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By G. H. HARDY.

[Received November 80th, 1908.—Read December 10th, 1908.]

I.

Introductory.

1. This paper is designed to supplement and complete three papers
published under the same title in 1901-2.* In these three papers I
considered in detail a number of questions connected with principal
values, and in particular the questions of the continuity, differentiation,
and integration of principal values which involve a continuous parameter.
In the last of them I began to consider the equation

(1) P \AdxP \Bf(x, y)dy = P \* dyP \Af{x, y)dx,
Ja Jb Jb Ja

where f(x, y) is a function affected with singularities of a special form. It
will probably be convenient for me to repeat the principal results at which
I arrived. I shall confine myself at present to the case in which all the
limits are finite, and I shall simplify the statement of the results by the
introduction of certain definitions.

I shall call a straight line parallel to either axis a standard curve of
the first kind, or, more shortly, a line Gx. A curve of continuous curva-
ture, whose tangent is nowhere parallel to either axis, I shall call a
standard curve of the second kind, or a line C2. Such a curve has the
property that its equation may be expressed in either of the forms

y = X(x), x = Y(y),

where X and Y are functions whose first two derivatives are continuous
and whose first derivatives do not vanish for any value of x or y in
question. The simplest example of such a curve is the line x = y.

It generally happens, in cases which lead to applications of any interest,

* Proceedings (Old Series), Vol. xxxiv., p. 16 and p. 55, and Vol. xxxv., p. 81.
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that the discontinuities of / lie on a finite number of lines Gx or C2.
Occasionally a line of discontinuities presents itself which violates the
conditions for a line C2 in that its tangent is parallel to an axis at a finite
number of points. This case is not considered in the general theorems
which follow, and additional investigation is necessary when it occurs.

2. In my third paper I dealt with the case in which no two singular
curves intersect. I first proved that—

(i.) If f is a continuous function of both variables, except along a
finite number of lines Cj parallel to the axis of y, and i£

is uniformly convergent in (6, B), then

[A CB CB [A

(2) P dx\ fdy=\ dyP\ fdx.
Ja Jb Jb Ja

In other words, the equation (1) holds, but two of the symbols of the
principal value contained in it are unnecessary.

The simplest case of this theorem is that in which

x-a

where a<.a < A, and 0 is a function continuous without exception,
together with its first derivative 6S. If all the first and second derivatives
of 8 are continuous I shall say that / has a standard discontinuity along
the line x = a. Similarly I shall say that / has a standard discontinuity
along the line C2 represented by the equations

y = X{x), x = Y{y),

if it is capable of expression in the forms

O(x, y)

y-x'
where 8 and <&, together with all their first and second derivatives, are
continuous without exception.

With this notation, my second result was

(ii.) If f, together with all its first and second derivatives, is con-
tinuous throughout {a, A, b, B), except that it has standard discontinuities
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along a finite number of non-intersecting lines C2, then
CA CB CB CA

(8) dxP \ fdy = dyP fdx.
Ja Jb Jb Ja

Here, again, it will be noticed, only two symbols of the principal value
are necessary, but these are not the same two as in equation (2).*

8. By a combination of Theorems (i.) and (ii.), and the theorem which
results from (i.) when x and y are interchanged, we can deal with all cases
of interest in which no two curves of discontinuity intersect. The really
interesting case, -however, is that in which there are such intersections.
It is clear that, by dividing up the rectangle of integration, we can reduce
this case to that in which there is only one intersection; and this case
can be subdivided into three, according as the intersecting curves are
(a) two lines Clt (b) two lines C2, or (c) a line Gx and a line Ca.

With case (a) I dealt in my third paper, by means of the theorem

(iii.) If / = e / { ( * - a ) ( y - / 9 ) } ,

where a < a<A, b < /3 < B, and 0, together with all its first and
second derivatives, is continuous without exception, then

(A CB CB CA

(4) P\ dxP\fdy = P\ dyP\ fdx.
Ja Jb Jb Ja

In other words, (1) holds provided all the signs of the principal value
are retained.

4. I shall now proceed to consider cases (6) and (c). As regards the
former, I indicated my result in general terms at the end of my third
paper. If r

X = 0 and fi = 0 being the curves of discontinuity, then (1) may be true,
or it may be untrue, the difference, in the latter case, between the two
sides of the equation being

I considered before the case in which / is of the form

but this more general case will not concern us in this paper.
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where a, /3 are the coordinates of the point of intersection, supposed to lie
inside (a, A, 6, B).* This result I shall now proceed to define more
precisely and to prove." I have had the outlines of the proof in my hands
for years, but have never published it, as it was only recently that I
realised what interesting applications the result has to the problem of
the inversion of a definite integral, which has been so prominent in recent
mathematical literature.

II.

Proofs of the General Theorems.

5. Let us suppose that

a = b = - l , A=B = 1,

and that the point of intersection of the singular curves is (0, 0). It is
clear that these hypotheses do not involve any real loss of generality.

If e and e' are any positive numbers, .however small, we have, by
Theorem 2 above, the equations

j 1 dxP^fdy = [dyP^ Jdx, j 1 ^dxP^fdy = j " dyP^Jdx.

Hence

(1)

where

(2) A(e,e') = ^dxP^ fdy,

provided only that this last expression has a meaning. If this is so, and
if we can prove that when e and e' tend independently to zero, A (e, e')
tends to a limit A, we shall arrive at the equation

(3) dxP\ fdy =

Evaluation of A.

6. Let p and p' be small positive numbers. Then

A(e, e') = j r + i T + A(p, />', e, e'),

* We shall consider later on the case of an intersection on the boundary of the rectangle.
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where / = [ dxP \ fdy, $' = \ " dxP] fdy,
Jp J-c' J - l J-e'

and A (p,/o', e, e') = I dxP\ fdy,
J-P' J-e'

provided only that this last expression has a meaning.
Now, by Theorem 2, we have

J=[ dyP \ fdx ;
J-«' Jp

and therefore, when p is fixed, we can, given any positive number <r, so
choose ri that . r l

\ J \ <. ar,

for 0 < e << r\, 0 < e' ^ rj. Similarly, we can ensure that | J7 | < <r.

I shall call a function <f>(p, p', e, e') negligible if it tends to the limit zero
when p, p', e, and e' tend independently to zero; that is to say if, given
any positive number <r, we can choose £ and >/, so that | <f> \ < a for
0 < P < & ° < P1 < £> 0 < e < r,, 0 < e' < r,- In particular <p is
negligible if, when p and p' have any fixed values, <f> -*• 0 with e and e',
uniformly for all pairs of sufficiently small values of p and pf. For
example, J and J"' are negligible.

Now let us assume for a moment that we have proved that

(4) A OB, p', e, e') = A + c>\+<S2+...+<$fc,

where A is a constant and S8 a negligible function. Then

|

Given <r we can choose £ and 17, so that

for 0 < p < ,̂ 0 < p' < ,̂ 0 < e < tj, 0 < e' < n ; and then

| A ( e , e ' ) - A | < < r f

SO that A (e, e') ->> A as e -> 0, e' -»• 0.
Thus, in order to establish the truth of the equation (3), all that is

necessary is to express A(/>, p', e, e') in the form (4).

7. We are supposing that \ = 0, fx = 0 are the curves of discontinuity,
and that they intersect without touching at the origin; further, that

f — ^ - ^x' y)
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where \jr, <j>, A, fi are functions of x and y, continuous, with all their first
and second derivatives, throughout the rectangle of integration. Also Xi,
X2 are of constant sign, and Xi (0) =£ X£ (0); and Xi', X2 are continuous.

We shall write 0(x, y) = <f>(x, 0)-\-yfa(xt y),

so that fa(x, y) = {<p(x, y)—<f> (x, 0) f \y — ^ y' (0 < 0 < 1),

&nd fJ = = ~" —3 \ <bix, y)—d> (x, 0 )*^^ ^ ' * \
oy y { dy '

where O < 0 < 1 , O < 0 ' < 1 . From these equations it follows that
is continuous, and

dy

8. Let

where Ao and At are obtained from A by replacing <p by <p(x, 0) and by
y<Pi (a?» y) respectively. We shall prove first that Ax is well defined and
negligible. We have

say. Since
_ d<f>(x, y)

is continuous, x^.6*6 ' ) is defined for all values of e and e'. Also, in
virtue of what was proved in the last section concerning d<f>Jdy, we may
integrate by parts, and obtain

-frix, -e) {X1l0g(6'+X1)a-Xal0g(e'+Xa)
2

Now
j X2 X1—X2
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for —p' <; z < />. Hence the integrated part of x (XJ*>e') is in absolute
value less than EM, where

M = | log(e-X,)" | +

The remaining part of x (#» *> e') is in absolute value less than

- X / |} dy.

But j | log^-XO21 ^ = - j logiy-X^dy

= - (e-Xj) log (e-Xf-W+XJ log (e'

which is certainly less than KM. Similarly

j ^ \\og(y-XJ*\dy<KM.

Hence, finally, | x (e, e') | < KM.

From this it follows that Ax is well defined. Also

| Aj I < K [P Mdx.
J-p'

But the last integral consists of four parts of which one is

In this last integral make the substitution Xx (x) = u. We know that
Xj is of constant sign, say positive ; then X[ lies between certain positive
limits, and

f» rw

log (e—Xj)2 dx < — K I log (e—uf du,
—p! J —w'

where ra- and nr' are functions of p and p' respectively, such that

liTn — = lim — = Xj(O).

Hence

I
J-p

and this last function is plainly negligible. Similarly for the other three
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integrals which also form part of

Mdx;

and so this integral is negligible, and therefore A ^ , p', e, e') is negligible.

9. We may therefore consider, instead of A, the function Ao defined
by the equation

The last integral is plainly convergent; and so AQ is well defined. This
remark completes the proof that A (p, p', e, e') is well defined.

N o w l e t
+{x, 0) = # 0 , 0)4-0,(8!, 0)

and let Ao = A0i04-A2,

where Ao>o and Ag denote the functions deduced from Ao by replacing
0(x, 0) by 0(0, 0) and <fa(x, 0) respectively. Then

<K\x\,

and so | A 2 | < z f Mdx.
J

<K\

|A2|<zfP

J-P'

It therefore follows, from the work of the last section, that Aa, like Alf

is negligible.

10. It remains to consider

Ao.o(/>,/>', e, e') = £0(0, 0)

We write

Then | S ( a ; ) | < ^ ;

and if Ao,o = A+A',

A and A' being formed from A0)0 by replacing l /^—Zg) by l/{(yi—
and S{x) respectively, we can prove that A' is negligible by the same
method that we used for Ax and A2.



1908.] THE THEORY OF CAUCHYJS PRINCIPAL VALUES. 189

11. We remain with

p ,€,€) — r \ log I rp , ) — — 5-* {Ji—Jd,
r 2(7—ya) J_p' \e—A2 e'+Ay a; 2(7!—73)

where ; i = P j log ( ^ - , j

It is to be observed that neither ^ nor j2 is convergent if the sign of the
principal value is removed, except in the particular case in which e = e'.

jx let us supply the substitution X^x) = it.* We obtain

tlu ., . .//

where ; i = P j _ ^ l o g ( - ^ ) - , ; i = J_^ log(-_) Bdn,

A 7? -

and it —

so that IBI < -ST. The integral y" may now be shown to be negligible
by a mere repetition of some of our previous arguments. And, of course,
j'a may be treated in the same way as j v

12. We have now only to consider

where h = PJ l o g ^ - . „ = PJ l o g ^

zr, CT', CT, CT' being numbers such that

as p and p' tend to zero.
Let T be a positive number less than the least of the moduli of rzr, CT',

CT, and CT'. If a denotes any one of the four latter numbers that is
positive, and j3 any one of them that is negative, it is clear that, when
once p, p\ and r have been determined, the integrals

•—u\2 du f~T
 , . . 7 € - M \ 2 du

u

* The ordinary process of substitution may be employed, since Xx and its first two deriva-
tives are continuous. See my first paper of this series, pp. 33 et seq.
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tend to zero with e and e', and are therefore negligible. Hence we may
replace Ao by

where

-rsgny, \e + W/ tt J-rsgnY2

13. If y1 and y.2 have the same sign

ix = i2, A = 0, and A(e, e') -> A = 0.

If they have opposite signs, let ylf say, be positive. Then

—u\2 du
) IT

u

9_2

Thus, in this case A(e, e') -• A = - —
i—7a

14. But
_

71 ~

,(0,0) = (

Hence, finally, A is equal to

or to zero. In forming the Jacobian, it is to be observed that X = 0 is
the curve which makes a positive acute angle with the axis of x.

We can therefore state

THEOREM A.—If f(x, y), together ivith all its first and second deri-
vatives, is continuous throughout (a, A, b, B), except that it has standard
discontinuities along two stcinidard curves of the second type, X(x, y) = 0
and fji (x, y) = 0, which intersect once only, and simply, at the point
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(«» P); iff further, we express f(x,y) in the form f{x,y)l\{x,y) fi{x,y),
then will

dxP] fdy = dyP\ fdx+A,
Ja Jb Jb Ja

7 A 27r^(a,jQ) Awhere A = —~X \ » 0
0 ( A )

d(a,/3)

according as, at the point (a, /8), the tangents of the angles made by the
curves X = 0, /x = 0 with the axis of x have not or have the same sign.
In the former case it is to be understood that X = 0 corresponds to the
positive sign.

15. Exceptional cases of this theorem arise when the point (a, /3) falls
on a side or at a corner of the rectangle (a, A, b, B). It will, however,
be convenient to postpone the consideration of these until we have dealt
with the case in which a line Gx and a line C2 intersect within the
rectangle.

We shall suppose that a = 6 = — 1, A = B = 1, as before, that
the line Cx is y = 0, and that \(x, y) = 0, the line C2, passes through
the origin, so that a = 0, # = 0, as before. And we shall suppose f(x, y)
to be expressed in the form

f(x, y) = \ \ ' y/ .JK 'y' y\(x,y)

It is clear that, in this case, the sign of the principal value will be
required in at least three places, viz., before each sign of integration with
respect to y and the inner sign of integration with respect to x. We
accordingly take e = e' (§5), and our final equation will be

(5) j 1 dxP j ^ fdy = P \ \ dyP[^ fdx+A,
where

(6) A = lim A(e) = lim I dxP \ fdy,
e-M) e-M> J - 1 J-, J

provided this limit exists.

16. Our argument now follows very closely the lines of §§ 7-13. We
replace A(e) by

A(p,P',e) = \ dxP\ fdy,
J —a' J — g
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by J*UL,

and write <p (x, y) = 0 (x, 0)+y ft (a, y),

as in § 7. Then A(/>, p', e) may be replaced by Ao+Alt where

and A ^ f dxPt ^ - M g * .

and the last integral is easily proved to be negligible by a slight modifi-
cation of the argument of § 8.

which we replace by AO)o+A2, where

Since 10a/-^il < -̂ > the integral Ag may be shown to be negligible.
Finally, we transform Ao,o by the substitution X^x) = u, and we find

(cf. § 12) that it may be replaced by

0(0,0) f T8gn71 *

which tends, as e -> 0, to the limit

0(0,0) r l o n-uy du ̂  7T20(0,0)
2y1sgny1 ]_„ OgU+M/ u lyil '

Since y i = - ( | ) o / ( | ) , ,(0,0, = ^(0,0)/©,

we find ultimately that
A = -

ax
3a; sg* te

* It is here that the importance of having « = «' appears. We have

and the terms involving log « and log «' would prove intractable.
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Hence we obtain

THEOREM B.—If the conditions of Theorem A are satisfied, except
that the curve fx(x, y) = 0 is replaced by the straight line y = j3, and if

then will \ dxP\ fdy = P\ dyP\ fdx+A,
Ja Jb Jb Ja

where
f ax TdXvT
5 8 g n(H'

_ 2 , / .

It will be seen that A = 4-
7T2

where the ambiguous sign is that of y^ If y1 > 0,

, . 9(X, y—B) d\and, since \ . "—•^-L = ^ - ,d (x, y) ox

we can obtain A by the same rule as is prescribed by Theorem A, pro-
vided we halve the result. If yl < 0, we can apply the same rule, but
then we must take the two singular curves to be

There is, of course, a corresponding theorem for the case in which the line
Cx is x — a =• 0.

17. The exceptional cases of Theorem A, referred to in § 15, are as
follows :—

THEOREM k.a.—If the conditions of Theorem A are satisfied, except
that (a, /3) falls on a side, though not at a corner, of the rectangle, then
the result of the theorem must be modified by dividing A by 2, and by
inserting an additional sign of the principal value—before the outer sign
of integration with respect to x, if (3 = b or B, before the outer sign of
integration.with respect to y, if a = a or A.

THEOREM Kb.—If, however, (a, (3) falls at a corner of the rectangle,
the repeated integrals cease to be convergent, except in the special case in

8EB. 2. VOL. 7. NO. 1017. . 0



194 MR. G. H. HARDY [Dec. 10,

which the singular curves make equal and opposite angles with tlie axes.*
In this special case the result of Theorem A still holds if A is divided
by 4.

18. A verification.—It will, I think, tend to clearness if, before proceeding to applications
of these theorems, I verify them on a simple example.

Let f(x, y) = l/{(y-mx)(y-nx)},

where m =£ 0, n ̂  0, m =£ n. First take a = b = — 1, A = B = 1. Then

1 d p f fdy = 1 ('y
. / y 2(i»-n)J_, 8 U + roa; 1-nxj x'

f dyPC fdx= i f 1 i o g t u ± B . y ^ y < k .
J. i ° J . i 2(m-?i)J.i ° \y-tn y + n/ y

The substitution x = 1/j/ transforms the first of these integrals into

and the difference of the two repeated integrals is therefore

- _ 1 f log (ILL2?. K = » ) ' ^ = - ^ f , o, JHL,
2(m-n)J.0() \y—m y + nl m—n m-n

according as (a) m > 0 > n, (6) ra and n have the same sign, or (c) m < 0 < n. These results
agree with Theorem A.

If we take a = 0, .4 = 1, b = - 1 , B = 1, we find

)

2 (m-n) J_i &\y-m) y

The last integral is not convergent if the sign of the principal value is removed. It may,
however, be transformed into

1 f1 l o g fy + m y-nVdy
? » t — n ) ) 0 \y—m'y + n) y '

and we find, as before, that the difference of the repeated integrals is — W2/(TO—n), 0, or
ir"l(m-n). This agrees with Theorem Aa.

If we take a = b = 0, A = B = 1, the repeated integrals

are" not convergent unless rre + TC = 0. If this condition is satisfied their difference is easily
found to be —ir-j^m or ir2/±m, according as m is positive or negative. This agrees with
Theorem Ab.

If we take a < 0 < A, 6 = — 1, B = 1, and n = 0, so that

f(x,y) = l/{y (y-mx)},

* In this case, all of one singular curve, except its point of intersection with the other,
lies outside the rectangle.
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we obtain an illustration of Theorem B. Then

-i '2mJ,, U + jna;' x J_i J o ' '2m 1^ "\y-viAI y

The last integral, which is no longer convergent if the sign of the principal value is removed,
is equal to

y 2m Jo \y + mAJ y

a;

and so the difference between the repeated integrals is

2M^J.00 \ l + »«c/ x |wl

a result which agrees with Theorem B.

III.

Applications to the Inversion of Definite Integrals.

19. The preceding results have many interesting applications to the
problem of the " inversion of a definite integral," which forms the starting
point for the modern theory of "integral equations."

(i.) It is easy to see that

P f cotiriy-frdy = i[logsin8 Tr(y-p)t = 0 (0</3<l) .
Jo

Hence, if 0 < x < 1, 0 < £ < 1, we have
ri

P\
Jo
\
o

= cosec 7r(ic—/3)P {cot IT (x—y) + cot IT {y—(3)\ dy = 0.
Jo

Now, take a = b = 0, A = B = 1, and

f{x, y) = cosec TT (x—y) cosec -K (y—/3) ^(ic).

The singular curves are x—y = 0 and y—/3 = 0, which intersect in the
one point (/3, /3). Also \ = sin 7T(OJ — ?/), (3X/3ic)P)/3 = 7r, and

= lim
\8imr(y—(3) ^ J

Hence, by Theorem B, we obtain A = <p(J3). Thus

(1) P \ cosec ir(y—(3)dyP \ cosec Tr{x—y)<f>(x)dx = — 0(/3).
Jo Jo

o 2
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This result may be stated by means of the two formulae

(2) P 1 cosec Tr(x~—y) <f>(x) dx = x(y), P cosec Tr(x—y)x(x)dx = — <p(y),
Jo Jo

which is a typical " inversion formula." An example is given by the

equations r i ., . . , • ,-,' w
p COSTT(1—A) a; dx _ 8\W7r(l—\)y

Jo (sin irx)K 8ijnr(x—y) (sin Try)K

p P sin7r(l —X)x dx _ cos 7r(l—X) ?/
Jo (sin irx)K sixnr(x—y) (aunry)K

which I proved in a paper in the Quarterly Journal for 1901.* Here
X < 1. It will be observed that, if X > 0, the subject of integration has
further infinities along the lines x = 0, 1, such that its integral up to
x — 0 or x = 1 is absolutely convergent. It is easy, and in no way
relevant to our present purpose, to prove that our conclusions are not
affected by this circumstance.

It is clear that the value of

Jo sinir(y — B) Jn sinir(a; —y)

is — <f> (B), provided only a < B < A. If a < A < B or B < a < A, it is zero; if a or A is equal
to B it is — %<f> (B). But to take a = 0, A = 1 clearly leads to the most elegant result.

If <f>(x) = 1, we find that

X (j/) - P f cosec n (x-y) dx = \ ~- log tan2 fir (x-y) = — log cot2%ny.
Jo L2ir .Jo ""

Thus, if 0 < y < 1, we have

We can, of course, obtain the values of any number of special integrals in this manner.

(ii.) Since

cot ir(x—y)cot 7T(T/—/3) = cot-jrix—fi) {cot ir(x—y)+ cot 7r(y—fi)\ + 1 ,

wehave P f cot7r(x—y)cotirfy—/3)ety = 1 ( 0 < a ; < l
Jo

Hence we obtain the formula

n fi fi
(3) P cot Tr(y—/3)dyP cot-n-(&—y) #(*)cfa = <j>(x) dx—<f>(l3),

Jn Jo Jo

* Quart. Jmir. of Math., Vol. xxxn., p. 383.
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<p(x) being any function with continuous first and second differential
coefficients.

In this case again we may replace the limits of integration with respect
to x by any numbers a and A, such that a < /3 < A.

An equivalent manner of stating this result is by means of the pair
of formulae

I f1 f1

P cot ir(x—y) <p(x) dx = x(y)~ X&) dx>
J Jo Jo

I f1 f1

I P cot-rr{x—ij)x(x)dx = — ^(2/)+ <(>{x)dx.
^ Jo Jo

(4)

These formulae appear to have been given by Hilbert in his lectures : a
proof, based on quite different ideas, has been given by Kellogg.*

(iii.) A third example is obtained by taking

/<*, y) =
(COS 7TX — COS 7T*/)(COS Try — COS irp)

In this case there are three corrections to be applied, viz., for the points
(/3, /3), (0, 0), and (1, 1); and Theorems B and A6 have both to be used.
Using the equation

= 0
) 0 CO8 7T?/ —CO8 7T/3

we easily obtain

(5) . —cos 7r/3 J0cos7ra;—cosiry

sin 7rp

This formula may be expressed in a particularly elegant form if
0(x) = airnrx\ff(x), so that 0(0) = 0, 0(1) = 1. We then obtain the
formulae

o l l l nJb VIA \JU) lA/JU / \ T\ I O i l l 7Tc/ V \JU)Lv%h f / \
y-1J-— = x (y)» p JJL^-L— = — V̂  (#)•

0 COS 7TX — COS Try J o CO8 TTX — COS 7T?/

* Ma</i. ^wnaien, Bd. LVIII . , p. 442. I t is to be observed that the term

I X(x)dx
Jo

in the first line of (4) is inserted merely for the sake of formal parallelism with the second
line; it may be removed, or any other constant substituted, without affecting the result.
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For example, if <>> (i) = cos nrx, and if we notice that

p f1 cosnwx , _ sin nity
Jo cosirx—cosny siniry 'Jo cosirx—cosny siniry

we obtain the formula

dyf1 sinn
Jo sin cosiry-cos*3

With this formula may be associated

Jo sin wy cosh »j8—cos ny sinh2*j8 '

which may be obtained by applying Theorem A6 to the function

f(x, y) = cosnwx ;
(cos vx—cos irr/)(cosh ir/3 - cos *y)

or otherwise deduced from well known results.

20. (iv.) The formulaa (l)-(6) are capable of various interesting transformations. Thus,
if in (2), we write

we are led to the formulae

(7)

This is a most interesting pair of formulae, and it is worth while to attempt to determine as
precisely as possible sufficient conditions to be satisfied by A (t) in order that the formulse shall
certainly be valid. But we shall defer this for a moment, until we arrive at the formulas
more directly (see §§ 22-24).

Similarly, the transformation tan \*x = t, tan %wy = T leads us to the equations

Similarly, too, we obtain from (4) the formulse

t-r

also given by Kellogg.*

Finally, from (6), we obtain

21. (v.) If we take a = b = - 1 , A = B = 1,

J{'V> ( x y ) (

* L.c, p. 451.
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and observe that

fl = p I1 (i + y 8 ) ^ = 0

J ( » y ) ( l « y ) ( y i B ) ' l / ^ )

if — 1 < x < 1, — 1 < B < 1, we are led to the equations

(a; - y)[l—xy)

i - p ) I

111) p[l JHvldy_p[
l {l + x-)0(x)dx

K ' J-i(y-B)(l-*y) )-x(x-y)(l-xy)

Each of these results may evidently be stated as an inversion formula ; and either of them, or
any of the preceding formulae, may be applied to give the values of any number of particular
integrals. Thus, to put <p(x) = 1 in (10) leads to the formula

5 = w N a - . i r b " j (0<B<1)-

22. Examples loith Infinite Limits.—I shall not attempt to formulate
any general theorems as extensions of Theorems A, &c, to the cases in
which some or all of the limits are infinite. Such cases are better con-
sidered individually ; and I shall consider one case, perhaps the most
interesting of all, in detail.

(vi.) Let us suppose first that b = — oo, B = oo, and

Since p f -. ^ — ^ = 0,

the result to which we are led is

(12)
-p )a x—y

where A = 0, if /3 falls outside the interval (a, A), A = 7ra0(/3), if
a< j8<^4 , and A = j7r2^>(/3), if /3 = a or A. Let us suppose a<$< A.

Theorem B assures us of the truth of the equation

x—y ) a
 r Jb (x—y)(y—@)

if b < /5 < B. It is clear that the conditions that we may replace b and
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B by — QO and oo in this equation are that

[<t>{x)dx[- %L—x->0, \A<p(x)dx\b ^ — ^ 0 ,
Ja )B(z—y)(y—P) }aY J-oo (x-y){y—p)

as B - • oo and b -*• — oo. But these conditions are certainly satisfied.
For the first equation is

iA
 -L / M (B—x\ dx

where 0 < 0 < 1: thus, for large values of B, we have

and from this the. result follows at once. Hence

-oo y—p Ja x—y

28. The question as to whether we can replace a and A by — « and
oo in this equation is decidedly more difficult. It is most convenient to
begin by first establishing the equation

{U) t—4-.
(x—y)<y-p)

(b < 0 < 5).
I shall prove that this equation holds if only

\"iM>dx, \ £Mdx
J X J _ M X

are convergent.
It is clear that (13) will pass over into (15) as a-> — oo and A -> oo,

if only

with a similar equation involving a. Now the integral

is convergent, since x/(x—y) is monotonic, and uniformly convergent* for

* See Bromwich, Infinite Series, pp. 433 et seq.
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^ ̂  V ^ -B» or> indeed, throughout any finite interval of values of y. For
a similar reason, we have

dy JA {X — yf

JA x

where A' > A, A" > A. Hence, given e, we can so choose Ao that

<e/A,

for A ^ Ao and throughout any finite interval of values of y. Now

2JS-6

where / 2 = ^ \X(A, p+u)-x(A, {3-u)\ -
io ^

{t being a function of u which certainly lies within the larger of the two
intervals b<t<'2/3—b, b<t<B); and

y ) ^
y—p

w lying between 2/3—6 and B. From these equations, and the inequalities
for x and dx/dy proved above, the truth of (16), and therefore of (15),
follows immediately.

The question which remains is whether we can replace h and B by
— oo and oo in (15). And this will be so if only

r
J -

\-—^__=^r 0(a)iog(|ii|)
B {x—y)(y—(3) J,* r ° \B—p/ x—p

with a similar condition in b. That this is so when the limits are a and
A was proved in § 22 ; hence it is enough for us to prove that

(18)

Moreover we may without real loss of generality take j3 = 0, and consider
the equation

(13')
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24. I shall now prove that the conditions (i.) that \<f>{x)\ < K, and (ii.)
that

is convergent, are sufficient to ensure the truth of (18'). Since l/(logaO

is monotonic, the second of these ensures that I —̂— is convergent, as
has already been assumed.

Now, let

)» CAi C(\-K)B r(l + X)B r<°

A JA JAI J(I-X)B J(i+\)i

say, where 0 < X < 1. Choose A1 so that

(19)

for A" > A' > Av When Ax has been chosen we can choose Bv so that

(20) \Ji\<<r (B^BX).
Also the function log (1— x/B)2 is negative for Ax < x < (1 — X) B, and
decreases algebraically as x increases ; hence we may apply Bonnet's
form of the second mean-value theorem* to the integral J2»

 a nd so obtain

where ^ 4 1 < f < ( l — X ) 5 ; and so we can choose B2 so that

(21) l«7. |<<rlo

Again,

and so

Sl +

provided 1/(1—X) < K, a condition which will certainly be satisfied.

• See, for example, Bromwich's Infinite Series, pp. 426 et seq., or my Course of Pur*
Mathematics, p. 286.
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Finally, J4 = /4, i+J4,2+J4,3,

where «74,1 = I ' " dx, J42 = — log B

6
(1+A)B X 5

We can choose B4) i, so that

(23) \J4tl\<<r

and, since /4 2 = - log B f ±
J(i+\)B x log a;

p 0 (a;) log a; ,
J o + A ) 1 > x '

where ^ > (1+X) B, we can choose JB4J2, SO that

(24) 1/4,21 <<r (B>.B4,2).

fAnd 4,3 g f ^ ) f
\ 1 + J ( 1 + A ) B a;

J4,3 = log f ^ ) f

so that we can choose J54/3 so that

(25) | J"4)3| < o-log(l/X) C B > £ 4 ) 3 ) .

Let BQ be the greatest of Blf B2, B4i lf £ 4 j 2> J54,3. Then

( l - - | ) 2 ^

< 0- 13+2 log ( i ) } +Ĵ X { 1+log ( Y ) } (B > Bo).

Given ^ we can choose X, so that ZX | 1+log (—) f < $̂ » an(^ t n e n °"» s o

that or |3 + 21og(l/X)| < i<5. It follows that the integral tends to zero
as B-* QO, and we may therefore replace B by 00 in (15). The result at
which we thus arrive seems of sufficient interest to be stated as a theorem.

THEOREM C.—If (i.) <j>(x) and its first two derivatives are continuous,
(ii.) |0(x) | < K for all values of x, and (iii.) the integrals

f 0(aQ log (—x) d x

' J_M x
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are convergent, then will

, in other words, if P \ -*——- = TTX (y),
J-oo x y

or

then will P [ *{x)dx = - *<$>(y).
J_w x—y

The form of this result has been already arrived at otherwise (§ 20),
but without an accurate investigation of sufficient conditions for its truth.
A familiar example is obtained by taking

<p(x) = cos mx, x(x) == ~ s i n mx'

The inversion formula itself has a familiar look, but I am not aware that
I have ever seen it before, much less any accurate discussion of it proceed-
ing by methods in any way resembling those of the preceding sections.

25. (vii.) The following formulae are of a similar character :—

(a) rlog(£±i\%(ar)^ = 4 r ^ p r * M ^
Jo \x —17/ x Jo Jo x--y-

"> *£*VJC*££-(*)'<•«»-•«»•

(c)

The last of these formulae, which also leads to the inversion formula written just above it, was
given by Schlomilch (Analytische Studien, Bd. u., p. 156), but without any accurate defini-
tion or discussion. Interesting formulas may be obtained from any of the above equations by

. . , , . , , , 1 COS77IX
particular choices of <p (x), e.g., -—„, — -, . . . .

26. (viii.) The following example, which is of a somewhat different character, leads to a
very interesting generalisation of Theorem C.

Take a = b = —<t>, A = B = oo, and



1908.] THE THEORY OF CAUCHY'S PRINCIPAL VALUES. 205

where R (y) is a rational function of y whose numerator is of higher degree than its denominator,
and which is such that the equation R (y) = x has, for all values of x, real roots only. Then

and so we are led to the formulae

< 2 6 )

where the upper or lower sign is to be chosen according as R' (/3) ^ 0. The last formulas
embody a generalisation of Theorem C. In particular we may take

Suppose, for example, that

R(y) =ay-— {a,b> 0), <t>(x) = e " , x ( * ) = »<"'•
y

We obtain*

1%
JoJo \ x / x«-y» V 2/

With these formulae may be associated those obtained from the formula

( a

V

[where <p (x) is real]. For example, taking <\> (x) = sins, R (y) = ay—b/y, we obtain

J"OO8 U--M J ^ = JLf '»^..B jL,-M.M,/ b \ dy 1 [* x

27. It is instructive to consider also the case in which the roots of % — R(y) are not
always real. Suppose, e.g., r

R(y) = ay+± (a,b>0).
y

The roots are real only if x1 ^ 4a6, and

P f 0

* See Quarterly Journal, Vol. xxxn., p. 374 ; Bromwich, Infinite Series, p. 496.
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according as x2 < 4a6 or x2 > 4a&. Let us, for simplicity, take jB = 1. Then we obtain

^ a;-ay-(6/2/)

Suppose 6 < a, and let r=y(b'a), m = 2^/(ab). Then, making the substitution
x = wi, we obtain, after a little reduction, the formulae

X ( aV + )
^ dy = —*<p (a » 6) + 2T 1° ?°A*~T.

' J l 2 T C O s e +
In particular, the assumption <j> (x) = eu leads to the formulae

Pi cos (ax + — \ . _JL = iw sin (a + i ) - i f* .1-~T" sin (in cos
Jo V x ) 1-x* 2 f 2 J 0 l -2 T cosf l + T- v

= £ir sin (a + b)-v (TJ, - T3J3 + T5J5— ...),

P [ sin (ax + — \ —^— =—in-cos (a+ 6)+ 41 ' " -cos (mcosfl)de
Jo \ x / l - x 2 2 v ' 5J0l-2TCOse + T2

= — | i r c o s (a + 6) —ir ( T 2 J 2 — T 4 J 4 i T 6 J " 6 — . . . ) ,

where 0 < b < a, r =^/(bla), m = 2^/(06), and the J's denote Bessel's functions with argu-
ment m. With these should be associated the further formulae*

ax + —
x

fcos (
Jo \

f sin f ax + - \ - ^ - = J»«-(«-*)-ir (T2.^ + T
4/4Jo V x / 1 + x-

28. It is unnecessary to multiply examples of the very large number
of classes of formulae that can be obtained in this kind of way. There is,
however, one kind of case that we have not yet considered. In all the
cases that have been considered so far, the number of intersections of the
singular curves has been finite. I shall conclude by considering one
example in which this is not the case. It is, of course, possible to con-
struct any number of such examples, and the justification of any result
thus obtained involves theoretical difficulties additional to those which
have been dealt with already. With these, however, I do not propose to
deal; for the applications of such results as I have obtained do not seem
to be of great interest. I shall, therefore, merely give a single example
of the kind of formulae that can be obtained.

It is easy to see that, if x, /3, and b are real and no two of them differ
by an integer, then

_v: sin Tr{x — y) sin ir(j.j—(i) y — b

* Messenger of Mathematics, Vol. XXXVIII., p. 129.
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The result follows, in fact, at once, when Cauchy's theorem is applied to
the integral f n ,

B f 1 dy
J sinTT(X—y)&\x\ir{y—/3) y—b'

the contour of integration being the ordinary " infinite semicircle"
described on and above the real axis, and the poles of the subject of
integration, which are all real, being avoided by small semicircles in the
usual manner.

Suppose, then, that

fix v) = ^M .
J ' if/ (x—a)(y — b) simrOc—*/)sin ir(y—(3)

We obtain

0 = p f dy p f ^x)dx +2A
J-oo (y — 6)sin ir{y—,8) J-x (x — a) aimr(x — y)

where the sign of summation applies to all points of intersection of
singular curves.

These points are (i.) x = a, y = b; (ii.) x = a, y = a-\-n;
(iii.) x = 6+m, y = b; (iv.) x = a, y — $-\-n\ (v.) x = fi-\-m-\-n,
y = f$-\-n\ where m and n have any integral values, positive or
negative. In order to ensure that three curves shall in no case intersect
in one point it is necessary to suppose that no two of a, b, $ differ
by an integer.

We easily find

Aa,b = 0,

aiinr{a—/3) a—b+n'

-/3) b-a+m

A«, ft+n = 0 ,

;ind, after a little reduction, arrive at the formulae

00 <f> (x) dx
-oo (x-a) sin Trix-v)
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-co (x — b) sin ir(x—y)

= — 7r0(a) cot 7r(b—a) cosec x(w—a)—cot iriy—b) 2 ^ r f —-
_co y—d-j-vi

+cosec ir{y—b) 2
6—

For instance, if 0 = 1 , then x = 0. Hence we should have

0 = — xcot 7r(6—a)cosecx(//—a)

-eotirty—6) 2 -1—n f-cosec7r(y-6) 2 v

an equation the truth of which may easily be verified.


