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I
Introductory.

1. This paper is designed to supplement and complete three papers
published under the same title in 1901-2.* In these three papers I
considered in detail & number of questions connected with principal
values, and in particular the questions of the continuity, differentiation,
and integration of principal values which involve a continuous parameter.
In the last of them I began to consider the equation

1) PLA dzPS:f(z, Ydy = PEdyPEf(z, y) dz,

where f(z, y) is a function affected with singularities of a spedial form. It
will probably be convenient for me to repeat the principal results at which
I arrived. I shall confine myself at present to the case in which all the
limits are finite, and I shall simplify the statement of the results by the
introduction of certain definitions.

I shall call a straight line parallel to either axis a standard curve of
the first kind, or, more shortly, a lene C;. A curve of continuous curva-
ture, whose tangent is nowhere parallel to either axis, I shall call @
standard curve of the second kind, or a line C;. Such a curve has the
property that its equation may be expressed in either of the forms

y=X@, z=Y@),
where X and Y are functions whose first two derivatives are continuous
and whose first derivatives do not vanish for any value of z or y in

question. The simplest example of such a curve is the line z = y.
It generally happens, in cases which lead to applications of any interest,

* Proceedings (Old Series), Vol. xxxiv., p. 16 and p. 55, and Vol. xxxv., p. 81.
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that the discontinuities of f lie on a finite number of lines C; or C,
Occasionally a line of discontinuities presents itself which violates the
conditions for a line Cy in that its tangent is parallel to an axis at a finite
number of points. This case is not considered in the general theorems
which follow, and additional investigation is necessary when it occurs.

2. In my third paper I dealt with the case in which no two singular
curves intersect. I first proved that—

(.) If f vs a continuous function of both variables, except along a
finite number of lines C, parallel to the axis of y, and if

A
Pj fdo
s uniformly convergent in (b, B), then
4 B B 4
@ PJ dxj fay = 5 dij fdz.
a b b a

In other words, the equation (1) holds, but two of the symbols of the
principal value contained in it are unnecessary.

The simplest case of this theorem is that in which

f e e (.'E, z!l)

z—a

where a <a<<4, and © is a function continuous without exception,
together with its first derivative ©,. If all the first and second derivatives
of O are continuous I shall say that f has a standard discontinuity along
the line z = a. Similarly I shall say that f has a standard discontinuity
along the line C, represented by the equations

y=X@, =z=Y@),
if it is capable of expression in the forms

O(z, y) ®(z, y)
y—X' z—Y "’

where O and @, together with all their first and second derivatives, are
continuous without exception.
With this notation, my second result was

(i.) If f, together with all its first and second deriwatives, is con-
tinuous throughout (a, 4, b, B), except that it has standard discontinuities
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along a finite number of non-intersecting lines C,, then
A B B A

@) 5 da:PS fay = j dij fda.
a b b [

Here, again, it will be noticed, only two symbols of the principal value
are necessary, but these are not the same two as in equation (2).*

8. By a combination of Theorems (i.) and (ii.), and the theorem which
results from (i.) when 2 and y are interchanged, we can deal with all cases
of interest in which no two curves of discontinuity intersect. The really
interesting case, -however, is that in which there are such intersections.
It is clear that, by dividing up the rectangle of integration, we can reduce
this case to that in which there is only one intersection; and this case
can be subdivided into three, according as the intersecting curves are
(@) two lines C;, (b) two lines Cj, or (c) a line C, and a line C,.

With case (@) I dealt in my third paper, by means of the theorem

(i) If f=90/{z—a@—P},

where a < a<A,b< B <B, and O, together with all its first and
second dertvatives, is continuous without exception, then

@) Pj: dxpj':fdy = PLB dij:fdx.

In other words, (1) holds provided all the signs of the principal value
are retained.

4. I ghall now proceed to consider cases (b) and (¢). As regards the
former, I indicated my result in general terms at the end of my third

paper. If f=vw,

A =0 and u = O being the curves of discontinuity, then (1) may be true,
or it may be untrue, the difference, in the latter case, between the two
gides of the equation being
27 (a, B)
oA w '
o(a, B)

* I considered before the case in which f is of the form

5‘_9‘2{108 ( y—LX\) }al {loglog (y-l-__X) }a'... ;

but this more general case will not concern us in this paper.
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where a, 3 are the coordinates of the point of intersection, supposed to lie
wnside (a, A, b, B).* This result I shall now proceed to define more
precisely and to prove.. I have had the outlines of the proof in my hands
for years, but have never published it, as it was only recently that I
realised what interesting applications the result has to the problem of
the inversion of a definite integral, which has been 8o prominent in recent
mathematical literature.

II.

Proofs of the General Theorems.
‘5. Let us suppose that

a=b=-—1, A=B=1,

and that the point of intersection of the singular curves is (0, 0). It is
clear that these hypotheses do not involve any real loss of generality.

If e and € are any positive numbers, .however small, we have, by
Theorem 2 above, the equations

Y_ldszzfd?/ = ‘EdyPsl_lfdz, jl_l dzPJ:’.fdy = j:: dyPF_lfdx’

Hence

(1) Y_ldxpjl_l fiy = (j:l+ Sl) dijl_l faz+AG, o),
where
@) A, &) = L dzPY_; fdy,

provided only that this last expression has a meaning. If ‘this is 8o, and
if we can prove that when ¢ and ¢ tend independently to zero, A(e, ¢')
tends to a limit A, we shall arrive at the equation

3 Sl da:PSl fdy:jl dyPE1 fdz+A.
-1 -1 -1 -1

Evaluation of A.

6. Let p and p’ be small positive numbers. Then
Afe, &) =J+I"+Ap, p's & ),

¢ We shall consider later on the case of an intersection on the boundary of the rectangle,
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where J = j dsz fay, S =j— da:PS fdy,

and N e')=j" da:PS fay,

provided only that this last expression has a meaning.
Now, by Theorem 2, we have
€ 1
J = S dij fdzx;
- [

and therefore, when p is fixed, we can, given any positive number o, 80

choose » that 7] < o,

for 0<e<<n 0<e <<»n Similarly, we can ensure that | J' | <o

I shall call a function ¢(p, p', €, €') negligible if it tends to the limit zero
when p, p', ¢, and ¢’ tend independently to zero; that is to say if, given
any positive number o, we can choose { and 5, so that |¢|<<o for
0<p<l 0<p' K¢ 0<e<y, 0<e Ky In particular ¢ is
negligible if, when p and p’ have any fixed values, ¢ - 0 with ¢ and ¢,
uniformly for all pairs of sufficiently small values of p and p’. For
example, J and J' are negligible.

Now let us assume for a moment that we have proved that

4 Alp, p's 6 €) = A+, 46+ ... 6,

where Ais a constant and ¢, a negligible functlon Then
| Ate, ) =A< | T+ || +. E |61

Given o we can choose ¢ and #, so that

|J|<k <t 1861<its

+2’ +2° k+2

for 0<p< 0<p' < 0<e<n 0<e << n; and then
|AG, N—A| <o,

so that A (e, e))—>A as e>0, ¢ - 0.

Thus, in order to establish the truth of the equation (8), all that is
necessary is to express A (p, p', €, €') in the form (4).

7. We are supposing that A\ = 0, » = 0 are the curves of discontinuity,
and that they intersect without touching at the origin ; further, that

f — _‘lli _— ¢(z1 ’!/)
Ao {y—Xi@)} {y—X@)}°
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where \, ¢, A, u are functions of z and y, continuous, with all their first
and second derivatives, throughout the rectangle of integration. Also Xj,

X; are of constant sign, and X; (0) # X; (0); and X}, X; are continuous.
We shall write ¢ @, y) = ¢(z, 0)+y¢,(z, y),

8o that &z, y) = (¢, y)—¢(z, 0}y = 0 (x’ by) 0<o<,

O _ 1 _ _ ﬂul
and 5% " { ¢z, y)—¢ (x, 0)—y
_ O, 6y) _ 3 o (z, 0'y)
o e

where 0<0<1, 0<6 <1. From these equations it follows that
0¢,/0y 1s continuous, and

|| <K,

8. Let Alp, p', e, ') = Ag+ A,

where A, and A, are obtained from A by replacing ¢ by ¢(z, 0) and by
y¢, (x, y) respectively. We shall prove first that A, is well defined and
negligible. We have

s (2, y)d Sp '
_S d:ch Y= X)—X) _’x(z,e,e)dx,
say. Since -a%{y¢1(x, Y= Q%w

is continuous, x (z, e, ¢’) is defined for all values of ¢ and ¢’. Also, in
virtue of what was proved in the last section concerning 0¢,/0y, we may
integrate by parts, and obtain

1
x &, e €)= X=X I: #i(z, &) {X,log (e —X)?—X,log (e — Xp)?}
— ¢, (x, —¢€) { X, log (€ + X))’ — X, log (€ + Xp* |

Now < K,

|<x

‘ Xs
X1 Xl—Xs
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for —p' <2 < p. Hence the integrated part of x(z, e, ¢€') is in absolute
value less than KM, where

M = |log(e— X)) | + | log(e—Xp)? | +| log (' +X))* | + | log (' + X" | -

The remaining part of x (z, ¢, €') 18 in absolute value less than

Kf_ , {log (y—X*| + | log (y—Xp)* |} dy.

€

But 5; |log(y—X)? | dy = —5_!'1og(y—Xl)2dy
= — (e—X)) log (e— X))’ — (¢ + X)) log (' + X))*
+2(e+¢),
which is certainly less than KM. Similarly
j_ |log (y—X,?| dy < KM.

Hence, finally, Ix €| <KEM.
From this it follows that A, is well defined. Also

14| < KS" Mds.
—p'

But the last integral consists of four parts of which one is

p )
s |log (e— X,)?| de = —j
_PI

log (G'—'Xl)2 dz.
o

In this last integral make the substitution X;(z) = #. We know that
X is of constant sign, say positive ; then Xj lies between certain positive
limits, and

p
—_ j log (e— X)) dz < — Kr log (e—u)*du,

—p -

where @ and =’ are functions of p and p' respectively, such that

. '

lim Z = lim Z = X (0).
0 p p’—>0 p

Hence

p
[ 110ge=x2 12z
’ - < —K{(@—elogm—e’+ @'+ e)logm' + 6’20 —2'},
and this last function is plainly negligible. Similarly for the other three
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integrals which also form part of
JP Mdz;
—-P’
and so this integral is negligible, and therefore A,(p, p', ¢, ¢') is negligible.

9. We may therefore consider, instead of A, the function A, defined
by the equation

» d
ey = 0 — %
Ao(P pe€ €) j—p' ¢(z )dzps,—e (y Xl)(y 2’)

— [ d+X,\? $(z,0)dz
‘%LJ%Q—&G+&> X,—X,

The last integral is plainly convergent ; and so A, is well defined. This
remark completes the proof that A(p, o', e, ¢') is well defined.

Now let ¢, 0) = $(0, 0)+ ¢y (x, 0)
and let By = Ao,0t4y,

where Ao o and A, denote the functions deduced from A, by replacing
¢(z, 0) by ¢(0,0) and ¢4(z, 0) respectively. Then

P '
| ¢a|l < E| 2], xox, | <5
p
and 80 |A2|<KJ M dz.
_P'

It therefore follows, from the work of the last section, that A, like A,,
is negligible.

10. It remains to consider

Ao o(py o' & €) = 3¢(0,0) 5 10g< —X ¢ +Xa) dz

¢4X XI—XQ'
We write
1 1 b
= 0 s = 2AZ).
n=K0 n=%0 goe =g e TR
Then 2@ | < K;
and if Ap o = A+A,

A and A’ being formed from Ay, ¢ by replacing 1/(X;—Xj) by 1/ {hh—ydz}
and E(z) respectively, we can prove that A’ is negligible by the same
method that we used for A; and A,
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11. We remain with

_ P — ! Y
A(P! pl’ e G') — ¢_((M.).)_ S_p log (G—X_L € +X2) z ..M Ul—]ﬁ)s

2(y1—7y9) . e—X, €+X, 2n—y)
. P E—Xl c_i_'?;_ j G_Xg @
where JI—PS_Plg('-i-XI) ool Ja=P log(,_*_Xe) -

It is to be observed that neither j; nor j; is convergent if the sign of the
principal value is removéd, except in the particular case in which ¢ = ¢'.
To j, let us supply the substitution X;(x) = u.* We obtain

. e—u\® du  _ . .
= PEw’ 10g (€r+u) CCX‘l(Z) =nh +Jl:

du n__ €E—U 2
where = Pr log '+u> - N —Ew, log <€,+u) RBdu,
-1 1
and X)) uw’

so that | B| < K. The integral j; may now be shown to be negligible
by & mere repetition of some of our previous arguments. And, of course,
Jo may be treated in the same way as j;.

12. We have now only to consider

- ) _ _¢0,0 .
Dolp, p's 6 €') 2(‘)/ ‘yﬂ)(h

P e—u\? du D e—u\? du
where 7, = Pj_w, log (e’+u) w' T Pj_;' log <€'+“) '

@, ©', @, @ being numbers such that

wlo>v @' >ye Tle>ve Tl >y
as p and p' tend to zero.

Let 7 be a positive number less than the least of the moduli of =, =,
=, and ®'. If a denotes any one of the four latter numbers that is
positive, and B8 any one of them that is negative, it is clear that, when
once p, p', and T have been determined, the integrals

[ros(s54)" &, [ "iog(s5)" 2

* The ordinary process of substitution may be emplofed, since X, and its first two deriva-
tives are continuous. See my first paper of this series, pp. 33 et seq.
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tend to zero with e and ¢, and are therefore negligible. Hence we may

replace A, by _ 0,0)

2(y1—v9 —)

where
TSgNn Y, _ 2 T8gN Y2 2
g
! —r3gny, 8 et+u wu K —rsgnys o8 4w/ u
18. If v, and vy, have the same sign

Gy =14, A=0, and A(,¢)—> A =0.
If they have opposite signs, let vy, say, be positive. Then

. - -— 2
imh=ar | () O

du T ¢ —u\? du
- 25' e+u ;+2J’- log (e’-}-u) uw
_ du —u\* du
—21: 10g(1+u u+ j.' lg ) u

—)25 log( —u) du — o7l
0

14+ u
2
Thus, in this case Afe,¢') > A = — 27" ¢(0,0)
Y17
14. But

n=(@=-@/G), »=-&./G),
400 = vooum(t55 1=5) < yaof|(2) (&) |
Hence, finally, A is equal to
or to zero. In forming the Jacobian, it is to be observed that A = 0 is

the curve which makes a positive acute angle with the axis of z.
We can therefore state

TreoreM A.—If f(z,y), together with all its first and second derti-
vatives, 1s continuous throughout (a, 4, b, B), except that it has standard
discontinuities along two standard curves of the second type, A(z,y) =0
and w(x, y) =0, which intersect once only, and simply, at the point
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(@, B); if, further, we express f(z,y) in the form ' (z, y)/\(z, ) u(z,y),
then will

A B B A
j dzPL fady = L dij’ fdz+A,

where A= 2#0\ (:;'6). 0

d(a, B)

according as, at the point (a, B), the tangents of the angles made by the
curves A =0, u =0 with the azis of z have not or have the same sign.
In the former case it is to be understood that \ = O corresponds to the
posttive stgn.

15. Exceptional cases of this theorem arise when the point (a, 8) falls
on 8 side or at a corner of the rectangle (a, 4, b, B). It will, however,
be convenient to postpone the consideration of these until we have dealt
with the case in which a line C, and a line C, intersect within the
rectangle.

We shall suppose that ¢ = b=—1, 4 = B = 1, as before, that
the line C, is ¥y =0, and that A(z,y) = 0, the line C, passes through
the origin, so that a =0, 8 =0, as before. And we shall suppose f(z, y)
to be expressed in the form

— Y@y
S, ) @)

It is clear that, in this case, the: sign of the principal value will be
required in at least three places, viz., before each sign of integration with
respect to ¥ and the inner sign of integration with respect to z. We
accordingly take e = €' (§ 5), and our final equation will be

1 1 1 1
(5) 5 d:ch fdy = Ps 1dyPS 1fda:-{-A,
-1 -1 - -
where
1 (3
(6) A= }1_1310 Afe) = 31310 5-1 dej_' fay,

provided this limit exists.

16. Our argument now follows very closely the lines of §§ 7-18. We
replace A(e) by .
Ap, p'y€) = F deS fay,

—p'

-
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= 9@y
and f=1v/yA by T—Xy
and write ¢, y) = ¢(x,0)+yp(z, y),
asin § 7. Then A(p, p'; ) may be replaced by A,+A4A,, where
P
— Y
Ay = 5—# ¢(z, 0) da:PY_( =X
g " hlz,y)dy
= 1\T, Y)ay
and 4, —j_p'dzPJ_‘ y—X,

and the last integral is easily proved to be negligible by a slight modifi-
cation of the argument of § 8.

Again* A=} ji p' log (ZI_

which we replace by A¢ o+ Az where

Bo,0 = 3900, oj log & +§i) %’

X\? dzx
1) $@0F,

P X dz
—1 1 az
A, 25 10g< +X) $a (@) X,
¢o(x) = ¢(z, 0)— (0, 0).
Sinee | ¢e/X;| < K, the integral A; may be shown to be negligible.

Finally, we transform A, , by the substitution X,(z) = u, and we find
(cf. § 12) that it may be replaced by

©,0) S " o (e—u)ﬂ du
2y, R e-l-u. u
which tends, as ¢ -+ 0, to the limit

OO [ (Lot du__ 20,0
2y18g0y; Jow 1+ % |‘Yl|

swee == (), / (%)0 90,0 = y0,0/(2)

we find ultimately that

b

A= — (0, 0)
OA oA} -
o (5),

oz [}
* It is here that the importance of having e = ¢’ appears. We have

‘ dy 1 =X, ¢ )”
P [l | Aoy W
j-.' yy—X) ~ 2x, 8 ( eTx, e
and the terms involving log ¢ and log ¢’ would prove intractable.
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Hence we obtain

TaEOREM B.—If the conditions of Theorem A are satisfied, except
that the curve n(z,y) = 0 is replaced by the straight line y = B3, and if

[y = LG

Y—B A, y)’
4 B B A
then will j d;vPL fdy = PS dyPE fde+A,
' a b o
T I A )
where A= { = ) n(%> ]
oz € ay ) o=a,y=p

2
It will be seen that A=+ 7—"—‘\%(;’& ,
(.a—z)x=u, y=8

where the ambiguous sign is that of y,. If v, >0,
{(OX
A= 71-2\p(a, B)/(a)u . ;

oA, y—PB) _ oA
ox,y) ~ oz’

and, since

we can obtain A by the same rule as is prescribed by Theorem A, pro-
vided we halve the result. If ¢, <0, we can apply the same rule, but
then we must take the two singular curves to be

AE?/_B-:O, ,U'(xs y)=O'

There is, of course, a corresponding theorem for the case in which the line
Cl iS T—a = 0.

17. The exceptional cases of Theorem A, referred to in § 15, are as
follows :—

Tueorem Aa.—If the conditions of Theorem A are satisfied, except
that (a, B) falls on a side, though not at a corner, of the rectangle, then
the result of the theorem must be modified by dividing A by 2, and by
wnserting an additional sign of the principal value—1before the outer sign
of integration with respect to z, if B =10 or B, before the outer sign of
wntegration with respect to y, if a =a or 4.

TaeoreM Ab.—If, however, (a, B) falls at a corner of the rectangle,
the repeated integrals cease to be convergent, except in the special case in
8ER. 2. VOL. 7. No. 1017. . (o]



194 Mk. G. H. Harpy [Dec. 10,

which the singular curves make equal and opposite angles with the azes.*
In this special case the result of Theorem A still holds if A s divided
by 4.

18. A verification.—It will, I think, tend to clearness if, before proceeding to applications
of these theorems, I verify them on a simple example.

Let f (@, y) = Y{ty—ma)(y—na)},
where m # 0, n 550, m ¥ n. Pirsttake a =b=—1, 4 = B=1. Then

1 1 1 1-mz 1+nz\sdz
J d:ch fay = 2(m-n)j_|1°g(1+mx l—na:) z’

1 1 y+m y_—_n)'-‘@
J dyPJ fdz—2(’"-”)]-1103(3/-""'1‘/*” Yy

The substitution = = 1/y transforms the first of these integrals into
_.(Jm R J.-l )log(y+m 1 -—11) dy.
1 o y—m y+nl y
and the difference of the two repeated integrals is therefore

r ! m y-—n) dy = _ 2% .0 o
2(m—n) ’

Yy—m Yy+n 111«—111 1",—?1

according as (a) m > 0 > n, (b) m and n have the same sign, or (¢} m < 0 <n. These results
agree with Theorem A.
Ifwetake a =0, 4 =1, b=-1, B=1, we find

JJEPJ fay= g n)j‘log(l‘"‘“.}_t’if)”@_ﬂf,

l+me 1-—nx/ =z

1 1 1 1 y_n)? dy
= 1 < -,
Pj_]dijofd:c 2(m—"')P."—l o8 (:Il—m y

The last integral is not convergent if the sign of the principal value is removed. It may,
however, be transformed into

L[ 1og (L2 y—n)*dy

2 (m—m)j, Yy—-m y+n y’

and we find, as before, that the difference of the repeated integrals is —=?/{in—mn), O, or
nf/(m—n). This agrees with Theorem Aa.

If we take @ = b = 0, 4 = B =1, the repeated integrals

i? 1 1-mz\2dz 1 1 y—-n )2111
- ) = | log { L—

dePj fay = 2 (m—'n)s log ( l—nz ) z’ j J faz = Z(m—n)j € (y—m Yy

are not convergent unless m+n = 0. If this condition is satisfied their difference is easily

found to be —n*/dm or =%/4m, according as m is positive or negative. This agrees with
Theorem Ab.

If wetakea < 0 < 4, b=—-1, B=1, and n =0, so that
f(z, ) =1/{yly-ma)},

* In this case, all of one singular curve, except its point of intersection with the other,
lies outside the rectangle.
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we obtain an illustration of Theorem B. Then

4 l—mz\2dz 1 4 1 1 ma \*dy
daP( fay= 1 ["1 ( dz I j =Llp( (y_,_)
.L _‘. fay QnJ,‘ o8 1+mz' = P _|dyP ,,fdx QmPJ-l 8 y-md/ y

The last integral, which is no longer convergent if the sign of the principal value is removed,
is equal to

1 ('y—ma. 2dy 1t (y—'mA)“dy
=1 maiay _ L [ eg (¥Y=TA) Y
2m j,, °8 Y+ ma,) Yy 2m jo 8 y+md/ y

__1 J"‘ lo (1 ma:)’dz 1 rlo (l—mz)’d.r.
4

am ) . 1+mz! z  2m 1T+ma/ 2

and so the difference between the repeated integrals is

1 r 1 (l—mx)*dit 2 :
— 0 TS e e—
2Qm ). l+mz/ =z |m|’
a result which agrees with Theorem B.
I11.

Applications to the Inversion of Definite Integrals.

19. The preceding results have many interesting applications to the
problem of the ¢ inversion of a definite integral,” which forms the starting
point for the modern theory of * integral equations.”

(i.) It is easy to see that
P cotwly—B)dy = }[logsin ry—B), =0 O <B<D.
Hence, if 0 <z <1, 0 <8< 1, we have
P Slo cosec 7 (z—1) cosec 7 (y—B) dy
= cosec r(z—B)PS: {cot 7 (x—1y)+cot m(y—B)} dy = 0.
Now, take a = b =0, A =B =1, and

f(z, y) = cosec 7 (x—y) cosec 7 (y—0B) ¢ (x).

The singular curves are z—y = 0 and y—@B = 0, which intersect in the
one point (3, B). Also A = sin 7(x—y), (OA[0z)s s = , and

v@B. B = *-‘;u—¢(.z) = ¢/

x—>B s | 5in 7 (y—B)

Hence, by Theorem B, we obtain A = ¢(8). Thus

1) P Jrl cosec w(y—B)dy P 51 cosec 7 (x—y)p(@)dz = — ¢ (B).
0 0 ’
o 2
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This result may be stated by means of the two formule
1 1

(2 PS cosec T (z—y) ¢ (2) dx = x(y), PS cosec 7 (z—y) x(x)dz = — ¢(y),
0 0

which is a typical ‘‘ inversion formula.” An example is given by the

equations j‘ cosm(l—=Nz de. __ _sinw(l —Ny
o (Binwz)* sinw(z—y) (sin o)
PF gin 7(1—\) 2 dz _cosT(l—=Ny
o (inmz sinw(@—y)  (sinwy?

which I proved in a paper in the Quarterly Journal for 1901.* Here
A < 1. It will be observed that, if A > 0, the subject of integration has
further infinities along the lines £ = 0, 1, such that its integral up to
z=0or z =1 is absolutely convergent. It is easy, and in no way
relevant to our present purpose, to prove that our conclusions are not
affected by this circumstance.

It is elear that the value of

o i

Jo sinw(y=8) Jq sinw(z—y)
is —¢(B), providedonlya <B< 4. Ifa<d<Bor B<a<Ad,itiszero; if a or 4 is equal

to B it is —3¢ (8). But to take @ = 0, 4 =1 clearly leads to the most elegant result.
If ¢(z) = 1, we find that

1
x(y) = Pr cosecr (T—y)dxr = [21 log tan? i (:c—y)hl = Llog cot? imy.
Jo .am Jo T

Thus, if 0 <y < 1, we have

P [ log cot? 7z o _

Jo sinw(x—y)

We can, of course, obtain the values of any number of special integrals in this manner.
(ii.) Since ‘
cot 7 (z—y) cot m (y—B) = cot w(x—B) {cot m(x—y) +cot m (y—P)} +1,
1
we have PJ cotrz—yecotry—Pdy =1 0<z<1, 0<B<]).
0

Hence we obtain the formula

6)) Ps:cotvr(y—ﬁ)dijlcotvr (x—y) p(@)de = j: ¢(z)dz—¢ (B),

¢ Quart, Jour. of Math., Vol. xxxir., p. 383.
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¢ (x) being any function with continuous first and second differential
coefficients.

In this case again we may replace the limits of integration with respect
to z by any numbers a and 4, such that ¢ <8< 4.

An equivalent manner of stating this result is by means of the pair
of formule

} PJI cotr@—y)p@)de = x(y)— jl x (z) dz,
0

0

)
1

1
LPS cot m(x—y) x (@) dx = — ¢(y)+j ¢ (x)dw.
0 0
These formule appear to have been given by Hilbert in his lectures: a
proof, based on quite different ideas, has been given by Kellogg.*

(iii.) A third example is obtained by taking

[l y) = # (@)

(cos mz—cos 7y)(cos my—cos 7R) "

In this case there are three corrections to be applied, viz., for the points
B, B, 0, 0), and (1, 1); and Theorems B and Ad have both to be used.
Using the equation

' dy —
Pjoac;;y—_m—" O<g<,

we easily obtain

5) P 5‘ dy p 5‘ o(x)dz
0

cos ry—ecos w3 = J,cos mr—cos 7y

_—_Iﬁ {cos? 378 ¢(0) +sin® 3rB¢ (1) —9 (B |.

This formula may be expressed in a particularly elegant form if

¢ (r) = sin mz Y (z), so that ¢(0) =0, ¢(1) = 1. We then obtain the
formulse

© PY sin rz \ (z) dx =x W), Pj‘l sin 7y x(@)dx _ v ).

o CO8 7T —COS TY 0 CO8 TL—COB 7Y

* Math. Annalen, Bd. LviiL, p. 442. It is to be observed that the term
-1
j x (z) dz
0

in the first line of (4) is inserted merely for the sake of formal parallelism with the second
line; it may be removed, or any other constant substituted, without affecting the result.
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For example, if ¢ (z) = cos n¥xz, and if we notice that

P j 1 cosmrz dz = sin nny
0 COS TL—COS »y sinwy '
we obtain the formula

P J‘ sin iy dy -
0

: 2 1)" sin? } €08 7
sin #y cosxy—cos x8 sm’wﬂ{ cos? A+ (—1)" sin’ jwf— 'a}

With this formula may be associated

L
.[ s:ilx::Jy cosh ar:y coswy s— ¥ {cosh“ §78—(=1)"sinb® g8 —e~"7},
o =

which may be obtained by applying Theorem Ab to the function

_ COS N .
f@ ) (cos mz —cos xy)(cosh xB - cos xy) '

or otherwise deduced from well known results.

20. (iv.) The formul® (1)—(6) are capable of various interesting transformations. Thus,
if in (2), we write
= & - ¢ (arctan t/m) _ x(arc tan /%) _
tan xz = ¢, anway = 7, i) A(t), «/(—1 ) u(r),
we are led to the formule

M | Pr ?Eldz:ml(f), Pr ’ti_(ildt=—n(7).

This is a most interesting pair of formula, and it is worth while to attempt to determine as
precisely as possible sufficient conditions to be satisfied by A (¢) in order that the formuls shall
certainly be valid. But we shall defer this for a moment, until we arrive at the formulas
more directly (see §§ 22-24).

Similarly, the transformation tan j»z = ¢, tan 3=y = = leads us to the equations

* 1++° 1+72 (e
(8) PL i de =), Pj:(t—_f)(m;)“mdt— A(r).

Similarly, too, we obtain from (4) the formule

pr l+tr a(de _ ,m(.,)_r p(rdr

o b—T 14 e 1492’

Pr 1+tr p(t)dt _ ""()*’j A(mdr

o =7 148 o 1472’
also given by Kellogg.*

Finally, from (6), we obtain

c ¢ A(t) s (7) P R 4 Ddt = Lma
© P.[ P 1+t %wl+‘r" L t’—‘r'-'“( ydt = A (7).
21. (v.) Ifwetake a =b=-1, 4 =B =1,

flz,y) = zy ¢ (2) (L+z)1 +y%) ¢ (2) ,
@-y)(1-zy)(y - B{L-8y) (x-y)(1-azy)y-B)(1-8y)

* L.c., p. 451.
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and observe that

PJ" ydy j‘ 1+ dy =0,
@--20)ly -AA-By)  J-1{e—y)1—=2y)ly—A)'1-Ay)

if -1 <z<1, -1< 8 <1, weare led to the equations

1 1
1 _ ¥y _o(z)ds
(10) j-. (y—ﬂ)(l—By)PJ-n (- y)(1—=zy)

{2(1"32)) {48 (8)+(1+8)p 1)+ (1—B)2 ¢ (~1)},

(1 +y3) dy  (1+2¢) o (v)de
W pf L]

- (Z5) (~a+ero@+asro @ +a-sro(-1}.

Each of these results may evidently be stated as an inversion formula ; and either of them, or
any of the preceding formule, may be applied to give the values of any number of particular
integrals. Thus, to put ¢ (z) = 1 in (10) leads to the formula

1 1+y dy L -
P 10g (1Y) o Ai=Fy) —2a-g O<8<1

22. Examples with Infinite Limtts.—1I shall not attempt to formulate
any general theorems as extensions of Theorems A, &c., to the cases in
which some or all of the limits are infinite. Such cases are better con-
sidered individually; and I shall consider one case, perhaps the most
interesting of all, in detail.

(vi.) Let us suppose first that b = — o, B = », and

¢ (x)
f& = e=py—h

: T dy =0
Since P S_w - ,
the result to which we are led is
(12) Pj dy PS p@dz _ _ 5

- Y ﬁ -y

where A =0, if B falls outside the interval (a, 4), A = 7*¢(B), if
a<fB<A4, and A=37¢(B), if B=a or 4. Let us suppose a <B < 4.
Theorem B assures us of the truth of the equation

(18) j dypj 5“”—);1”9 j ¢(.L)d.’l:PS (x—y%“m_","‘(ﬂ”

if b < B < B. Itis clear that the conditions that we may replace b and
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B by —® and @ in this equation are that

as B— o and b—»— ®. But these conditions are cert.a,mly satisfied.
For the first equation is

hmj ¢ (@) log (11; Z) d.xB _ 0..

Now log (g Z) = log (1—2 %) (B:l,g)/(l 9; ’%>

where 0 < 0 < 1: thus, for large values of B, we have

B—zx
log (B——_,()’> |z Bl;
and from this the.result follows at once. Hence
14) PS dy PJ ‘W)d” —A
e Y—B L

28. The quésbion a8 to whether we can replace @ and 4 by —® and
w in this equation is decidedly more difficult. It is most convenient to
begin by first establishing the equation

B 0 »
(15) PLy_d—yTBPLw m(”_)zx =j_ ¢(x)cl.zPJ (“T%_B") (B

b <B<B.
I shall prove that this equation holds if only

S”Mdz, j Mdz
z —» &

are convergent. _
It is clear that (18) will pass over into (15) as a— — o and 4 — ®,
if only

(16) lim Pj Y 5 2@ g, — o,

4T—=Y

with a similar equation involving @. Now the integral
_ [ 2@
x4, y) L x_ydm

is convergent, since z/(z—y) is monotonic, and uniformly convergent* for

¢ See Bromwich, Infinite Series, pp. 433 et seq.-
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b < y < B, or, indeed, throughout any finite interval of values of y. For
a similar reason, we have

,ax<4,ﬁy>=r p@ 4
oy 4 (@—y)?

Also x(A,y)=AA r’sﬁ_@dx oxd,y) _ 4 5 $(@) g,

—Y Ja ’ x

T dy  d—y?
where A' > A; A"> A. Hence, given ¢, we can so choose 4, that

0
Ixl<e % < €/4,
for 4 > A4, and throughout any finite interval of values of y. Now
P [ xa, 2y (PFﬂ-b+ D) xdpH =g,
= ’ 1, -~ = y
b X v b 525—0 X Y y—8 ! :
> { du
where J = j {x(4, B+1)—x(d, B—w)} %
[}

8—-b

o[y,
0 ot

(¢ being a function of « which certainly lies within the larger of the ftwo

intervals b <t<28—b, b <t< B); and

B N b d
J =j 4,9 -2 =x, 5 .
2 2B_bx( )y 3 = x4, w) oy y—B’

w lying between 28—b and B. From these equations, and the inequalities

for x and Ox/dy proved above, the truth of (16), and therefore of (15),
follows immediately.

The question which remains is whether we can replace b and B by
—o» and o in (15). And thig will be so if only

® dy ® B—z\? dz
17 S :I;da:Pj _ J;j z) lo ( ) -0,
U0 ). P0%P), e=pe—p = * ). ?@ 8 5=p) -8
with a similar condition in . That this is so when the limits are a and
A was proved in § 22 ; hence it is enough for us to prove that

18) Jim %j #(@)log (32 z>9 _dx_ﬁ_—_ 0 U>p).
Morsover we may without real loss of generality take 8 = 0, and consider
the equation

| dz

(18" _ I}gg, %L (z) log (1— §> - =0.
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24. I shall now prove that the conditions (i.) that | ¢ (z)| < K, and (ii.)

that 1
S“P( ylogz 5

is convergent, are sufficient to ensure the truth of (18"). Since 1/(logz)

is monotonie, the second of these ensures that g 2@ ; 18 convergent, as
has already been assumed.

Now, let
hd A (1-A)B (1+A)B s
L=+ = ndataea,
4 4 4 -8  Ja+ne

say, where 0 <<A < 1. Choose 4, so that

(19) r“ﬁxldz <o,
4 &

for A" > A' > 4,. When 4, has been chosen we can choose B, so that
(20) |/l <e (B> B).

Also the function log (1—z/B)? is negative for 4, <z < (1—M\) B, and
decreases algebraically as z increases; hence we may apply Bonnet’s
form of the second mean-value theorem* to the integral J,, and so obtain

1-A)B
= log XY Mdz,
¢ I
where 4, < £ << (1—\)B; and so we can choose B; so that

@1 |7 <olog () (B> By.

Again, A=ﬂlmwmw.ﬁ“

and so
(22 J3; < Kjlik log (1—1'5)2 fdg < 1—5}-\ SIH log ( S) da¢
2 o))< ()}

provided 1/(1—X) < K, a condition which will certainly be satisfied.

* See, for example, Bromwich’s Infinite Series, pp. 426 et seq., or my Course of Pure
Mathematics, p. 286.
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Finally, J4= J4'1+J4 2+J4,s,
where J, 1= j ¢@ logz L de, Jy, 2 = —log Br ﬂx—)da:
(1+A)B z a+nB T
Tos = j 28 108 (1— 2) .
a+nyB T T
We can choose By 1, 80 that
(28) |Js1] <o (B> By1;
and, since Ji e = —logBj (@) logz dz
(14+A)B z Iog:c

log B r ¢p@logz ;.
" log {A+NBT Jasne = '

where £ > (14A) B, we can choose Bj, 3, 80 that

(24) | Ji,2| <o (B> Byo.
A\ 2@
And Jy,5 = log (1+)\) LM)B p d:c,

so that we can choose B, 3 so that
(25) | Jos| < o log(1/A) (B > By,s).
Let B, be the greatest of B,, By, By 1, Bs 2, Bss. Then

] sterton (1= £)"%2| < 174 14 1721 4 121 4+ s 1 sl 1
- {3+210g(%>}+K7\ {1+1og (17)} (B> By.

Given 8 we can choose A, so that KA { 1+log (%)} < 34, and then o, 80

that o {8+2log(1/A)} < 8. It follows that the integral tends to zero
as B— o, and we may therefore replace B by o in (15). The result at
which we thus arrive seems of sufficient interest to be stated as a theorem.

Treoren C.—If (i.) ¢(x) and its first two dertvatives are continuous,
(i) | ¢ @) | <K for all values of x, and (iii.) the integrals

r (@ lo 2 iz, Jf Q(z)loxg(—z)dx

x -
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are convergent, then will

Ty p" p@de __ a, .
Pg—m y—BPj—oo r—y W¢(‘B)’

or, in other words, if PE :z:) d.z: = mx (),

then will Pr x@dzs _ e,

o T—Y

The form of this result has been already arrived at otherwise (§ 20),
but without an accurate investigation of sufficient conditions for its truth.
A familiar example is obtained by taking

¢ () = cosmz, x(z) = — sin muz.

The inversion formula itself has a familiar look, but I am not aware that
I have ever seen it before, much less any accurate discussion of it proceed-
ing by methods in any way resembling those of the preceding sections.

25, (vii.) The following formule are of a similar character :—

(a) J‘:]og(iiz)ztp(a:)?:4]':dyPJ' %g)_y__'_,raq,(o),

.uod Pmo{z)u=_l2 0;
|, dv .(0 oy =i 0)

@ PJ: 'y2d—ysfpj: ";ﬁ”ﬂj” = (2’;)2{‘»(0)—4)(3)},

P‘ a:q:(a:)dz 1rx (y), Pjﬂzzx—é%dx————ém(y);

@ P[P 00 =i,

22—yt

The last of these formulee, which also leads to the inversion formula written just above it, was
given by Schlémilch (4nalytische Studien, Bd. 11., p. 156), but without any accurate defini-
tion or discussion. Interesting formule may be obtained from any of the above equations by

. . 1
particular choices of ¢ (z), e.g., --—, c?s m:z:’ v
+a* z?+al

26. (viii.) The following example, which is of a somewhat different character, leads to &
very interesting generalisation of Theorem C.
Take ¢ =b=-w, 4 = B= o, and

el
Te Y = e—R )
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where R (y) is a rational function of y whose numerator is of higher degree than its denominator,
and which is such that the equation R (y) = z has, for all values of z, real roots only. Then

P ] =0
j: (y—B){z—R (y)}

and so we are led to the formulse

; ® dy ¥ ¢(x)dzx _
(26) Pf_my—_-ﬁPf_nEé%w—rn%{R(a)},
A
PJ_., ’L_T_’%__ =¥no {R ()},

where the upper or lower sign is to be chosen according as R'(8) 2 0. The last formule
embody a generalisation of Theorem C. In particular we may take
R(y):ay—-b—.——c 4—...-——;k (a, b, ¢, ..., k> 0).
y—8 y-C y K 7
Suppose, for example, that

R(y) = ay—% @b>0), ¢@=e" x(@) =i

eitaz-bin) A%
-

Y

= wighloy=b1s},

We obtain* P "

-

Pj: cos (aa:—;l:—) ;)d_—zy—z = —}wsin (ay—ﬁ-), PJ:sin (aa:- —2—) z—"'f—:;/= 4w cos (ay—%).

With these formule may be associated those obtained from the formula

J:J_Lp“ ¢ (x) dz:jl"(z)d“.’r dy =%RU‘ ¢gz)dz]

¥+8 Joz—R(y) -= (12+8%){z—R (v)} -= &~ R (i)

(where ¢ (z) is real]. For example, taking ¢ (z) = sinz, R (y) = ay—b/y, we obtain

1™ rsinxz dr = T g-as-08,

* b dy
cos |aYy—~— ) —F= = — _
L (y y)y’+ﬂ“ 8 oz,+(aa+g)= 38
B

27. It is instructive to consider also the case in which the roots of ¢ = R (y) are not

always real. Suppose, e.g.,
y , R(y):ay+§~ (a, b > 0).

The roots are real only if x* > 4ab, and

p r dy __ z—(3b/8) = o

oDl b\ z—aB-(a/B) V{Eab—=)
(‘.‘_/. B (m ay y)

* See Quarterly Journal, Vol. xxxi1., p. 374 ; Bromwich, Infinite Series, p. 496.
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according as z? < 4ab or 2? > 4ab. Let us, for simplicity, take 8 = 1. Then we obtain

_,r‘/nm z-2 _¢(@)ds =pj’° _ﬁy__pj” ¢ (2)da
avanyT—a—b (4ab—2?) - _oy—1

o Toay— (/) +7°p (a + b) sgn (a—b).

Suppose b <a, and let 7 =,/(b'a), m =2,/(ab). Then, making the substitution
z = mt, we obtain, after a little reduction, the formule

P @& _ .,
J=-n 1‘—2]
x X (ay+%) N 0
__ *  cosf—1 -
P rme dy = —n¢(a+ b)+2r _‘01_-2;:-059+19¢(mcos9)d0'

In particular, the assumption ¢ (z) = ei* leads to the formule

- b dx . o 1—72
P| cos (aa:+-—) . =iwsin(a+b)—3| — - . . —— sin (mcosb)dd
L e Jim ¢ )=% ol =27 cosf+7" m (v cos b)

= }wsin(a+d)—w(rJ,— 183+ 19J5—...),

£ v —_2
PJ sin (a:c+%-) 1—‘% =—§wcos(a+b)+§} 1= cos (mcos6)de
0 Z

ol—2rcos6+72
=—3imcos(a+d)=n (r°Jy—7'J, ¢ T8J—..),
where 0 < b < @, T =4/(bla), m = 2,/(abd), and the J's denote Bessel’s functions with argu-
ment m. With these should be associated the further formulae*
* b dx
S —_ -
jo co (a.:c+ x ) 1+ x?

X
J sin (a:c+ b ) =z __ ime=(a-Y— g (A + T+ 7005+ ).
)

= tme~@- Vgt + T3+ 125+ ...),

z/l+x?

28. It is unnecessary to multiply examples of the very large number
of classes of formule that can be obtained in this kind of way. There is,
however, one kind of case that we have not yet considered. In all the
cases that have been considered so far, the number of intersectious of the
singular curves has been finite. I shall conclude by considering one
example in which this is not the case. It is, of course, possible to con-
struct any number of such examples, and the justification of any result
thus obtained involves theoretical difficulties additional to those which
have been dealt with already. With these, however, I do not propose to
deal ; for the applications of such results as I have obtained do not seem
to be of great interest. I shall, therefore, merely give a single example
of the kind of formul® that can be obtained.

It is easy to see that, if z, 8, and b are real and no two of them differ
by an integer, then

” 1 : dy _
PE_-L gin 7 (c—y)sinw(y—PB) y—b 0

* Messenger of Mathematics, Vol. XXXVIIIL., p. 129.
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The result follows, in fact, at once, when Cauchy’s theorem is applied to
the integral 1 dy

j sin w(@—y) sin 7y —pP) y—b’

the contour of integration being the ordinary infinite semicircle ”
described on and above the real axis, and the poles of the subject of
integration, which are all real, being avoided by small semicircles in the
usual manner.

Suppose, then, that

_ ¢ ()
Sl y) = (z—a)y—0b)sinm(x—y)sin r(y—B)°
We obtain
B " dy © o (x)dx
0= Pj_m (y—b)sin = (y—B) Pj—x @—a) sinT(z—y) +24

where the sign of summation applies to all points of intersection of
singular curves.

These points are (i.) z=a, y=0; () z=a, y=a+tn;
(i) z=b+m, y=">b; (@(v) z=a, y=B+n; ) z=LB+m+tn,
y=B+n; where m and n have any integral values, positive or
negative. In order to ensure that ¢hree curves shall in no case intersect
in one point it is necessary to suppose that no two of a, b, B differ
by an integer.

We easily find

A _ w¢(a) 1
4+ T ginw(@—pB) a—b+n’

_ ™ (—=1)" ¢ (b+m)
Bosm, s = sinw(b—B) b—a+m

Aa, B+n — 0,

A _ (_l)m+n¢([3+r)n+’)‘b) .
B+m+n, B+ = B+m+n—a)(B+n—0)’

and, after a little reduction, arrive at the formule

P r ¢ (@) d

—w (@—a) 8in T(x—y)
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Pr x (z)dz
—w (z—0) sin m(x—y)
= _ —a)— s (=D"¢H+m)
= — w¢(a) cot m(b—a) cosee 7 (y —a)—cot T (y—b) _Zw( y)——afi—;:m)
e (=" (+m)
~+cosec 7 (y —b) _Em —atm
For instance, if ¢ =1, then y =0. Hence we should have
0 = — 7 cot w(b—a) cosec 7 (y —a)
_ o © (_l)m _ w (_l)m
cot 7 (y—b) _2; y—_a+7n+cosecvr(y b).—Ew —atm’

an equation the truth of which may easily be verified.



