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1. Introduction.

The numerous experimental and theoretical investigations that have
followed Bradley's discovery of aberration have led finally to the enuncia-
tion of a principle of relativity. This principle which is being widely
used as a working hypothesis is gradually attaining a position analogous
to that held by the second law of thermodynamics,* inasmuch as it gives
a satisfactory account of the experimental results and is not in direct con-
tradiction with any known facts.!

The mathematical analysis on which the principle is based was intro-
duced by Lorentz in 1892. It consists of a certain space time transfor-
mation of the coordinates in which the fundamental equations of the
electrodynamical field are unaltered in form.

The principal features of the transformation are the introduction of a
local time, and the hypothesis that a body moving through the aether with
a constant velocity v suffers a contraction ^/{l—v2/c2) : 1 in the direction
of motion : c being the velocity of light. With the help of this hypothesis

* Of. H. A. Bumstead, Anier. Jour, of Science, Vol. xxvi (1908).
t The principle has received additional support from some recent experiments made by

Dr. Bucherer, Phys. Zeitschr., Sept., 1908, p. 755.
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a satisfactory explanation of the results of the Michelson-Morley experi-
ment can be given on the supposition of a stationary ffither. The results
of the experiment seem at first sight to indicate that the asther is carried
along with the earth, but on such a supposition a satisfactory explanation
of aberration would still be wanting.

The theory of Lorentz's transformation has been developed very con-
siderably by Einstein, Planck, and Minkowski. The transformation has
become a powerful instrument of research, inasmuch as it provides a
means of transition from the mathematical expressions of physical
quantities connected with a system at rest to the corresponding quantities
for a similar system in uniform motion. The transformation of Lorentz
only enables us to pass from a system at rest to one in uniform motion,
but it has been postulated that there is a more general transformation
which can be applied to systems moving in a more general manner. . The
case of a system moving with a constant acceleration has, in fact, been
discussed by Einstein.*

The object of the present paper is to find all the transformations for
which the electrodynamical equations are invariant. In the case of the
simpler equations of the theory of electrons, it is proved that the trans-
formations belong to a certain group which is isomorphic with the group
of conformal transformations of a space of four dimensions. It is
assumed, however, that the transformation is such that the total charge
on a system of particles is unaltered.

I have great pleasure in thanking Mr. E. Cunningham for the stimulus
which he gave to this research by the discovery of the formulae of trans-
formation in the case of an inversion in the four-dimensional space.
These formulae suggested the more general formulas in terms of Jacobians,
and the transition to the iutegral forms led at once to the present analysis.
The two integral forms of the second order had been introduced previously
by Mr. Hargreaves in another connection ; they enable us to give a very
concise expression of the electrodynamical equations which promises to be
of considerable importance in future developments. The integrals that
occur in the equations differ from the usual surface and volume integrals
by the fact that the quantities in the integrand are calculated at different
points of space at different times, these times being specified by an
arbitrary known law.

The invariance of the two integral forms of the second order leads at
once to the formulas of transformation of the electric and magnetic force,

Jahrbiich der Eadioaktivitdt (1907).
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and to a number of identical relations which are shown to imply that the
differential equation , „ . , 2 , , , JjZ A^ dx2+dy 2-\-dzi—dr = 0

is invariant. This is the differential equation of the characteristics of the
electromagnetic equations and gives the form of an elementary wave
front. Since this is a sphere, we have called the group of transformation
the group of spherical wave transformations. The differential equation
also expresses the condition that two neighbouring particles should be in
a position to act on one another. The transformations which leave the
electrodynamical equations lot ponderable bodies unaltered in form must
depend upon the form of the constitutive relations connecting the mag-
netic induction and electric force with the magnetic force and electric
displacement when the bodies are in motion. Minkowski, Einstein, and
Laub have proceeded in the opposite way and constructed a set of con-
stitutive relations for bodies in uniform motion, by assuming that the
transformations are Lorentzian transformations and transforming the
known constitutive relations for bodies at rest.

This method, however, does not give the constitutive relations for
the case of a dielectric whose motion is not uniform. The general
spherical wave transformation can be applied to obtain a certain type of
accelerated motion, but the dimensions and shapes of bodies are con-
tinually altering in the transformed system.

An attempt has been made to discover whether there are any types of
constitutive relations which are invariant for the general space time
transformation. It is shown in § 7 that it is possible to construct such
relations on the assumption that a certain quadratic form is invariant for
the transformation. These relations may be supposed to correspond to a
special type of configuration and state of motion which preserves its
character after any space time transformation, which satisfies certain
limitations. The general theory of space time transformations is dis-
cussed with the help of two theorems on the transformation of integral
forms. It is shown that when a transformation of variables is performed,
and the forms equivalent to two given integral forms are known, then the
integral forms may be multiplied together by the rules of Grassmann's
calculus of extension, and the resulting integral form is equal to the one
obtained by multiplying the equivalent integral forms in the same way.
Secondly, it is shown that when a quadratic form and its equivalent are
known, a pair of equivalent integral forms may be obtained from a given
pair by a process of analysis analogous to reciprocation, the new integral
forms being of order n—in, where n denotes the number of variables and
m the order of the original integral forms. These theorems are very

SEB. 2. VOL. 8. NO. 1050. Q
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useful for finding invariants.* Various invariants are calculated with a
view of obtaining the general form of the equations of motion. Abraham's
expression of the reaction of radiation on a moving electron is shown to be
an invariant for the group of spherical wave transformations, provided it
is multiplied by a certain factor.

2. The Integral Equations of the Theory of Electrons.

Let the electromagnetic units be those adopted by Lorentz, and let the
units of time and length be so chosen that the velocity of radiation is
unity.

Let curl H denote the vector whose components are

z dHy

dy dz ' •"'

when the axes of x, y, z are right-handed and the vector whose compo-
nents are

y

dz dy' ""

when the axes are left-handed. Then the fundamental equationst of the
theory of electrons may be written

c)E
curl H = -TTT

ut

div E = p

div H = 0

where E is the electric force, H the magnetic force, p the volume density
of electricity, and pw the convection current.

* They appear to be closely counected with two theorems used by Ricci and Levi Civita,
" Me'thodea de calcul differential absolu et leurs applications," Math. Ann., Bd. LIV (1901).

t H. A. Lorentz, Ency. d. math. Wiss., Vol. 13, No. 5 ; and Vol. 14, No. 2, The Theory
of Electrons, Leipzig (1909), p. 12.
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These equations may be replaced by the two integral equations*

(Hxdydz+Hydzdx+H;dxdy+Exdxdt+Eydydt+Ezdzdt) = 0, (II)

(Exdydz+Evdzdx+Eydxdy—Hxdxdt—Hydydt—Hsdzdt)

= — 111 ifiWxdydzdt-\-pWydzdxdt-\-pwedxdydt—pdxdydz), (III)

provided the integrals receive suitable interpretations. The interpreta-
tion that first suggests itself is obtained by regarding (x, y, z, t) as the
coordinates of a point in a space of four dimensions. Let any closed two-
dimensional manifold &2 in this space be assigned by equating x, y, z, t to
one-valued differentiate functions of two parameters a, ft, and let S2 be
the boundary of a three-dimensional manifold S3 in which the coordinates
are like functions of three parameters a, ft, y, of which y = 0 on S.2, and

y < 0 on S3. Then any term such as I Hxdydz may be interpreted to
Hx *.,' 1 da dft taken over S2, and any term such as

O(a, p)

\\\ odxdydz may be interpreted to mean P KT~O—rdadftdy taken
JJJ JJJ 0(a, p, y)
over Ss.

The relations (II) and (III) may now be obtained with the aid of (I) by
applying the generalized Green-Stokes theorem as given by Baker,!
Poincar6,+ and others.

In order that equations (II) and (III) may be equivalent to (I), the
axes must form a right-handed system. If we wish to use left-handed
axes we must change the sign of H in (II) and (III).

We shall now endeavour to give a simpler interpretation to the
integrals occurring in equations (II) and (III).

Let S be an arbitrary closed surface in the (x, y, z) space, and let t be
expressed in terms of x, y, z by an arbitrary law t = t(x, y, z), which
must be chosen, however, in such a way that t is a single-valued function
which is finite together with its derivatives with regard to x, y, z at all
points within S and on S itself. Let the coordinates of points on S be
expressed in terms of two parameters a, ft.

* The integral forms occurring in these equations have been studied by Hargreaves,
Cavib. Phil. Trans., Vol. 21, p. 107 (1908).

| Camb. Phil. Trans., Vol. 18 (1900), p. 408.
% Ada Math., t. 9 (1887), p. 321.

Q 2
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A term such as I Exdxdt may now be understood to mean*

[[m f8(a;' *> dfr»*> - d(x,t) d(z,x) , d(x,t) d(x,

JJ 1 ^
and a term such as pioxdydzdt to mean

d(x, y, z)

The equation (II) may now be written

*'"*•£ +ff«l

rrr / â  , â  , ail \ , , ,
= " JJJ \pw*Tx +pw»Ty

 +pUKTz - p ) dxdydz'
Transforming the left-hand side by means of Green's theorem, we get

Now dEx = dE* | dE* dt ,

y _ dHv . a g , a^.
dx dx dt dx'

hence the above integral may be written

M (dEz_dHJ , a^N si, /3.E,, a g a , 3ffg\ â
V 3* dy + dz ) dx + V dt dz ^ dx) dy

* + / ^ + 3 ^ + 3EAn
0 V dx oy oz / J

* The relation ?-&J). = ̂ ' -0 3-^i) + 3(x'^ d M + ̂ ' A ^ ^
,1 («, /B) 9 (l/, a) 3 («, /B) D (2, X) d (a, jB) 3 (*, ») 3 (a, |3)

is a particular case of a general relation given in Scott's Determinants, p. 134.
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and this is equivalent to

[[[ ( dt , dt . dt \ , , ,

" JJJ \pWx Tx +pw» fy +pw° Tz~p)dx dlJ dz>
if equations (I) are satisfied and the axes form a right-handed system. In
the same way, it can be shown that the integral on the left-hand side of
(II) is zero, if equations (I) are satisfied.

Conversely, if equations (II) and (III) are satisfied for every closed
surface S and for every law t = t {x, y, z), such that dt/dx, dtjdij, dt/cz
are finite and continuous within S and on its surface, then equations (I)
are also satisfied, provided, of course, that the quantities Ex, ..., Hx, ...
possess derivatives which behave in such a way that an application of
Green's theorem is permissible.

It seems natural to regard equations (II) and (III) as the fundamental
equations of the theory of electrons, because they do not require the
assumptions that the medium is continuous and that vectors E, H can be
associated with every point in space ;* all that is required is that the
quantities Ex, ..., pwx, ... shall be integrable.

It is clear that in the general case the quantities occurring in these
equations are evaluated at different points of space at different times.
The integrals are thus more general than the usual surface and volume
integrals, and seem to be better adapted for purposes of measurement, the
difficulty of measuring quantities at different points of space at the same
time being avoided.

Equation (III) may be regarded as the definition of the electric charge
associated with a system of particles. The triple integral represents the
total charge on the particles, t Each particle is supposed to be within

* In the case of a single pulse travelling across a medium in which the vectors E and H
are initially zero, these vectors may exist at a given point at one time and not at another.

f This may be proved by showing that the triple integral remains invariant during the
motion of a system of electrons.

Let an electron which was at the point (x, y, z) at time t be in a new position (x', y', z')
at time V. where

X = x + ewx, z = ,

y' = y + ew,,, V = t+ f,

and e is a small quantity which is a function of x, y, z, t. The integral form is transformed

p'w'j. d/ij dz'dtf + p'w' dz' dx'dt' + pio'dx' dy' dt' — p'dx' dy' dz',

where pv>. = , z, t) - d (y, z, t) d {y, z, t)
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the closed surface S at the moment when its charge is evaluated, but
since the charges on the particles are evaluated at different times, the
particles need not all be within the closed surface at a given time. This
explains why the total charge is not

pdxdydz.

The double integral expresses the total charge as a surface integral, but
here again the particles over which the integration extends are not all on
the surface at the same time, but at different times.

In the same way equation (II) may be regarded as a general way of
expressing the fact that there is no free magnetism.

If <£ is the scalar electromagnetic potential and (Ax, Ay, Az) the com-
ponents of the electromagnetic vector potential, we have

^ _dAg dAv

, , Hx,y,Z,t) = 3x w a*; a*
p ' d{x,y,z,t) y dx F J dy y dz v U

* a (x, y, z, t) v

*&!_*>*>*). = pWr d* + pW)J h. f pWz 3?
d(x,y,z,t) dx dj/ dz

Multiplying the last equation by w,, and subtracting from the first, we get

Td (x, y,z,t)T \_U hx dy

Putting 1 = i + «,, JL + «, ^ + Wz
 a ,

dt to • dx dy dz

we see that the equation is satisfied if

and if £ is a small quantity of the first order
at

in other words (u£, w ,̂ w'z) are the component velocities at time t +«.
Since the integral form is an invariant, we may calculate its value by considering the

swarm of electrons at a given time t. The temporal terms then disappear, and the integral
reduces simply to -pdxdydz,

i.e., the total negative charge on the system of electrons.
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These equations are equivalent to the single integral equation

(Axdx-\-Aydy+Azdz—$dt)

= \\(Hxdydz+Hvdzdx+Hsdzdy+Exdxdt+Evdydt+Egdzdt), (IV)

provided a suitable interpretation is given to the integrals.

Take any closed curve C and a surface 2 bounded by this curve. Let
t be expressed in terms of (x, y, z) by an arbitrary known law ; then the
line integral may be understood to mean

-* g)
and can be transformed into the surface integral by means of Stokes's
theorem. Since

d ( . , 9 A d

dA_z _dA1> (dA; , 3f \ dt _ (dA^ , c f \ dt
"dy dz ^Xdt ~*~ dz)&y \ dt ^ dy) oz

the surface integral which is obtained is

or (Hxdy dz+Hydzdx+Hzdx dy+E£dx dt+Eudydt+E,dzdt).

Hence equation (IV) is established.

8. The Group of Point Transformations for which the Integral Equations
of the Theory of Electrons are Invariant.

Let us consider a transformation of coordinates from (x, y, z, t) to
(x\ y', z', t') which is biuniform within a certain domain of values of
(x, y, z, t). We shall suppose that the choice of a transformation is
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limited by the condition that the total charge on a system of particles
is invariant. This is expressed analytically by the equation

pwx dydzdt-\- pwy dzdxdt-\- pw2 dxdydt—pdxdydz

= p'wtfy'dz'dt'+p'w'ydz'dx'dt'+p'widx'dij'dt'-p'dx'di/dz', (1)

provided the axes form a right-handed system in each case.
If the transformation is such that the integral equations of the theory

of electrons are invariant, we must have

Exdydz-\-Eydzdx+Esdxdy—Hxdxdt—Hydydt—Hsdzdt

Hxdydz+Hvdzdx+Hsdxdy+Exdxdt+Eydydt+Ezdzdt

= eimdy'dz'+Hydz'dx'+H'zdx'dy'+E'xdx'dt'+E'ydy'dt'+E'zdz'dfl

where 8 is a constant. $)

These relations give two sets of equations connecting the quantities
EX) ..., HX} ... with Ex, ..., H'x, ..., viz.,

>d(x',y') w d(x', t')
37 "a; 37 rd(y,z) yd(y,z) d{y,z) d(y,z)

rr, d(y', t') w d(z', V)
y d(y,z) d{y, z)'

TJ - v> dW> z"> 8 ^ g>) 8 ^ ' y') ^(^f *')
, t) x 3(x, t)

•*"« H* 3 / ' ,v > (3)

a r lJ rr _ aV rr,d(y\ J) , rr,d(z\ X1)
and iix — y iij,-57—zr+-"a/"57 r + ^ ^ T ; — \L 3(y , 21) d(y, z) d(y, z)

37 T »

d(y, z)J

[x, t) y d(x,

In order that these equations may be equivalent to one another* we must

* It is assumed here that the equations of transformation are independent of Ex, Ey, Es,
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have O2 = 1 and eighteen relations of the types

3Q/, z') fl a(x', t')
d(x, y) a{z, t) '

d{x, t) d(y, z) '

There are clearly nine relations of the first type and nine relations of the
second type. We shall now show that when 02 = 1 these relations imply
that there is a relation of the form

dx'2+dy'2+dzt2-dt'* = \2{dx2+dif+dz2-dt2);

for this purpose we shall require the following lemma.

LEMMA.—Let the sixteen quantities

be connected by the eighteen relations of type

# 2 7 8 — A J 7 2 = ai<54—a4<5j,

which imply that conjugate minors of the determinant ["lAjya^] are
equal. The identity

then gives a2 {yl £4—y4 SJ+a2 (y2 <54—y4 $J + a3 (y3 ̂ 4—y4 63) = 0

or ^(c^yi+aaya+aayg+ajy^ = y4(ax

Introducing the notation

(ay) = ajyj + aayss-f a3y3+a4y4,

we may obtain in the above way the equations

yx(a(5), <53(ay) = y3(a6<),

yaM)> 4̂ (ay) = y-jM);

Hence, either (ay) = (aS) = (/3y) = {/3S) = 0

or all the quantities of type yi<S2~ya î a r e z e r o- I n the same way we can
prove that either ^ « >̂ _ . „,
r (ap) = (ao) = (yp) = (yd) = 0
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or all the quantities of type /S^—/32$i are zero, and that either

(0a) = (138) = (ya) = (yS) = 0

or all the quantities of type alS2—a2Sl are zero. It follows from this that
either (1) the six quantities (a/3) are zero or (2) that the thirty-six quantities
( a ^ g — a 2 ^ ) , (A&j—/32<Si), (yi<?2—V2^i)> ••• a r e all zero or (8) t ha t the re

is a set of relat ions
(ay) = (ad) = ipy) = (fid) = 0,

& ' S2 8$ 8AJ3 U4 "1 "2 "3 ui

It is easy to see, however, that in the latter case we also have

(y8) = (a/3) = 0.
Hence, in all cases,

(ay) = (a/3) = (a8) = (j3y) = (j38) = (y8) = 0.

Again, we have

yi

72 = 54(a^ + a ^ + a | + a p — a4(a1<S1+aa<5a+a3<J3+a4<S4);

hence, since the last term is zero,

This gives

"3 ^3 y3

a4 /34 y4

say, and there are similar equations in a, (3, ay, /3y, /3<S, y<S. It follows

y i

= ± x2-
These conditions, combined with the previous set, imply that the sixteen
quantities ar, /34, ... are the elements of an orthogonal matrix.
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If the signs of the a's are all changed, the relations take the form

but the final result is unaltered; hence a set of relations of this type also
imply that the quantities a are the elements of an orthogonal matrix.

Taking the quantities a, /?, ... to be the elements of the matrix

ox
dx

dx'

dy' di£_

dx dy

dx dy

dx dy

dx[
dz

dy'
Tz

dz'
~
oz

.dt'
lTz

ox
idt

idt

d£
idt

Tt

we have the result that, if eighteen relations of the type

d(y', z') _ d(x', t') d(y', z>) _ _ d(x', t')
d(x, y) d(z, t) ' d(x, t) d(y, z)

d(y', z') _ _ d(x\ t') d[y',j') _ d(x',t')
d(x, y)

or of the type
d{z, t) ' d(x, t) d{y, z)

are satisfied, then the matrix is an orthogonal one, and this implies that

dx'2+dyf2+dz'*-dt'2 = \*[dx*+dy*+dz*-dP]',

in other words, that the differential equation

{dx?+(dyf+(dz)*-(dt)2 = 0
is an invariant. The converse is also true, and may be easily verified.

This differential equation expresses the condition that two neighbour-
ing particles should be in a position to act on one another; it also indicates
that an elementary wave starting from a given point will have the form
of a sphere. For this reason we shall call a transformation which leaves
the differential equation invariant, a spherical wave transformation. Our
analysis shows that a transformation which leaves the integral equations
of the theory of electrons invariant is necessarily a spherical wave
transformation. We must next inquire whether all spherical wave
transformations are relevant for our purpose. If we call t' the local
time, we must exclude transformations which make the local time run
backwards as t increases. Hence, in order that a transformation may
be relevant, the condition

ft>0

must be satisfied.
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Secondly, we must exclude transformations in which the axes are
changed from a right-handed system to a left-handed system, for then
equation (1) would imply a change from positive electricity to negative
electricity. Such a transformation, however, becomes relevant when
equation (1) is replaced by

pwxdy dz dt-\- pwy dzdxdt-\- pio, dxdydt—p dx dy dz

= —p'w'j:dy'dz'dt'—p'wydz'dx'dt'-p'w'2dx'dy'dt'+p'dx'dytdz', (1)'

equation (2) by

Exdy dz+Eydz dx+Esdxdy—Hxdx dt—Hydy dt—Hzdz dt

= -E'xdy'dz'-Eydz'dx'-Eljx'dy'-H'xdx'dt'-R'ydij'dt'-Hldz'dt', (2)'

and equation (3) by

Hxdy dz-\-Hydzdx-\-Hzdxdy-\-Exdxdt-\-Eydy dt-\-Ezdzdt

= d[-H'xdy'dz'-H'ydz'dxf-H'zdx'dy'+Exdx'dt'+Eydy'dt'+E'sdztdt'].

(3)'
These relations also imply that the transformation is a spherical wave
transformation, and so a transformation which changes a right-handed
system of axes into a left-handed system is relevant, but the formulae
of transformation of the components of the electric and magnetic force
are not the same as before. The sign of 6 will be determined later by
the condition that a right-handed set of axes is transformed into a left-
handed set. If ~. ,

o(s , V > z') > Q
d(x, y, z)

corresponding sets of axes are both right-handed or both left-handed.
If, on the other hand, «

d(x'i/z')
o(x,y,z)

the axes are right-handed in one system and left-handed in the other.
It is easy to establish a relation between the two quantities

§£ and iSLH.
dt d(x,y,z)

Q. d(y',z') _ ad(x',t') d(z',x') _gd(y',t')
S l D C e ~d(^z) ~ " " a ^ j " ' d(y, z) ' d(x, t) '

d(x',y') = ed(z',t')
d(y, z) d(x, t) '
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we have

o(x , y , z') _ nVot \ (ox\ x (oy\\ (oz\ (ot\\
d(x,y,z) Ldt \\dx) \dx) \dx) \dx) )

dx {dx dt dx dt dx dt dx dt) J

or -^—'-2-1—- = Q-z-
o(x, y, z) ot

We also have

d(x', y', z', t1) _ d(y', z') d(x', V) , d(z', x') d(y', t') +

d(x,y,z,t) d(y,z) d(x, t) d(y,z) d(x, t)

"r<"d(x, t) I ^ (d(x, t) J

a* â  "*" ax â  +

Therefore
d(x',y',z',t') _ _ . r /a^y /ayv , fiz'x2 /aA2n
d(x, y, z,t) - w L \dx) + Vâ y + te/ te/ J

This gives us the relation*

( , y , ) dt ( , y , ,

which holds for any spherical wave transformation.

We shall now introduce the further restriction that the inequality

(dx'f+(dy)2+(dzY < (dt)2

is a consequence of (dx)2-\-(dy)2+(dz)2 < (dt)2.

This means that, if a particle is moving with a velocity less than that of
light in one system of coordinates, it is also moving with a velocity less
than that of light in the transformed system.

* I am indebted to a referee for calling my attention to this relation and the necessity of
distinguishing between the two types of transformation.
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Putting

{dx)*+{dyf+{dz?-(dtY = \'[(dx)2+(dy)2+(dz)2-(dtfl (C)

we see that X2 is positive, and therefore

i.- m L. , ,, , d(x',y'.z) , dt' d(x, y', z, t) , ,is negative. This shows that J, 9 ' and ^7 3, ' must have
6{x,y,z) dt d(x,y,z,t)

CMT (") I'7* 7 / Z )
the same sign. Hence, if 37 is positive, ^. ' must have the same6 dt * o(x,y,z)
sign as the Jacobian. Accordingly, a transformation which changes
a right-handed system of axes into a right-handed system must have a
positive Jacobian; a transformation which changes a right-handed system
of axes into a left-handed system must have a negative Jacobian.

The sign of 6 may now be determined from equation (A). Since

it is necessarily positive. Consequently 6 must have the same sign as
d(x y' z)3, " ' ; , and therefore the same sign as the Jacobian.
o{x,y,z) &

We can now obtain the formulas of transformation in the two possible
cases.

(i) When the Jacobian is positive, 6 = -f-1, and the formulas of
transformation are

E = E1 -J ' ̂  +E' (z ' x' +E' °(x>y>x d{y, z) y d(y, z) z d(y, z)

„ , d(x', t) „ , d(y', t) „ d(z\ t)
o{y, z) o{y, z) o{y, z)

rr _ 77» d(y', z) . w, d(z, x) , w d(x, y)
•i±x = Jtbx -~f—:

_ ™ 3 ^ , t) _ , d(y\ t) _ n, 3(g', t)
*T5toJ) v d(x,t) z d ( x , t ) '

, , d(y',z, t') , , , d(z',x, t) . , , d{x',y', t) ,d(x,y',z)
pWx = pWx ^ _ _ +pWy ^-—^ +pWz 1^—w -P ^—^,

, , d(y', z, t) , , d(z,x',t) , , , d{x',y',t) , d(x',y,z)
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These equations may be simplified by using the relations of type

d(y ,z, t') _ adx . 2

d(x,y,z) dt

which are proved in the same way as (A), the quantity X2 being defined
by equation (C).

The new equations are

dy , , , dz ,dt'~\

, i dx . i i dy' . t i dz ,dt'w+wjL +W

and these imply that

pwxdx-\- pwvdy -\- pwzdz—pdt = \2[p'wxdx-\- pw'ydy-\- p'w'-dz—pdt'].

The formulae connecting the electromagnetic potentials are obtained by
putting

Axdx-\-Aydy-\rAzdz—§dt = 0[A'xdx -\- A'ydy' -\- A'2dz — # 'dt'~\.

Since 6 = + 1 , they are

, ,i dx , .1 dy' . .i dz *, dt
ox J ox ox ox

i A> dx , A, dy' , .> dz *jdt'

(ii) When the Jacobian is negative and dt'/dt > 0, the axes are right-
handed in the original system and left-handed in the system specified by
the dashed letters. To obtain the correct formulse of transformation we
must change the sign of H' in equations (2) and (3) and put 6 = — 1.
There is also a doubt about the sign in the equation

pw dydzdt-\-pwydzdxdt-\-pwzdxdydt—pdxdydz

= ±{p'ioT,dy'dz'dt'+pwvdz'dx'dt'+p'iozdx'dy'dt'-p'dx'dy'dr'),

the sign depending upon whether positive electricity is transformed into
negative electricity or positive electricity. If the negative sign be taken
there must be a corresponding alteration in equation (3).
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4. Spherical Wave Transformations and the Group of Conformal Trans-
formations of a Space of Four Dimensions.

The group of spherical wave transformations may be reduced to a
known group by putting t = is. The quadratic form which remains
invariant is then of the type

and so the transformation is a conformal one.
The group of conformal transformations in a space of four dimensions

has been studied by Sophus Lie,* who has shown that it is composed of
reflexions, translations, rotations, magnifications, and inversions.t The
transformations which are of importance in the present case are the
imaginary ones, and it should be noticed that by a combination of two
imaginary inversions we can obtain a transformation of the type

2a(z+is)

2ia(z-{-is)

which is quite different from an inversion or simple displacement. This
corresponds to the real spherical wave transformation!

, _ ky , _ ,,
~t' Z~z-t' Z~ 2a(e-t)

r, - kx , _
~t' y ~

An imaginary rotation in the four-dimensional space may be specified, in
a particular case, by the equations

x' = x cos iio-\-s sin iio, y' = y,

s' = — x sin iw-\-s cos iw, z' = z.

Putting tanh w = v,

* Gottinger Naehrichten (1871), Transformationgruppen, Bd. 3, p. 351.
| Every transformation belonging to the group is a birational transformation.
X See a paper by the author " On the Conformal Transformations of a Space of Four

Dimensions and their Applications to Geometrical Optics," Proc. London Math. Soc, Ser. 2,
Vol. 7, p. 70 (1909).
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we obtain Lorentz's transformation

, _ x-\-vt , _ , _ ,, _ t-\-vx

The formulae of transformation of the electric and magnetic vectors are
obtained at once from the general formulae; they are

Ax = j3(i4£-t#')f - $ ;

A — A' A — A'
•Sly — Slyf •"•» •"•?«

Ey = (3(E'y-vH'z), Hy =

Ez = P(E'z+vH'y), Hz = p(H:-vE'y),

pWx = fi(p'lo'x — Vp'), plOy = p'Wy, pWz = p'w'z,

—p = fi{vp'w'x—p'),

where /3 =

These agree with the formulae of Einstein, Lorentz's formulae for the
convection currents being slightly different.

In the case of an inversion with regard to a hypersphere whose centre
is at the origin, and whose radius is a real quantity k, the formulae of
transformation are

-

Putting s = it, x2-\-y2-\-z2 = r2, we get the real spherical wave trans-
formation

This transformation has a negative Jacobian ; the formulae for transform-
ing the components of the electric and magnetic force have been obtained
by E. Cunningham.*

It should be noticed that

dt ~ (r2-*2)2'

* Proc. London Math. Soc, Ser, 2, Vol. 8, p. 77.

SUB. 2. vor.. 8. NO. 1051.
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and is positive; hence t' increases as t increases, if (x, y, z) are kept
constant.

The transformation which corresponds to a reflexion in the four-
dimensional space is also of considerable interest. In the particular case
when the reflecting space passes through the plane x = 0, s = 0, the
reflexion may be replaced by a rotation round the plane x = 0, s = 0,
and a reflexion in the space x = 0. The corresponding transformation is
thus made up out of a transformation of Lorentz

x = y v=y< z=z' t

and a change in the sign of x'. Putting

v 2u

and changing the sign of x', we get

y' = y,

z' = z,

. 1—u2 l—u x

The quantity u is introduced because the angle of rotation in the four-
dimensional space is twice the angle between the reflecting space and the
space x = 0. Its geometrical meaning in the case of the spherical wave
transformation is indicated by the equation

x'—ut' = — (x—ut),

which implies that a plane moving with the constant velocity u is trans-
formed into itself. Further, when x = ut, we have

x' = x, y' — y, z' = z, t' = t;

hence every point of the plane is transformed into itself.*
The formulae of transformation of the electromagnetic vectors are

found from the first set of equations for a transformation with negative
Jacobian.

* Geometrically the traasformation is equivalent to a reflexion in a moving plane mirror.
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T he general infinitesimal spherical wave transformation is

x' = x+e[p(x2—tf—

z' = z+e[r(z2—x2—y^+ft + Vpxz+Zqyz+Zszt —gx—fy-\-ixz-\-nt-\-c\

f = t+e[s(

where the coefficients are all constants, and e is a quantity whose square
may be neglected. Since there are fifteen arbitrary constants the group
is a fifteen parameter group.

We have

dx' By' dz' dtr , , r , n , rt , n . _ .-. A"5* = fy = Tz = W = l+e[/x+2pa5+2^+2r,+2s<] = A,

If (x, y, z) is kept constant as t varies, the corresponding point (x't y\ z')
moves along a parabola, but in one type of transformation it moves along
a straight line with constant acceleration. This is the case, for example,
w h e n x' = x+e(y2+z*-x2-1?), y' = y(l-2ex),

z' = z{l — 2ex), t' = t(l —

for, since quantities of order e2 may be neglected, the first equation may
be wri t ten , . , 2 i _a 2 ^2\

x' = x+€(y*+z*—x*—t'*).
Hence, if (x, y, z) are kept constant, the point (a;', y\ z') moves with con-
stant acceleration y given by

y = — 2e.

Substituting for y, we get

x' = x-^ytf+^-x2-?), y' = yd+yx),

z'=z(l+yx), t' = t(l+yx).

The last equation agrees with the one obtained by Einstein.*

In the case of the general infinitesimal transformation, the expression

(x' -x)2+(y' -y?+W -zf- it' - if,

* Jahrbuch der Radioaktivitat, Band iv. (1907), p. 457.
n 2
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is of order e2, but there is one type of transformation in which it is of
order e3 at least. The formulae of transformation are then

x' = x+e[2x(lx+my+nz-t)-l

y' = y+€[2y(lx+my+nz-t)-m(x2+y2+*i-e)],

z> = z+e[2z(lx+my+nz-t)-n {x*+y2+z2-P)\,

t' = t+e[2t(lx+my+nz-t)- (x2+y2+z2-P)],

where l2+m2+n- = 1,

and signify that (x', y', z'), (x, y, z) are successive positions of a particle
which is moving with the velocity of light.

Real spherical wave transformations may be obtained geometrically in
the following way. Let the space time point {x, y, z, t) be represented by
a sphere of radius t having its centre at the point (x, y, z). Then, if we
apply a real conformal transformation of space to these representative
spheres, the new set of spheres may be taken as the representative
spheres of a new set of space time points {x\ yr, z', t'). These are con-
nected with the original set by a system of equations which define a
spherical wave transformation. This theorem has already been estab-
lished in the case of an inversion,* and since any real conformal trans-
formation of space can be built up from inversions, it follows that the
general transformation obtained in the above way is a spherical wave
transformation.

It should be noticed that the general spherical wave transformation
cannot be obtained in this way, because t' = 0 always corresponds to
t = 0. If, however, we combine these transformations with the real
spherical wave transformation obtained by increasing or decreasing the
radii of all the representative spheres by the same amount, it is possible
to obtain any spherical wave transformation by a suitable combination.
The proof of this will be left to the reader.

When we use the representative spheres the differential equation

(dx)2+(dy?+(dz)2-(dt? = 0,

admits of a very simple interpretation, as it implies that the two con-
secutive representative spheres specified by (x, y, z, t) and (x-\-dx, y-\-dy,
z-\-dz, t-\-dt) touch one another internally.

• Proc. London Math, Soc.t Ser. 2, Vol. 7, p. 70.
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5. The Transformation of Integral Forms.

The general theory of the transformation of physical problems by
means of a change of coordinates can be developed in a convenient manner
by studying a number of integral forms, examining the way in which they
are related to one another, and obtaining the formulas by means of which
they can be transformed.*

We shall commence by studying the simple case of a transformation
in two variables from (x, y) to ix', y'). Suppose that

adx + bdy = a'dx' + b'ch/, (1)

Adx+Bdy = A'dx'+B'dy', (2)

,, , dx' , 7, dy' , , dx' , 7, du'
then a = a' ^ - + b' -^- , b = a' --— + b' -#-,

ex ox oy cy
+f, B = A?f+B&,

ex ex oy oy

and it is easy to see that

aB-Ab = (a'B'-A'b')€^f'yl\
o(x, y)

This implies that (aB-Ab)dxdy = (a'B'-A'b')dx'dy'. (3)

Now this relation can be obtained from the previous pair by the process
of multiplication used in Grassmann's calculus of extension.! In this
calculus, the sign of a product depends on the order of the terms; thus

dxdy = —dydx and dxdx = 0.

This rule can also be applied to the case in which the quantities a and b
are differential operators ; thus, if

^ - \ - > ••>

a = — , b = 3 - , a' = -^-,t b' = — ,
ex oy ox oy

a relation which may be obtained directly by means of Green's theorem.

* The theory of integral invariants has been developed by Poincare, Mtcanique celeste,
t. 3 ; M6tlwdes nouvelles de la Micaniqite celeste, t. 3, p. 33 ; Goursat, Liouville's Journal (6),
t. 4, p. 331; Koenigs, Comptes rendus, t. 122 (1906), pp. 25-27.

t Scott's Determinants, p. 16.
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Next, suppose that the formula of transformation of a quadratic
differential form is known, e.g.,

Edx*+2Fdxdy+Gdif = E'dx't+ZF'dx'dy' + G'dy'2; (5)

then taking two independent differentials dx, dy, Sx, Sy, and writing
dx+\8x, dy+\Sy, ... in place of dx, dy, we get the formula of trans-
formation of the bilinear form

Edx8x+F(dxSy+dySx)+G dySy

= E'dx'Sx'+F'idx'Sy'+dy'Sx^+G'dy'Sy'. (6)

We may multiply this equation by itself, multiplying both sets of
differentials according to Grassmann's rule. The resulting equation is

(EG-F*) dxdySxSy = (E'G'-F'2) dx'dy'Sx'Sy'.

This gives s/(EG-F*) dxdy = ^(E'G'-F'2) dx'di/, (7)

or A dxdy = A'dx'dy'.

Multiplying (6) by (1) according to Grassmann's rule, we obtain

[{Eb-Fa)Sx-{Ga-Fb)8y]dxdy

= [(E'b'-F'a'Wx'-iG'a'-F'b^dif] dx'dy'.

This gives the formula of transformation of a linear form

Eb-Fa . Ga-Fb . E'b'-Fa!. , G'a'-F'b'. , / m

— Sx — Sy = Sx -g Sy, (8)

which may be called the reciprocal of the first.
Multiplying this equation by

adx-\-bdy = ddx-\-b'dij,

j O I T O j i O , , i O
aX •= \-dlf-zr- = (IX zr—f "T<*V V 7 I

dx Jdy dx J dy
respectively, we get

Eb*-2Fab+Ga? A , E'b'2-2F'db'+G'a* J , ,—! dxdy = -g ! dxdy,

'a-F'b\ , 0 (E'b'-F'd\-\
) + Ty' (—Z—) J
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These formula are well known in the differential geometry of a sur-
face.*

We shall now show that the above theory may be extended to trans-
formations in any number of variables. In the first place we must show
that the law of multiplication still holds. Let there be n variables
xx, ..., xn, and suppose that

1,ardxr = 1.ardxr,

then by multiplication we may obtain an integral form of the second ordert

JL (arbs—asbr) dxrdxs = z^{a,rb's—a'sb'r) dx'rdx's,

the multiplication being performed by Grassmann's rule. To verify this
3 (x x )we have only to replace dxrdx3 by •-., r> *

,. , ... o(a
equation may be written

dadS, and notice that the last

da'

dx.r

da dadfi =

Similarly, if we take three integral forms,

~Zardxr = 'Za'rd^'r

,, ex,.
da'

, OXr y , , OXr

(a)

1,Crdxr — HfirflXr, (y)

and multiply them together by Grassmann's rule, we obtain the integral

* Darboux, Tkeorie (jin&rale des Surfaces, t. 3, p. 193.

In particular, if dx'' + dy- — A [dx'- + dy'-],

we may deduce from the identity

that
dy'

and on multiplying by (9), we get the well known relation

'1 i)y -

\ An integral form of the second order must be carefully distinguished from A quadratic
differential form.
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form of the third order

dx7

MR. H. BATEMAN

2
r,s,t i

Cr

d's

K
C's

b't

Ct

. . . . . dx'rdx'si
r,s, i

br bs bt

Cr Cs Ct

It will be seen also that this equation may be obtained by multiplying the
integral form of the second order derived from (a) and (ft), by (y). The
question then arises whether integral forms of any order may be multi-
plied together by Grassmann's rule. To show that this is the case we
shall consider the two integral forms

2 ASitt dxsdxt... — 2 ASttt dx'sdxt, ...,
s» tj ... st tt ...

D u T ) CLXn ClXf — 2-i Dn I, r CLXn CLXn

of orders k and m respectively. Choosing m-\-k variables a, /3, ..., we

have — r r r relations of the type
m! k! J r

s,t,...

d(xs,xt,...) _ y .,
t,... 2 / Q \ — 2a -"5,*,

' d(a p ) s,t,...

d(x's,
d(a, p, ...)

and the same number of relations of the type

2/ Q \*

O \Xp, Xq, Xr, ...

d(y , S, e, ...)
V

P,i.r,.
q» *^f> • • • /

d(y, 6, e, ...)

These may be arranged in conjugate pairs in such a way that the whole
set of variables a, /3, y, S, ... occur in each pair. Multiplying conjugate
pairs together, attributing proper signs to each product, and adding, we find
from the properties of the minors of a determinant that the coefficient of a
term such as Astt,...Bp>q>r,... is zero, unless the quantities 5, t, p, q,r, ... are
all different. When these quantities are different the coefficient is simply

the determinant d{Xs' x%*."'\'x» X<" fr> '"} with a proper sign. When
0 {a, p, y, ...)

multiplied by dadfidy... this yields dxsdxt... dxvdxtldxr..., and it is
clear from this that the multiplication of the integral forms by
Grassmann's rule is justified.

Taking the case of a transformation from four variables (x, y, z, t) to

(x', y\ *', a if

Hxdydz+Hydzdz+Htdxdy+Exdxdt+Eydydt+Esdzdt

= H'xdy'dz+H'ydzdx-\-H'2dx'dij'+E'xdxldi!+E'ydy'dt'+E'xdzdt',
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and

Exdydz-\-Eydzdx-\-Egdxdy—Hxdxdt—Hydydt—Hzdzdt

= Eidy'dz+Eydz'dx'+Ezdx'dij-Hxdxdi!-H'ydy'dt'-Hzdzdt',

we obtain, on multiplication,

(El+El+E:-Hl-Hl-H*) dxdydzdt
= (£*+E%+E%-H*-H*-H$ dxdydzdt',

while, if either form be multiplied by itself, we obtain

(ExHx+EuHy+EzHz) dxdydzdt = (E'xH
l
x+E'yH'y+E':H'J dxdydzdt'.

These equations indicate the invarianee of the property that at a surface
of discontinuity, or in a spherical wave, the electric force is equal in magni-
tude to the magnetic force and perpendicular to it.

A space time transformation from the variables (x, y, z, t) to
(x', y, z, t) can be used to transform the whole motion in one dynamical
system into a corresponding motion in another, as far as the kinematics
is concerned, provided the velocities (wx, wy, w,), (wx, io'y, iv'g) of corre-
sponding points are such that the equations

dx = w'xdt', dy = w'ydtr, dz = wzdt\

are a consequence of the relations

dx = wxdt, dy = wvdt, dz = wzdt.

This condition is satisfied, if

dx'—iu'xdt' = vn{dx—ioxdt)-\-vxi{dy—wvdt)-\-v-^{dz—iozdt),

dy'—w'ydt' =

dz'—w'zdt' = v n l { d x — w x y

Multiplying these equations together by Grassmann's rule, we get

dx'dy'dz' — w'xdy'dz'dt' — iDydz'dx'dt—w[~dx'dy'df
vn "12 "13 (dxdydz—wxdydzdt—w,,dzdxdt—w^dxdydt).

Hi "22 "23

VS1 V32 ^33

This shows that there is an integral invariant of the form

6 {wx dy dzdt-\- wy dz dx dt -f- wz dxdydt—dx dy dz).

This fact has already been used in § 3 and will be required again in § 7.
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We shall now obtain some further properties of a general space time
transformation.

When an expression has the same form in the dashed letters as in the
original ones it will be convenient to say that it is an invariant.

Let us suppose that the bilinear form

Adx8x+Bdy8y+Cdz8z+Ddt8t-tF(dy8z+dz8y)

+G(dzSx+dxSz)+H(dxSy+8xdy) + U(dxSt+8xdt)

+ V(dySt+dt8y)+W(dz8t+dt8z) (1)

is an invariant. If 'we multiply it by itself four times according to
Grassmann's rule, we obtain, the invariant

U dx dydzdt 8x 8y 8z St.A H G

H B F V

G F C W

U V W D

and denoting the determinant by A, we have the

VA dx dydzdt. (2)

uxdydzdt-\- uy dz dxdt+u2 dx dydt-\- nt dx dy dz (8)

Putting dx = 8x,
invariant

Now, let

be an integral invariant of the third order.

Multiplying by (1) and rejecting the factor
an invariant

where

vzdx-\-vydy-\-vzdz-t~vtdt,

vx = Aiix-\-Hu,,-\- Guz-\- TJut \

V,, = Hux-\- Bu,,+ Fuz+ Vut

vz = GUS+ Fu,j+ Cuz+ Wu,

vz = Uux+ Vuu-\-Wuz-\- Dut
 J

Multiplying (3) and (4), we obtain the invariant

dx dydzdt, we obtain
...
(4)

(5)

«,] dxdVdzdt
;

hence the quantity in the square brackets divided by A is an invariant.

Conversely, if we are given an integral form of the first order (4), we
may obtain a reciprocal integral form of the third order (3), by multiply-
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ing (4) by (1) three times and rejecting the factor dxdydzdt */&. The
relations expressing the quantities ux in terms of the quantities ux are
exactly the same as those obtained by solving equations (5).

Next, suppose we are given an integral form of the second order

Bx dy dz+Bv dz dx+B, dx dy+Ex dx dt+E,, dydt+E, dz dt, (7)

which is an invariant. Then multiplying it twice by (1), and rejecting
the factor y/A dxdydzdt, we obtain a reciprocal integral invariant

Dxdydz+Dydz dx+Dzdx dy—Hxdx dt—Hydy dt — Hedz dt, (8)

where

-v/A Dx = (BC-F*)E>+(FG-CH)E!J+(HF-BG)E:

+(HW- VG)BX+(BW- VF)By+(FW-CV)B;

(9)
x = iHW— VG)EX+(GU-A W)EV+(A V-HU)EZ

- U*)BX+(HD- UV)B,MGD- UW)Be

The relation between these two invariants is evidently a mutual one.

Multiplying them together, we obtain the integral invariant

{ExDx+EyD!l+EzDz-E.xBx-RvB,J-H3B^dxdydzdt (10)

and the absolute invariant

\ ...]. (11)

The theory of reciprocal invariants can evidently be extended to the case
in which there are n variables, and a bilinear integral form is known to be
invariant.

If we suppose that a biquadratic integral form

4- K^dxdtSx St + KtfdydtSy §t+Kmdz dtSz St

. (12)

is invariant for a transformation, we may multiply it by itself and obtain
the invariant

(KU K44 -\-... + 2*23 K14 •+• • • •) dx dy dz dt Sx Sy Sz St.
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Putting dx = Sx, and extracting the square root, we obtain an invariant

t/Qdxdydzdt. (18)
Now, let

Bxdydz+Bydzdx+Bzdxdy+Exdxdt+Eydydt+Ezdzdt

be an invariant of the second order. Multiplying it by (12) and rejecting
a factor ^Qdxdydzdt, we obtain an invariant

DJy8z+Du8z8x+DJxSy-HJxSt-HvSySt-HJzSt,

where
Dx =

The relation between the two invariants will be a mutual one if the co-
efficients KU, ... are the elements of an orthogonal matrix.

The Invariants of a Spherical Wave Transformation.

Starting from the fundamental invariants

dr2 = ^[df-dx^-dy'-dz2], (1)

\Adxdydzdt, (2)

Axdx+Avdy+Aadz-$dt, (3)

Hxdydz+Hydzdx+Hsdxdy+Exdxdt+E,jdydt+Ezdzdt, (4)

Exdy dz-\-Eydzdx+Ezdx dy—Hxdx dt—Hydy dt—H:dzdt, (5)

pwzdy dz dt-\- pwydzdx dt-\- piVzdxdy dt—pdxdy dz, (6)

we may obtain a number of others by the methods of multiplication and
reciprocation. It will be sufficient to enumerate these if we mention the
equations from which they are derived,

(1 and 6) -^ [pwxdx+pivydy+pw2dz—pdi], (7)
A

(5 and 4) (EJ+jEj+EJ-flJ-flJ-HS dxdydzdt, (8)

(4 and 4) (ExHx+EvHy+EsHs)dxdydzdt, (9)

(3 and 6) p[Axwx-\-AyWy+AiWs—&]dxtkydzdtt (10)
2

(6 and 7) -^ {1 —w2)dxdydzdt, (11)
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(5 and 7) -A- [(Ex—wzHv-\-wyHz)dydzdt+(Ey—2oxHz+wzHx)dzdxdt
A

+(Ez—WyHx+wxHy)dxdydt—(wxEx+wyEy+weEt)dxdydzt (12)

(12) -£• [{Ex+wyHz-wtHy)8x+{Ey+wzHx-wxHz)8y

+{Ez+wxHv-wyHT)8z—(wxEx+WyEy+wzEe)8i], (18)

(18 and 2) pdxdydzdt[{Ex+wyHg—wzHy)8x+{Ey+wzHx—wxHz)8y

+(Ez+wrjHy-wyHx)8z-(tvxEx+wyEy+iozEz) St]. (14)

These invariants represent quantities which are of considerable importance
in the theory of electrons.* Another invariant which is of some
importance is obtained in the following way.

Lett

_ WX _• Wy _ %OZ _ 1

^ w W ™

ds2 = dP-dx*-dy2-dz\

,, , ofo dy dz dtso that wx = -=-, u\= -f-, w9 = -j-, tVi = -=-.as as as as

<Zs 1 — w 2 ( 1 —

3ibx(ww) . wx { •• , S^mO , .2

Hence

\ds / \ds / \ds I \ ds )

(wio)2

(1-w2)2 r (l-w2f ^(1-w2)* (1-w2)*

io2 , (wio)2

* Some of these are already known in the case of Lorentz's transformations. Cf. Planck,
Ann. der Physik, Bd. 26, p. 1 (1908). Minkowski, Gottinger Nachrichten (1908), Born. Ann.
d. Physik, Bd. 28 (1909).

t Cf. Minkowski, Oott. Nachr. (1908).
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Thus

Now Abraham* has given a formula for the reaction of radiation upon a
moving electron, the x component of the reaction being

v 2e2

K" = S(i=3
accordingly,

To complete the symmetry of the result, we define quantities if* and
by the equations

we then have ^^La.+^/-K'i/+wsfi'2 = Kt,

i = 0.

Laue+ has shown recently that Abraham's formula may be derived by
means of the principle of relativity. We shall complete this result by

showing that {Kt6x+K,8y+K,S*-K St) dt

is an integral invariant for the whole group of spherical wave transforma-
tions. It will be sufficient to prove this for the case of the transformation

— _JLrt — x ..I — _JL *' —

* Theorie der EUktridtdt, Vol. n, p. 123.

t Ann. d. Phys., Bd. 28, p. 436 (1908).
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Now, if ds' = ^ , p2 = •>*-?,^

dtf _ (._ 2a:2\ dx _ 2^/ dy _ '2M dz , 2xt dt
ds' ~ \ ~P*)ds ~jt ds /o2 ds "*" p2 ds*

d?t

ds- ds =

ds
Hence

(y f i ^ ds
Ids1'9 V {\W*) + WV + U'2/ \5?i )J

therefore

-K'tSt')dt' = (KxSx+KySy+KJz-KtSt)dt.

The Electrodynamical Equations for Ponderable Bodies.

We shall consider a system of electrodynamical equations for moving
ponderable bodies of the type used by Minkowski,* Einstein and Laub. +

* Gbttinger Nachrichten (1908).
t Annalen der Phys., Bd. 26 (1908).
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These equations are of the form

-+s, div D = p

(I)

curl H = -5- -\-s, div D = p

curl £ = - I ? , div £ = 0

where the vectors E, H, D, B denote the electric force, magnetic force,
electric displacement, and magnetic induction respectively, s denotes the
current and p the volume density of electricity. The equations differ
from those used byLorentz by the fact that the vector H—[Pio] occurring
in Lorentz's equations is replaced here by the vector H.* It should be
remarked that Frank! has obtained Minkowski's equations by a process
of averaging in the case of non-magnetic bodies.

We shall suppose that the electric polarisation P and the magnetic
polarisation Q are connected with D, E, B, and H by the formulae

P = D-E, Q - B-H.
The electrodynamical equations (I) can be replaced by the two integral
equations

ii
(Brdydz+Bydzdx+B,dxdy+Exdxdt+Eydydt+E,dzdt) = 0, (II)

CD., dy dz+By dz dx -f Dz dx dy—Hxdxdt—Hydydt—H2 dz dt)

= — 111 (sxdydzdt-\-sydzdxdt-\-szdxdydt—pdxdydz). (Ill)

These equations are unaltered in form by a transformation from (x, y, z, t)
to {x\ y', z', t) if

Brdydz-\-Bydzdx-\-Bzdxdy-\- Exdxdt-\-Eydy dt-\-Ezdzdt

= d[B'Kdy'dz+Bydz'dx+B'sdx'dy'+Ezdxdt'+E'ydy'dt'+Esdz'dtr\, (IV)

Drdydz-\-Dydzdx+Dzdxdy—Hxdxdt—Hydydt—Hzdzdt

= <f>[D'xdy'dz'+D'ydzdx-t-Dzdxdy'-H'xdx'dt'-Hydy'dt'-Hldz'dtr], (V)

sxdy dz dt+sydz dx dt-\- sedx dy dt—p dx dy dz

= <p[s'xdy'dz'dt'+sydz'dx'dt'+sldx'dy'dt'-p'dx'dy'dz'l (VI)

where 6 and <j> are constants.

* This simply means that a different definition is adopted for H, the object being to retain
the symmetry of the equations.

t Ann. d. Phys., Bd. 27, p. 1059 (1908).
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The formulae of transformation of the type used by Einsten and Laub
in the case of Lorentz's transformation are obtained by putting 6 = <f> = 1.
If we use a spherical wave transformation with positive Jacobian, we can
deduce the relation

Ezdydz+Evdzdx+Ezdxdy—Bxdxdt—Bydydt—Bzdzdt

- Elcdy'dz'+Eljdz'dx'+Eldx'dy'-Blcdx'dt'-B'ydy'dt'-BWz'dt', (VII)

and this, combined with (V), gives

Pxdydz+Pvdzdx+Pzdxdy—Qxdxdt—Qydydt—Qzdzdt

= P'xdy'dz' -\-Pydz'dx'+P'zdx'dy' -Q'xdx'dt' -Q'ydy'dt' -~Q'zdz'dt', (VIII)

which enables us to obtain the formulae of transformation of the polarisa-
tion vectors.

The constitutive relations are obtained by Einstein and Laub by
assuming that all the bodies in the dashed system of coordinates are at
rest, and that in this system

D' = eG', B! = fxH1, s' = <rE\

This gives a set of constitutive relations for the case in which a system
of bodies are moving with constant velocity w.

The constitutive relations that are obtained in this way may be written
in the form *

Sy,— \w\p _ (IX)

where the suffix w denotes that the component in the direction of w, w,
a component in a direction perpendicular to w is to be taken.

The first two equations are seen to be invariant for the group of
spherical wave tranformations when we obtain them in the following way.
The expression

A Idt—wxdx—Wydy—wzdz\ m

7 w

• Minkowski, Gottinger Nnchrichten (1908); Einstein and Laub, Ann. d. Pht/s. (1908).

SKB. 2. VOL. 8. NO. 1052. S
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is seen from (1), § 6, to be an invariant. If we multiply this by the
invariants

Bx dy dz4By dz dx+Be dx dy+Ex dxdt-\-Eydydt-\-Ez dz dt,

Dx dy dz+Dy dz dx 4* Dz dx dy—Hx dx dt—Hv dy dt—Hz dz dt,

Hxdydz+Hydzdx+H~dxdy-\-Dxdxdt-\-Dydydt+Dzdzdt,

Exdy dz4-Ey dz dx+Ezdxdy—Bxdxdt—By dy dt—B:dzdt,

we obtain the invariants

,,-,__ >k [(Bm—wvEI+wgEy)dydzdt+{By—wtEx+wxEs)dzdxdt

+(Bt—wxEv+wyEx)dxdydt—(wxBx-{-WyBy+wzBz)dxdydz], (1)

], (2)

a. [(Hx—wyDt-\-wsDy)dydzdt+(Hy—w:Dx-{-wxDe)dzdxdt

+(Ht—wxDy+WyDx)dxdydt—{wxHx+WyHy-\-w!,H!!)dxdydz], (8)

/ n ___ a. [{Ex4-wyBz—wzBy)dydzdt-\-(Ey+ivzBx—ivxBz)dzdxdt

4- (Eg 4- ̂ '.r By—wv Bx) dx dydt—(wr Ev+wv Ev+wx Ez) dx dy dz], (4)

and the constitutive relations are obtained by making the first of these
equal to fx times the third, and the second equal to e times the fourth,
where e and /* are invariants. These, however, are not the only con-
stitutive relations which remain invariant,* for we may obtain the two
integral invariants

r — - ^ + - ^ ) d x d i ) d t + [ ^ + ^L + -^)dxdydz; (5)
t ox ay I \ox ny vz I

^T— 4- -̂  - — ^rJi)diithdt+ [^^ 4" -^r- ~r1)dzdxdt
rt aij cz I \ rt oz ox J

4-(37- 4" - ^ — ^ ~ jdxdydt— - ^ + 3-^4--^^\dxdydz. <6)
\ d< o« ri-j/ / 7 \ da? o?/ 02 /

A set of constitutive relations given by two linear relations between

* This was pointed out to me by Mr. Hass£.
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these six integral forms of the third order is invariant for the group of
spherical wave transformations.

To obtain the other constitutive relations, we construct an integral
form of the third order reciprocal to (X) and write it in the form

3 j3 (7)

where pQ is a quantity which will be determined presently.
Subtracting this from the invariant

sx dy dz dt+sy dz dxdt-\- .<?- dx dydt—pdx dy dz, (8)

we may obtain a set of constitutive relations by identifying the resulting
invariant with

/ n __—§•. [ (Ex4- wv -B?—w3 Bv) dydzdt+(Ey •+• w7 B, —u \ B-) dz dx dt

+ (E,+wx By—wy Bo) dx dydt—(Erw:,+Ey wv—E, w:) dx dy dz].

If we multiply the first coefficient in this invariant by ?(>.,, the second by
wy, the third by ioz, the fourth by 1, and add, the result is zero. The
same must hold in the case of the invariant to which it is equated ;
therefore

l ~~ 10

or p = Po+(sw).

Hence we have the constitutive relations

W =

which agree with those obtained by Minkowski, Einstein and Laub, in
the case when A = 1.

We shall now show that it is possible to construct a set of constitu-
tive relations which are invariant for a much wider class of transfor-
mations.

Let the transformation be biuniform within a certain domain of values
of (x, y, z, t), and such that the bilinear form

Adx8x+B dy §y+CdzSz+D dt8t+F{dy 8z + dz Sy)

+ G(dzSx+Szdx)+H(dxSy+dySx) + U(dxSt+Sxdt)

+ V(dy St+Sy dt)+W(dz 8t+Sz dt), (1)
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is an invariant. When we put dx = Sx, ... this implies that a certain
quadratic form is an invariant.

Let us suppose that the constitutive relations connecting Bx, By, Bz,
E,., Ev, Ez with Hx, Hv, Hz, D.r, Dv, Dg, are given by the circumstance that
the invariant reciprocal to

D,rdydz-\-D,idzdx-\-D:dxdy—Hxdxdt—Hvdydt—Hzdzdt

is an invariant multiple of

Bx dy dz+Bv dz dx -f Bz dx dy+Ex dx dt+Ev dydt+E, dzdt.

This assumption preserves the analogy with the electron equations where
the two fundamental integral invariants of the second order are reciprocals
with regard to the quadratic form

\2[dx*+dy2+dz2-dt?].

In the present case the relations between the two sets of vectors are of
the type

Bx = - (BC-

+ (H W— VG) Dx+(B W— VF) Dv+{F W— C V) D:

Ex = - (HW- VG)H3-(GU-A W)Hy-(A V-HU)HS

+ (AD- IP) Dx+(HD-UV)Dy+(GD- UW)DZ

Dx= (BC-F2)Ex+(FG-CH)Ey+(HF-BG)Ez

+ (HW- VG)BX+(BW- VF)By+(FW-CV)Bs

= (HW- VG)EX+(GU-A W)Ey+(A V-HTJ)E3

+(AD- W)B.r+(HD- UV)B,,+(GD- UW)B,

(2)

where A denotes the determinant

A H G U

H B F V

G F C W

U V W D

To obtain the other constitutive relations we start with the assumption
that there is an integral invariant of the type*

0[wxdy dzdt-\-toydz dx dt-\-io,dx dydt—dx dydz\

This assumption is justified by the remark made or) p. 249,
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From this we may obtain the reciprocal invariant

vxdx-\-vydy-\-vzdz+vtdt,

where */&vx = Q{Awx-\-Hwu+Gwz+U)y

vu = 6(Hwx+Bwy+FwK+V)
f - (3)

v, = 6(Gwx +Fwv+Cw3+ W)
Vt = 0(Uwx+ Viov+ Wws+D) •

Multiplying these and rejecting the invariant factor \/&dxdydzdt, we
obtain the invariant

+ 2Uws+2Vwll+%Wwr'} = 0. (4)

Multiplying

Dx dy dz+Dy dz dx+Dz dx dy+H* dx dt—Hydydt—H, dzdt

by Vxdx+Vydy+Vgdz+vtdt,

we obtain the invariant

(vtDx—VyHz-\-vzHy)dydzdt-\-(vtDy—vzHx-\-vxHz)dxdydt

+ (vtDe—vxHy+VyH:h)dxdydt+(vxDx+VyDy+veDs)dxdydz. (5)

We now assume that

sxdydzdt-{-Sydzdxdt-\-ssdxdydz—pdxdydz

— 6[wxdydz dt-\-wydzdx dt-\-wsdxdydt—dxdy dz~]

is an invariant multiple of this invariant. This gives the relation

SxVx + SyVy + SzVz + pVt — 6[vxWx + VylVy + Vzl0S!+Vt~] = 0,

or sxvx+8yVy-\-8gVg+pvt = OVA. (6)

The constitutive relations are of the type

sx—6wx = <r(vtDx—vyHg-\-vsHy)

sy—0wy = <r(vtDy—vsHx+vxHg) L (7)

Sg—dWe = <r(VtDg — VxHy + Vy

and can be expressed in terms of E and B by means of the relations
connecting these quantities with D and H.
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With these constitutive relations the equations of electrodynamics
are invariant for a very large class of space time transformations. The
relations simplify considerably when the quadratic form is of a simple
type.

The vanishing of the quadratic form may be supposed to represent
the condition that two neighbouring particles are in a position to act on
one another.

We shall now verify that in u particular case the constitutive rela-
tions obtained in this way agree with the ones obtained by Minkowski,
Einstein, and Laub.

Starting with a system at rest, we assume that the invariant quadratic
form is , .2 . , .2 . 7 •> -,,.>

dx2+dif+dzl—€fx dr.
This gives A = — e/x,

and if we take K = \ / ( — — ) ,
V \ ix I

the relations (2) take the form

B = nH, E = e-'D.

Now make the Lorentzian transformation

x' — ut' , , , t' — iu'

the quadratic form then becomes

- 2 a i = ^ dx'dt'.
1—u J 1 — ir l—ii?

We again have A = — e/j., and the relations (2) take the form

R — e / x — M 2
 H . . .

7. _ €fX — U2 rr _ ey—l

" ~ Pn— it2) - ed—ir

e(l—U2)
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These are equivalent to the relations

Bx = fxHx,

Bx—uEv = n[H3—uDy'],

E,-iiBz = e-1 [D,-uH,l

obtained by Minkowski, Einstein, and Laub.
It is also easy to verify that the constitutive relations (7) take the

form
sx—up _ ^w u ^ Ey—tiBz _ E: — uB;l

given by Minkowski, Einstein, and Laub.
We have thus shown that the scheme of constitutive relations

indicated by the invariance of a quadratic form agrees with the known
scheme of relations in particular cases, and is invariant for any relevant
space time transformation which is biuniform in a certain domain.

These relations are not the most general possible, and so the con-
figuration and state of motion under consideration is of a special type,
but the relations are sufficiently general for most ordinary purposes.

[Note added October 8th, 1909.]

Spherical wave transformations are not the only ones which can be
used to transform problems occurring in the theory of electrons, for there
are large classes of transformations which can be applied to particular
problems, bat cannot be applied to an arbitrary problem. The equations
of transformation in this case involve the magnitudes of the electric and
magnetic forces occurring in the particular problem.

Let us suppose that the electrodynamical field in a particular problem
is of such a nature that the components (Ex, Ey, Ez), (Hx, Hu, H>) of the
electric and magnetic forces are connected by the relations

E.,.H>,+EIIH!I+E;H; = 0,

Ex-\-Ey-\-Eg = Hx-\-Hy-\-Hz,

and let (sx, s,,, sj be the components of Poynting's vector.
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Then, if a*, ay, az, a, s are five functions of x, y, z, t satisfying the
relations . ,

uje sx -r u,j s,j+u, sz = as,

a transformation of coordinates for which

= Mdx'2-\-dy'2+dz'2-dt"i),

\ being a function of x, if, z, t', is in general suitable for the transforma-
tion of the problem in question. The above equation implies that, if the
velocity of radiation is represented by unity in the first system of co-
ordinates, it is also represented by unity in the second system.

[March 15th, 1910.—

The relation <!,«*+u^y+efeS, = as can be omitted.]


