =
∫
SN

ρX0(t)dt =
∞∫
−∞

ρX0(t) · g(t)dt. (26)

For events EVi, the following property holds:

Pr(EVi−1, Yi = 0) + Pr(EVi−1, Yi = 1) + Pr(EVi−1, Yi = N) = Pr(EVi−1). (27)

An intuitive example of the repetitive sampling is shown in Figure 6. The probability
density function ρX0(x) of the random variable X0 = ξ(tA) is located at the left part of
the figure. This distribution covers three types of regions under the curve ρX0(x): the
white regions, the black regions and the shaded regions, which correspond to segments of
ρX0(x) over the sets S0, S1 and SN respectively. The area of the white regions is equal
to Pr(Y0 = 0), while the area of the black regions and the shaded regions are equal to
Pr(Y0 = 1) and Pr(Y0 = N). It is described by Equations (23), (24) and (25). If the
realization of X0 is located at the shaded regions, the second sample is needed.

The middle distribution corresponds to the second sample. The middle distribution
also covers three types of regions. The area of the white regions, the black regions and the
shaded regions are equal to Pr(EV0, Y1 = 0), Pr(EV0, Y1 = 1) and Pr(EV1).

If the event EVi−1 occurs, the distribution of the ith sample shown at the right part of
the figure can be derived from the distribution of the (i− 1)th sample.

Under the Approximation 1, Equation (12) can be rewritten as:

Xi = ξ(tA) + i · T02

T01
+

i∑
k=1

Zk = X0 + i · T02

T01
+

i∑
k=1

Zk, (28)

where Zi denotes a series of random variables defined as:

Zi = ξGaussian(tA + i · T02)− ξGaussian(tA + (i− 1) · T02). (29)

Informally speaking, Zi is the superimposed component of ξ(tA + i · T02) caused by the
white noise accumulated during the time interval [tA + (i− 1) · T02, tA + i · T02). Zi is a
normally distributed random variable N (0, σ2

T02
).

The goal of the entropy estimation is to compute the binary probability of the raw bits.
The computation of this binary probability requires Pr(EVi−1, Yi = 1). Starting from the
Pr(Y0 = 1) given by Equation (23), we first compute ρX1|EV0(x) as:

ρX1|EV0(x) = 1
Pr(EV0)

∞∫
−∞

f0,σT02
(x− µ) · ρX0

(
µ− T02

T01

)
· g
(
µ− T02

T01

)
dµ. (30)

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 279

Probability

Figure 7: The intuitive interpretation of the first sample and the second sample.

The formal derivation of Equation (30) can be found in Appendix A.
An informal but intuitive interpretation of Equation (30) is shown in Figure 7. The

left part of the figure is the probability density function of the ρX0(x). The black, white
and shaded area under the curve correspond to Pr(Y0 = 1), Pr(Y0 = 0) and Pr(EV0)
respectively. The second sample is taken, only when the event EV0 occurs. The shaded
region is shifted to the right by T02/T01, which corresponds to the dashed curve. The
probability density function ρZ1(x) is shifted to positions with probabilities according the
dashed curve. The weighted and shifted results are added together. The result is shown at
the right bottom of this Figure 7.

Now the conditional probability function ρXi|EVi−1(x), (i > 1) can be derived iteratively
as:

ρXi|EVi−1(x) = Pr(EVi−2)
Pr(EVi−1) ·

∞∫
−∞

f0,σT02
(x−µ)·ρXi−1|EVi−2

(
µ−T02

T01

)
·g
(
µ−T02

T01

)
dµ. (31)

The formal derivation of Equation (31) can be found in Appendix A.
We can compute probabilities Pr(EVi) as:

Pr(EVi) = Pr(EVi−1, Yi = N)
= Pr(EVi−1) · Pr(Yi = N |EVi−1)

= Pr(EVi−1) ·
∫
SN

ρXi|EVi−1(x)dx. (32)

Starting with Equations (26) and (30), we can apply Equations (31) and (32) iteratively
to compute probabilities Pr(EVi).

4.4 Binary probabilities
Now we can compute the following probabilities:

Pr(EVi−1, Yi = 1) = Pr(EVi−1) ·
∫
S1

ρXi|EVi−1(t)dt , (33)

Pr(EVi−1, Yi = 0) = Pr(EVi−1) ·
∫
S0

ρXi|EVi−1(t)dt . (34)

280 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

The Pr(EVi−1, Yi = 0) can be computed using Equations (27), (33) and (34).
The value of raw bit b is determined by a sequence (Y0Y1 · · ·Yj) where j is the smallest

integer such that Yj 6= N . Therefore, the binary probability of a raw bit can be computed
as:

Pr(b = 1) = Pr(Y0 = 1) +
∞∑
k=1

Pr(EVk−1, Yk = 1) . (35)

4.5 Entropy claim
Binary probabilities are computed starting from the platform parameters using Equations (11),
(19), (22), (26), (30), (31), (33) and (35). The only unknown parameter is µ0 which is
equal to the phase of the oscillator at the moment tA. The value of µ0 depends on the
global noise, low-frequency noises and the operating conditions. For this reason, it cannot
be predicted with reasonable precision at design time. The conservative entropy claim
is made by examining the effects of µ0 on binary probabilities and using the value that
results in the lowest entropy. This procedure is shown in the example in Section 6.

5 Experimental Validation of the Stochastic Model
We use an experimental approach to validate the proposed stochastic model, i.e. to check
if the behavior of the physical TRNG matches the behavior predicted by the model. For
this purpose, we implement the proposed design on a Xilinx Spartan-6 FPGA. In this
experiment we monitor the number NT of toggles of the RO2 during the sampling phase
before the raw bit is generated.

Before applying the stochastic model, we have to specify the design parameters and
measure the platform parameters. Design parameters T01 and T02 are chosen indirectly by
selecting the number of delay elements in RO1 and RO2. We implement RO1 and RO2
using a single look-up table and three look-up tables respectively. The periods of RO1 and
RO2 are then measured using two individual ripple counters, the measurement results are
T01 = 2171.8 ps and T02 = 2739.8 ps. In regard to other design parameters, the period of
the system clock is chosen to be TCLK = 10 ns and the jitter accumulates for 9 system
clock cycles.

We follow the methodologies proposed in [YRG+17] and [RYDV15] to measure the
platform parameters. The obtained propagation delays are tr,1 = 22.25 ps, tr,2 = 24.12 ps,
tf,1 = 35.93 ps and tf,2 = 40.90 ps. The duty cycle D measurement is 0.43 and the
white-noise jitter strength is σ2

m/tm = 0.0029 ps.
The number of toggles for a specific value of µ0 is distributed as follows:

Pr(NT = i) = Pr(EVi−1, Yi 6= N) = Pr(EVi−1, Yi = 1) + Pr(EVi−1, Yi = 0) , (36)

which is easily computed by applying Equations (33) and (34).
Figure 8 shows the predicted toggle distributions for different values of parameter

µ0 ∈ (0, 1).
We note that due to a very low jitter strength, the variance of accumulated jitter at

the sampling phase is much lower than the period of RO1, i.e. σT02 � 1. A consequence
of this low jitter is that the probability Pr(Yi = N) is very low in cases when µi is close
to the high-precision region (µi ≈ 0, µi ≈ D and µi ≈ 1). Conversely, this probability is
very high when µi is far away from the high-precision phase region (i.e. µi ≈ D/2 and
µi ≈ (1+D)/2). We check how this affects the distribution of NT for the selected oscillator

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 281

Figure 8: Probabilities of toggle numbers under different µ0.

periods. Let’s first observe that T02/T01 ≈ 5/4. Therefore:

µi+1 ≈ µi + 1/4− bµi + 1/4c , (37)
µi+2 ≈ µi + 1/2− bµi + 1/2c , (38)
µi+4 ≈ µi . (39)

Since the high-precision regions are close to the beginning of the cycle and the middle of
the cycle, we get:

Pr(Yi = N) ≈ Pr(Yi+2 = N) . (40)

The result is that the NT distribution for odd values is very different from the distribution
for the even NT values. This effect is observed in the model for any value of µ0 as well as
in the experimental data shown in Figure 9a. For clarity, this distribution is presented
using two graphs, one for the odd NT values and one for the even values.

In order to model the distribution of NT we have to make assumptions about µ0. In the
used experimental setting, it is reasonable to assume that µ0 follows a Gaussian distribution.
We note that we don’t make this assumption for computing the entropy, but rather use
the worst case value. Therefore, the NT distribution is computed as the compound
distribution of N (µ, σ2) and the distribution given by Equation (36). For N (0.384, 0.092),
the model reasonably approximates experimental data, as shown in Figure 9b. We note
that N (0.384, 0.092) is unrelated to the platform parameters and is not used for entropy
estimation. It is only used to validate the stochastic model.

6 Implementation and Security Evaluation
6.1 Xilinx FPGA implementation
In this section, we present a Xilinx Spartan-6 FPGA implementation of ES-TRNG. In
addition to look-up tables (LUTs) and sequential elements (flip-flops and latches), this

282 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

0 20 40 60 80

The number of toggles

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a
b
ili

ty

Even positions

1 21 41 61 81

The number of toggles

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a
b
ili

ty

Odd positions

(a) Probability distribution of toggles computed from the collected experi-
mental data.

0 20 40 60 80

The number of toggles

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a
b
ili

ty

Even positions

0 20 40 60 80

The number of toggles

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a
b
ili

ty

Odd positions

(b) Probability distribution of toggles derived from the stochastic model.

Figure 9: Toggles probability distributions predicted by the model and obtained by
experiments. Each distribution is shown using two graphs, one for the even values (left)
and one for the odd values (right).

FPGA has high-speed carry chain primitives called CARRY4. These primitives can be
configured to work as a tapped delay line.

Figure 10 shows the implementation of the core of the proposed digital noise source.
RO1 is implemented as a high-speed oscillator using a single LUT, RO2 is implemented
using 3 LUTs. A single CARRY4 element is used to implement the tapped delay chain.

The entire core of the TRNG shown in Figure 10 is implemented using only one
CARRY4 element, 10 LUTs and 5 flip-flops. In addition to this core, the design contains
a parity filter for post-processing and a control circuit for setting the enable and reset
signals. A system clock of 100 MHz is used in the design.

6.2 Application of the model
In this section, we applied the stochastic model to derive optimal design parameters.
The platform parameters measurement is described in Section 5. The stochastic model
enables us to calculate the Shannon entropy and min-entropy for any value of µ0 for a
specific accumulation time. The conservative entropy estimation is made by using the
global minimum. This procedure is illustrated in Figure 11. This figure shows the entropy
estimations for three different values of accumulation time (tA = 5 · TCLK , 10 · TCLK and
20 · TCLK). The global minima are indicated by red dots.

To confirm that our entropy estimation is indeed conservative, we applied the entropy
assessment procedure from [TBK+18] on the collected raw random numbers. The results
are summarized in Table 2. The results reported by the NIST entropy assessment python
package are always higher than the min-entropy estimation derived from the proposed
stochastic model. This result is expected because the stochastic model estimation is based
on the worst case scenario.

According to the standard [KS11], a minimal Shannon entropy level of 0.997 per bit is

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 283

OSC
LUT

FD
CE

D

Q

LUT

BUF

LUT

BUF
FD
CE

D

Q

FD
CE

D

Q

LUT

LUT
Edge
Detector

Raw bit
encoder

FD
CE

D

Q FD
CE

D

Q

CLR CLR

NAND

LUT

CARRY4

Valid

Raw
bit

RO2

RO1 Tapped Delay Chain

Bit Extractor

Figure 10: FPGA implementation of the digital noise source.

Table 2: Model verification
tA

(ns)
H∞

(Stochastic model)
H∞

(NIST SP800-90B)
H1

(Stochastic model)
50 0.099 0.578 0.352

100 0.233 0.661 0.607
200 0.461 0.757 0.846
300 0.548 0.764 0.900

expected in the internal random numbers. This goal is achieved when the bias εinternal
of the internal random numbers is upper-bounded by 3.2%. This Shannon entropy level
cannot be achieved by accumulating the jitter less than 1 µs, which leads to a throughput
smaller than 1 Mbps. However, a higher throughput can be obtained by using a shorter
accumulation time followed by a simple algorithmic post-processing. Parity filter of order
nf , which combines nf consecutive input bits into one output bit using a XOR function,
reduces the bias εinternal to:

εinternal = 2nf−1 · εnfraw , (41)

where εraw denotes the bias of raw random numbers.
To optimize the throughput of ES-TRNG, we computed the minimal nf required to

achieve the Shannon entropy level of 0.997. Figure 12 shows the lower bound estimation for
H1 and H∞ for tA ranging from 20 ns to 1 µs. For every tA within this range, we calculate
the expected throughput of the internal random numbers after the required nf -stage
parity filter. From the figure, we can see that the throughput increases monotonically
when tA ≤ 110 ns. Within this region, the required nf reduces rapidly because of the
increasing of estimated Shannon entropy. There are several discontinuous segments on the
throughput plot when tA > 110 ns. Each segment corresponds to a different required nf .
When tA > 1000 ns, the throughput is always lower than 1 Mbps. The global maximum
of 1.15 Mbps throughput is obtained at tA = 250 ns where nf = 3. At this point, the
H∞ of raw random numbers estimated by the stochastic model is 0.515 which is more
conservative than 0.86 derived from the standard [TBK+18]. The post-processed data
achieves a throughput higher than 1 Mbps with a Shannon entropy level higher than 0.997.
For verification, a 10 MB sequence of internal numbers was generated and tested using
T0-T5 tests proposed in the AIS-31. The sequence passes all the tests.

284 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

0 0.5 1

0

0

0.2

0.4

0.6

0.8

1

H
1

t
A
=5*T

CLK

0 0.5 1

0

0

0.2

0.4

0.6

0.8

1

H

0 0.5 1

0

0

0.2

0.4

0.6

0.8

1

H
1

t
A
=10*T

CLK

0 0.5 1

0

0

0.2

0.4

0.6

0.8

1

H

0 0.5 1

0

0

0.2

0.4

0.6

0.8

1

H
1

t
A
=20*T

CLK

0 0.5 1

0

0

0.2

0.4

0.6

0.8

1

H

H
1
=0.35177

H =0.098893

H
1
=0.60709

H =0.23261

H
1
=0.84644

H =0.46096

Figure 11: The estimated H1 and H∞ for different accumulation time.

0 200 400 600 800 1000
t
A
 (ns)

0

0.2

0.4

0.6

0.8

1

E
nt

ro
py

 le
ve

l

0

0.5

1

1.5

2

T
hr

ou
hp

ut
 (

M
bp

s)

H
1

H

Throughput

Throughput=1.15 Mbps
H1=0.8816

H =0.5150

Figure 12: The lower bound estimation for H1 and H∞, the expected throughput after
post-processing for different accumulation time.

6.3 Intel FPGA implementations
In order to show portability of our design to different FPGA platforms, we have also
implemented ES-TRNG on Intel Cyclone V FPGA. The basic building blocks of this FPGA
are adaptive logic modules (ALMs) that contain 8-input flexible LUTs, 2 fast adders and 2
flip-flops.

The tapped delay line is implemented using fast carry chains in dedicated adders. Since
1 ALM already contains two carry stages, we would need only 2 ALMs to implement a
structure equivalent to CARRY4 in Xilinx FPGA. However, due to considerable differences
of the carry stages’ propagation delays, we opted to use output of every second carry stage.
In this way, we obtained more balanced delays of the resulting delay chain stages at the
price of the increased resource utilization - 4 ALMs instead of 2. To be able to accurately
determine RO1 frequency, we implemented RO1 with 2 LUTs, while for RO2 we used 3
LUTs. The oscillation periods of RO1 and RO2 were determined with ripple counters
and their values are T01 = 1745.68 ps and T02 = 3020.068 ps respectively. Bit extractor
module is implemented by using a single ALM, thus achieving a compact implementation.

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 285

Table 3: The comparison with existing TRNG implementations
TRNG
types

Stoch.
models

Xilinx
FPGAs

Intel
FPGAs

Families Area Bit rate
[Mbits/s]

Design
effort Families Area Bit rate

[Mbits/s]
Design
effort

Open-loop
[BRGD13]
[DGH07]
[DGH09]

Y Virtex5 n/a LUTs
64 Latches 20 MP

MR
Stratix
EP1S25

140 Stratix
cells

(∼14 LABs)
20 MP

MR

FIGARO
[Gol06]
[SDH17]

N Virtex2 n/a n/a n/a CycloneV n/a n/a MP
noMR

BRAM
[GP09] N Spartan3 n/a 100 MP

noMR - - - -

CMAFC
[MKD11] N Virtex5 128 LUTs 2 MP

MR - - - -

DCTRNG
[RYDV15]
[GYRV18]

Y Spartan6
67 slices 14.3 MP

noMR CycloneV 230 ALMs
(23 LABs) 11.1 MP

MR40 slices 1.53

MERO
[VHKK08]
[SSR09]

Y Virtex2 n/a 50 n/a StratixII 9 ALUTs 2.5 n/a

ERO
[PMB+16] Y Spartan6 46 LUTs

19 FFs 0.0042 MP
MR CycloneV 34 LUTs

20 FFs 0.0027 MP
MR

COSO
[PMB+16] Y Spartan6 18 LUTs

3 FFs 0.54 MP
MR CycloneV 13 LUTs

3 FFs 1.44 MP
MR

MURO
[PMB+16]
[SPV06]
[SMS07]

Y Spartan6 521 LUTs
131 FFs 2.57 noMP

noMR CycloneV 525 LUTs
130 FFs 2.2 noMP

noMR

PLL
[PMB+16] Y Spartan6 34 LUTs

14 FFs 0.44 noMP
noMR CycloneV 24 LUTs

14 FFs 0.6 noMP
noMR

TERO
[PMB+16]
[VD10]

Y Spartan6 39 LUTs
12 FFs 0.625 MP

MR CycloneV 46 LUTs
12 FFs 1 MP

MR

STR
[PMB+16]
[CFFA13]

Y Spartan6 346 LUTs
256 FFs 154 MP

MR CycloneV 352 LUTs
256 FFs 245 MP

MR

This work Y Spartan6

10 LUTs+5FFs
+

(6 LUTs+6FFs)
tA counter

1.15 MP
noMR CycloneV

10 LUTs+6FFs
+

(6 LUTs+6FFs)
tA counter

1.067 MP
noMR

The measurement of Intel Cyclone V FPGA platform parameters is performed in the
same way as for Xilinx Spartan-6 in Section 5. The propagation delays are calculated as
follows: tr,1 = 67.316 ps, tr,2 = 68.316 ps, tf,1 = 52.044 ps and tf,2 = 50.544 ps. The white-
noise jitter strength is σ2

m/tm = 0.020 ps, while the duty cycle D of RO1 is 0.58. After
measuring the physical parameters, we determined the design parameters, as previously
described. The jitter accumulates for tA = 230 ns, while the parity filter has to be of order
nf = 3 to obtain Shannon entropy level of 0.997. The obtained throughput of ES-TRNG
on Intel Cyclone V FPGA is 1.067 Mbps. We observe that although the white-noise jitter
strength on Intel Cyclone V is higher than on Xilinx Spartan 6, the propagation delays on
Xilinx Spartan 6 are substantially lower, leading to similar throughputs on both FPGAs.

7 Results and Comparison
Table 3 shows the comparison to the state-of-the-art TRNG designs for both Xilinx and
Intel FPGAs. The second column of the table indicates the availability of stochastic models
for each TRNG design. The utilization of hardware resources are reported in the third
column. Only the basic units in the FPGA are reported, such as LUTs, Flip-flops and
Slices. Special dedicated primitives, like PLL building blocks for PLL-TRNG, are not
included here. Among Xilinx TRNG designs listed in the table, ES-TRNG achieves the
smallest hardware footprint. Our ES-TRNG generates more than 1 Mbps internal random
numbers with an estimated minimal Shannon entropy level of 0.997. Here we discussed
two types of design effort for FPGA implementation: manual placement (MP) and manual
routing (MR). MP is critical for some TRNG designs, because the quality of those TRNGs
is sensitive to the relative spatial location of their building blocks. For TRNG designs
based on identical delays or balanced routing, MR cannot be avoided.

As can be seen in Table 3, the ES-TRNG has one of the smallest area consumption
compared to TRNGs implemented on Cyclone V FPGAs. The only TRNG designs with
comparable implementation footprints are the COSO-TRNG (the coherent sampling ring

286 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

oscillator based TRNG) and the PLL-TRNG (the coherent sampling based TRNG using
PLLs) [PMB+16]. It is worthwhile to note that although the COSO-TRNG has higher
throughput than ES-TRNG, it requires laborious manual placement and routing, which
has to be performed for every target device. On the other hand, the PLL-TRNG does not
require any manual placement or routing on Cyclone V FPGAs, but it occupies dedicated
PLL modules and provides a 40% lower throughput compared to ES-TRNG.

Here we would like to point out a problem with results comparison in this research
domain that became relevant in recent years. Many TRNG designs were developed before
the publication of evaluation standards [TBK+18] and [KS11]. Therefore, these old designs
and some of the recent ones are not provided with stochastic models that are required today.
Without the proper security analysis or by using debunked or simplified assumptions, it
is possible to achieve a better hardware performance than if AIS-31 criteria are strictly
followed. For example, a designer may base the entropy estimation solely on the results of
the statistical tests. If this overestimation is used to guide the choice of design parameters,
higher targets for throughput, area and energy are more easily achieved. This has the
unfortunate effect that designs with a more rigorous security analysis appear worse in
terms of hardware performance when compared to their predecessors.

In particular, in ring oscillator based designs, the jitter strength is often the critical
parameter that significantly affects the performance of the final hardware implementation.
Some recent works on jitter measurement on FPGAs [FL14, LB15, YRG+17] showed that
the strength of the Gaussian noise is lower by an order of magnitude compared to the values
that were used in older TRNG designs. For comparison, we carried out the ES-TRNG
design procedure assuming that the jitter strength is five time higher than measured (this
is similar to the jitter strength reported in [SPV06]). The obtained design parameters
were tA = 30 ns and nf = 2 which results in the throughput of 6.25 Mbps.

8 Conclusion

In this work, we present a novel true random number generator called ES-TRNG. Two
techniques, namely variable-precision phase encoding and repetitive sampling, are used
to increase the throughput and the entropy of the proposed generator and to reduce the
hardware footprint. The digital noise source is implemented using only 10 look-up tables
(LUTs) and 5 flip-flops (FFs) of a Xilinx Spartan-6 FPGA, and achieves a throughput
of 1.15 Mb/s with 0.997 bits of Shannon entropy. On Intel Cyclone V FPGAs, this
implementation uses 10 LUTs and 6 FFs, and achieves a throughput of 1.07 Mbps. The
proposed generator is backed up with a security analysis based on the stochastic model of
the entropy source.

Acknowledgments

We would like to thank the editors and the anonymous reviewers of TCHES for their
constructive comments. This work was supported in part by the Research Council KU
Leuven: C16/15/058. In addition, this work is supported in part by the Hercules Foundation
AKUL/11/19, and through the Horizon 2020 research and innovation programme under
grant agreement No 644052 HECTOR and Cathedral ERC Advanced Grant 695305.
Bohan Yang is supported in part by the Scholarship from China Scholarship Council
(No.201206210295).

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 287

References
[BCC+13] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia

Heninger, Tanja Lange, and Nicko van Someren. Factoring RSA keys from
certified smart cards: Coppersmith in the wild. In Advances in Cryptology -
ASIACRYPT, pages 341–360, 2013.

[BL05] Marco Bucci and Raimondo Luzzi. Design of Testable Random Bit Generators.
In Josyula R. Rao and Berk Sunar, editors, CHES 2005, pages 147–156, 2005.

[BPPT06] Ralf Brederlow, Ramesh Prakash, Christian Paulus, and Roland Thewes. A
Low-power True Random Number Generator using Random Telegraph Noise
of Single Oxide-Traps. In IEEE International Solid State Circuits Conference
- Digest of Technical Papers, pages 1666–1675, Feb 2006.

[BRGD13] Molka Ben-Romdhane, Tarik Graba, and Jean-Luc Danger. Stochastic model
of a metastability-based true random number generator. In TRUST, pages
92–105. Springer Berlin Heidelberg, 2013.

[CFFA13] Abdelkarim Cherkaoui, Viktor Fischer, Laurent Fesquet, and Alain Aubert. A
Very High Speed True Random Number Generator with Entropy Assessment.
In CHES, pages 179–196, 2013.

[DGH07] Jean-Luc Danger, Sylvain Guilley, and Philippe Hoogvorst. Fast true random
generator in fpgas. In 2007 IEEE Northeast Workshop on Circuits and Systems,
pages 506–509, Aug 2007.

[DGH09] Jean-Luc Danger, Sylvain Guilley, and Philippe Hoogvorst. High speed true ran-
dom number generator based on open loop structures in fpgas. Microelectronics
Journal, 40(11):1650–1656, 2009.

[FIP94] PUB FIPS. 140-1. Security Requirements for Cryptographic Modules, 11, 1994.

[FL14] Viktor Fischer and David Lubicz. Embedded Evaluation of Randomness in
Oscillator Based Elementary TRNG. In CHES, pages 527–543, 2014.

[Gol06] Jovan Dj. Golić. New Methods for Digital Generation and Postprocessing of
Random Data. IEEE Trans. Computers, 55(10):1217–1229, 2006.

[GP09] Tim Güneysu and Christof Paar. Transforming Write Collisions in Block
RAMs into Security Applications. In Proceedings of the 2009 International
Conference on Field-Programmable Technology, FPT 2009, Sydney, Australia,
December 9-11, 2009, pages 128–134, 2009.

[GYRV18] Miloš Grujić, Bohan Yang, Vladimir Rožić, and Ingrid Verbauwhede. Towards
Inter-Vendor Compatibility of True Random Number Generators for FPGAs.
In DATE, pages 1–4, 2018.

[HFBN15] Patrick Haddad, Viktor Fischer, Florent Bernard, and Jean Nicolai. A Physical
Approach for Stochastic Modeling of TERO-Based TRNG. In CHES, pages
357–372, 2015.

[KS11] Wolfgang Killmann and Werner Schindler. A Proposal for: Functionality
classes for random number generators . BSI, Bonn, 2011.

[LB15] David Lubicz and Nathalie Bochard. Towards an oscillator based TRNG with
a certified entropy rate. IEEE Trans. Computers, 64(4):1191–1200, 2015.

288 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

[Mar98] Georges Marsaglia. DIEHARD Test suite. Online: http://www. stat. fsu.
edu/pub/diehard/. Last visited, 8(01):2014, 1998.

[Mar03] Dichtl Markus. How to Predict the Output of a Hardware Random Number
Generator. In CHES, pages 181–188, 2003.

[MJS+16] Sanu K. Mathew, David Johnston, Sudhir Satpathy, Vikram Suresh, Paul
Newman, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Gre-
gory K. Chen, and Ram K. Krishnamurthy. µrng: A 300-950 mv, 323 gbps/w
all-digital full-entropy true random number generator in 14 nm finfet CMOS.
J. Solid-State Circuits, 51(7):1695–1704, 2016.

[MKD11] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. FPGA-Based
True Random Number Generation Using Circuit Metastability with Adaptive
Feedback Control. In CHES, pages 17–32, 2011.

[PMB+16] Oto Petura, Ugo Mureddu, Nathalie Bochard, Viktor Fischer, and Lilian
Bossuet. A Survey of AIS-20/31 Compliant TRNG Cores Suitable for FPGA
devices. In FPL, pages 1–10, Aug 2016.

[PSR06] Fabio Pareschi, Gianluca Setti, and Riccardo Rovatti. A Fast Chaos-based True
Random Number Generator for Cryptographic Applications. In Proceedings of
the 32nd European Solid-State Circuits Conference, pages 130–133, Sept 2006.

[RSN+10] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker,
Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert,
James Dray, and San Vo. Nist special publication 800-22 revision 1a. National
Institute of Standards and Technology, 2010.

[RYDV15] Vladimir Rožić, Bohan Yang, Wim Dehaene, and Ingrid Verbauwhede. Highly
efficient entropy extraction for true random number generators on FPGAs. In
Proceedings of the 52nd Annual Design Automation Conference, San Francisco,
CA, USA, June 7-11, 2015, pages 116:1–116:6, 2015.

[SDH17] Martin Schramm, Reiner Dojen, and Michael Heigl. Experimental assessment
of firo- and garo-based noise sources for digital trng designs on fpgas. In 2017
International Conference on Applied Electronics (AE), pages 1–6, Sept 2017.

[SMS07] Berk Sunar, William J. Martin, and Douglas R. Stinson. A Provably Secure
True Random Number Generator with Built-In Tolerance to Active Attacks.
IEEE Transactions on Computers, pages 109–119, Jan 2007.

[SPV06] Dries Schellekens, Bart Preneel, and Ingrid Verbauwhede. FPGA Vendor
Agnostic True Random Number Generator. In FPL, pages 1–6, 2006.

[SSR09] Renaud Santoro, Olivier Sentieys, and Sébastien Roy. On-the-fly evaluation of
fpga-based true random number generator. In 2009 IEEE Computer Society
Annual Symposium on VLSI, pages 55–60, May 2009.

[TBK+18] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry McKay, Mary Baish,
and Michael Boyle. Recommendation for the Entropy Sources Used for Random
BitGeneration. NIST Special Publication 800-90B, 2018.

[VD10] Michal Varchola and Miloš Drutarovský. New high entropy element for fpga
based true random number generators. In CHES, volume 6225 of LNCS, pages
351–365. 2010.

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 289

[VHKK08] Ihor Vasyltsov, Eduard Hambardzumyan, Young-Sik Kim, and Bohdan Karpin-
skyy. Fast Digital TRNG Based on Metastable Ring Oscillator. In Cryptographic
Hardware and Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings, pages 164–180, 2008.

[WT08] Knut Wold and Chik How Tan. Analysis and Enhancement of Random
Number Generator in FPGA Based on Oscillator Rings. In ReConFig’08:
2008 International Conference on Reconfigurable Computing and FPGAs, 3-5
December 2008, Cancun, Mexico, Proceedings, pages 385–390, 2008.

[YRG+17] Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens, and Ingrid Ver-
bauwhede. On-chip Jitter Measurement for True Random Number Generators.
In AsianHOST, pages 1–6, October 2017.

[YRM+16] Bohan Yang, Vladimir Rožić, Nele Mentens, Wim Dehaene, and Ingrid Ver-
bauwhede. TOTAL: TRNG on-the-fly testing for attack detection using
Lightweight hardware. In DATE, pages 127–132, 2016.

290 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

A The proofs in the stochastic model

A.1 The proof of the claim in Equation (30)

From Equation (28), we have:

X1 = X0 + T02

T01
+ Z1, (42)

where T02/T01 is a constant. The random variables X0 and Z1 are mutually independent.
As the first step, from the definition of g(x), we can derive the conditional probability

of X0 given EV0:

ρX0|EV0(x) = d

dα
[Pr(X0 ≤ α|EV0)]

= 1
Pr(EV0) ·

d

dα
[Pr(X0 ≤ α,EV0)]

= 1
Pr(EV0) ·

d

dα
[Pr(X0 ≤ α,X0 ∈ SN)]

= 1
Pr(EV0) ·

d

dα

[∫
(−∞,α]∩SN

ρX0(x)dx
]

(by Equation (20)) = 1
Pr(EV0) ·

d

dα

[α∫
−∞

ρX0(x) · g(x)dx
]

= 1
Pr(EV0) · ρX0(x) · g(x) . (43)

The Z1 is independent of X0, thus we have:

ρZ1|EV0(x) = ρZ1(x). (44)

We derive the probability density of X0 + Z1, given the condition EV0:

ρ(X0+Z1)|EV0(x) = ρZ1|EV0 ∗ ρX0|EV0)(x)
(by Equation (44)) = (ρZ1 ∗ ρX0|EV0)(x)

(by convolution) =
∞∫
−∞

ρZ1(x− µ) · ρX0|EV0(µ)dµ

(by Equation (43)) = 1
Pr(EV0) ·

∞∫
−∞

ρZ1(x− µ) · ρX0(µ) · g(µ)dµ

(by Equation (29)) = 1
Pr(EV0) ·

∞∫
−∞

f0,σT02
(x− µ) · ρX0(µ) · g(µ)dµ. (45)

Bohan Yang, Vladimir Rožić, Miloš Grujić, Nele Mentens and Ingrid Verbauwhede 291

As the final step, we derive the Equation (30) as:

ρX1|EV0(x) = ρ(X0+Z1+T02
T01

)|EV0
(x) = ρ(X0+Z1)|EV0

(
x− T02

T01

)

= 1
Pr(EV0) ·

∞∫
−∞

f0,σT02

(
x− T02

T01
− µ

)
· ρX0(µ) · g(µ)dµ

(by Equation (45)) = 1
Pr(EV0) ·

∞∫
−∞

ρZ1(x− (µ+ T02

T01
)) · ρX0(µ) · g(µ)dµ

= 1
Pr(EV0) ·

∞∫
−∞

f0,σT02
(x− µ) · ρX0

(
µ− T02

T01

)
· g
(
µ− T02

T01

)
dµ.

(46)

A.2 The proof of the claim in Equation (31)

The derivation of Equation (31) is similar to Section A.1.
From Equation (28), we have:

Xi = Xi−1 + T02

T01
+ Zi, (47)

where T02/T01 is a constant. The random variables Xi−1 and Zi are mutually independent.
As the first step, we derive the ρXi−1|EVi−1(x) as:

ρXi−1|EVi−1(x) = d

dα
[Pr(Xi−1 ≤ α|EVi−1)]

= 1
Pr(EVi−1) ·

d

dα
[Pr(Xi−1 ≤ α,EVi−1)]

= 1
Pr(EVi−1) ·

d

dα
[Pr(Xi−1 ≤ α, Yi−1 = N,EVi−2)]

= Pr(EVi−2)
Pr(EVi−1) ·

d

dα
[Pr(Xi−1 ≤ α, Yi−1 = N |EVi−2)]

= Pr(EVi−2)
Pr(EVi−1) ·

d

dα
[Pr(Xi−1 ≤ α,Xi−1 ∈ SN |EVi−2)]

= Pr(EVi−2)
Pr(EVi−1) ·

d

dα

[∫
(−∞,α]∩SN

ρXi−1|EVi−2(x)dx
]

(by Equation (20)) = Pr(EVi−2)
Pr(EVi−1) ·

d

dα

[α∫
−∞

ρXi−1|EVi−2(x) · g(x)dx
]

= Pr(EVi−2)
Pr(EVi−1) · ρXi−1|EVi−2(x) · g(x). (48)

The Zi is independent of EVi−1, thus we have:

ρZi|EVi−1(x) = ρZi(x). (49)

292 ES-TRNG: A High-throughput, Low-area TRNG based on Edge Sampling

We derive the probability density of Xi−1 + Zi, given the condition EVi−1:

ρ(Xi−1+Zi)|EVi−1(x) = (ρZi|EVi−1 ∗ ρXi−1|EVi−1)(x)
(by Equation (49)) = (ρZi ∗ ρXi−1|EVi−1)(x)

(by convolution) =
∞∫
−∞

ρZi(x− µ) · ρXi−1|EVi−1(µ)dµ

(by Equation (46)) = Pr(EVi−2)
Pr(EVi−1) ·

∞∫
−∞

ρZi(x− µ) · ρXi−1|EVi−2(µ) · g(µ)dµ

(by Equation (29)) = Pr(EVi−2)
Pr(EVi−1) ·

∞∫
−∞

f0,σT02
(x− µ) · ρXi−1|EVi−2(µ) · g(µ)dµ. (50)

As the final step, we derive the Equation (31) as:

ρXi|EVi−1(x) = ρ(Xi−1+Zi+T02
T01

)|EVi−1
(x) = ρ(Xi−1+Zi)|EVi−1

(
x− T02

T01

)

(by Equation (50)) = Pr(EVi−2)
Pr(EVi−1) ·

∞∫
−∞

f0,σT02

(
x− T02

T01
− µ

)
· ρXi−1|EVi−2(µ) · g(µ)dµ

= Pr(EVi−2)
Pr(EVi−1) ·

∞∫
−∞

f0,σT02
(x− µ) · ρXi−1|EVi−2

(
µ− T02

T01

)
· g
(
µ− T02

T01

)
dµ.

(51)

	Introduction
	Preliminaries
	TRNG design procedure
	Notation and definitions

	ES-TRNG Architecture
	Platform and design parameters
	Two novel techniques

	Security Analysis
	Assumptions
	Entropy Source.
	Digitization.
	Binary probabilities
	Entropy claim

	Experimental Validation of the Stochastic Model
	Implementation and Security Evaluation
	Xilinx FPGA implementation
	Application of the model
	Intel FPGA implementations

	Results and Comparison
	Conclusion
	The proofs in the stochastic model
	The proof of the claim in Equation (30)
	The proof of the claim in Equation (31)

