THE CLASSIFICATION OF RATIONAL APPROXIMATIONS

By J. H. GRACE.

[Read February 18th, 1916.—Received September 10th, 1917.]

Introduction.

It was proved by Hermite^{*} that, if θ is any incommensurable number, there exists an infinite number of rational approximations x/y such that

$$\left|\frac{x}{y}-\theta\right| < \frac{1}{y^2\sqrt{3}},$$

and that for two consecutive approximations x/y, x'/y' of this class

$$xy' - x'y = \pm 1.$$

The same theorem has been proved by Minkowski⁺ when $\sqrt{3}$ is replaced by 2.

The main object of this paper is to prove that, if

 $1\frac{1}{2} \leqslant k \leqslant 2$,

then for two consecutive approximations that satisfy the condition

$$\left|\frac{x}{y} - \theta\right| < \frac{1}{ky^2},$$
$$xy' - x'y = \pm 1.$$
 (A)

we have

If k is outside the limits stated, this last relation need not be satisfied by two consecutive approximations (§ 7).

What is alluded to as classification means that, when θ is given, a class of approximations consists of those satisfying

$$|x/y-\theta| < 1/ky^2,$$

* Œuvres, Vol. 1, p. 168. Cf. also the letters to Jacobi.

† Ges. Abhandlungen, Vol. 1, p. 320; Math. Ann., Vol. 54, p. 91.

where k is fixed. The class is infinite for all θ 's when $k \leq \sqrt{5}$.* When approximations are said to be arranged in order, it is order of increasing complexity, *i.e.* increasing values of y, that is meant.

1. We shall first prove that, if

$$|x/y-\theta| < 1/y^2,$$

and the fraction x/y is in its lowest terms, then it is a convergent to the continued fraction for θ .

In fact, express x/y as a continued fraction, and arrange so that the penultimate convergent x'/y' errs from x/y in the same direction that θ differs from x/y.

Since
$$|x/y-x'/y'| = 1/yy'$$
,

it is clear that θ lies between the two fractions; we can therefore write

$$\theta = \frac{px + x'}{py + y'} \quad (p > 0);$$

and hence, if

$$\frac{x}{y}=c_0+\frac{1}{c_1}+\cdots\frac{1}{c_n},$$

or

 $(c_0; c_1, c_2, ..., c_n),$ $\theta = (c_0; c_1, c_2, ..., c_u, p). \dagger$

we have

If p > 1, the C.F. for θ agrees with that for x/y as far as c_n ; if p < 1, the C.F. for θ only differs in that c_n is to be increased by the integral part of 1/p. In the first case, x/y is a principal convergent to the C.F. for θ , and in the second it is an auxiliary convergent.

2. Let the C.F. for θ be

$$(a_0; a_1, a_2, \ldots, a_n, \ldots),$$

* Hurwitz, Math. Ann., Vol. 39, p. 279, and Markoff, *ibid.*, Vol. 15, p. 384. The approximations of Hermite do not include all that satisfy the condition indicated. What they are and what they are not has been elegantly determined by Humbert, *Comptes Rendus*, Dec. 1915. Cf. Minkowski, *Ges. Abhandlungen*, Vol. 1, p. 279. The case $\Omega = 1$ is here referred to.

+ We also write

$$(c_0; c_1, c_2, c_3, \ldots)$$
 for $c_0 + \frac{1}{c_1} + \frac{1}{c_2} + \cdots$
 (c_1, c_1, c_3, \ldots) for $\frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} + \cdots$

and

and denote the convergent corresponding to a_n by p_n/q_n ; and write

$$\omega_n \equiv (a_{n+1}; a_{n+2}, a_{n+3}, \ldots).$$

Then
$$\theta = \frac{\omega_n p_n + p_{n-1}}{\omega_n q_n + q_{n-1}}$$

and
$$\left|\frac{p_n}{q_n}-\theta\right|=\frac{1}{\lambda_n q_n^2},$$

where $\lambda_n = \omega_n + \frac{q_{n-1}}{q_n} = (a_{n+1}; a_{n+2}, a_{n+3}, \ldots) + (a_n, a_{n-1}, a_{n-2}, \ldots).$ (2.1)

Next consider an auxiliary (or intermediate) convergent p/q, where

$$p = ap_{n-1} + p_{n-2}, \quad q = aq_{n-1} + q_{n-2},$$

.

a being an integer less than a_n . It is easy to see that

where
$$\begin{aligned} \left| \frac{p}{q} - \theta \right| &= \frac{1}{\lambda q^2}, \\ \lambda &= (\beta, a_{n+1}, a_{n+2}, \ldots) + (a, a_{n-1}, a_{n-2}), \end{aligned}$$
(2.2)
and
$$a + \beta = a_n. \end{aligned}$$

and

In fact, we have
$$\theta = \frac{\eta p + p_{n-1}}{\eta q + q_{n-1}}$$

where

and since

$$\eta = (\beta, a_{n+1}, a_{n+2}, \ldots),$$

and so
$$\frac{p}{q} - \theta = \frac{1}{q(\eta q + q_{n-1})} = \frac{1}{q^2(\eta + q_{n-1}/q)};$$

$$\frac{q_{n-1}}{q} = (a, a_{n-1}, a_{n-2}, \ldots)$$

the result follows.

If p/q is really an auxiliary (and not a principal) convergent, α , β are both positive. Hence λ is in all cases less than 2, and less than 1 unless either a or β is unity. Thus :—

The approximations to θ which belong to the class defined by

$$\left|\frac{x}{y}-\theta\right|<\frac{1}{y^2},$$

are all included among the principal convergents for θ and the auxiliary

convergents adjacent to them. The former must satisfy the condition and the latter may do.

The formulæ (2.1) and (2.2) are fundamental.

3. If a convergent intermediate between p_{n-1}/q_{n-1} and p_n/q_n satisfies the condition

$$\left|\frac{p}{q}-\theta\right| < \frac{1}{kq^2},$$

then p_n/q_n also satisfies the condition. For

$$\left|\frac{p}{q}-\theta\right|=rac{1}{\lambda q^2},$$

 $\left|\frac{p_n}{q_n}-\theta\right|=rac{1}{\lambda_n q_n^2},$

and we have only to see that $\lambda_n > \lambda$.

We have
$$\lambda = \frac{1}{\beta + x} + \frac{1}{a + y}$$
 (x, $y < 1$),
 $\lambda_n = \frac{1}{x} + \frac{1}{a_n + y}$,
 $\lambda_n - \lambda = \frac{\beta}{x(x + \beta)} - \frac{\beta}{(a + y)(a_n + y)}$.

The first term here is greater than

$$\frac{\beta}{\beta+1}$$
,

 $\frac{\beta}{aa_n}$.

and the other less than

The result $\lambda_n > \lambda$ follows at once.

4. As regards principal convergents, we have

$$\lambda_n = (a_{n+1}; a_{n+2}, a_{n+3}, \ldots) + (a_n, a_{n-1}, a_{n-2}, \ldots),$$

 $\lambda_n = \hat{\xi}_n + \eta_n.$

or say

It is clear that $\lambda_{n-1} = \hat{\xi}_{n-1} + \eta_{n-1}$,

1916.]

THE CLASSIFICATION OF RATIONAL APPROXIMATIONS.

where	$\hat{\xi}_{n-1} = a_n + 1/\hat{\xi}_n,$	
	$1/\eta_n =$	$a_n+\eta_{n-1}$,
so that	$\hat{\xi}_{n-1} + \eta_{n-1} =$	$= 1/\hat{\xi}_n + 1/\eta_n.$
It follows that	$\lambda_n + \lambda_{n-1} = \xi_n +$	$+1/\hat{\xi}_n+\eta_n+1/\eta_n$;
and since	$\hat{\xi}_n > a_{n+1},$	$1/\eta_n > a_n,$
we deduce	$\lambda_n + \lambda_{n-1} > a_{n+1} +$	$-1/a_{n+1}+a_n+1/a_n$.
In all cases therefore $\lambda_n + \lambda_{n-1} > 4$,		
and, unless	$a_n = a_n$	$a_{n+1}=1,$
	$\lambda_n + \lambda_n$	$-1 > 4\frac{1}{2}$

It follows that except when, in the C.F. for θ , a_n is ultimately always unity, there is an infinite number of values of n for which $\lambda_n > 2\frac{1}{4}$.

In the exceptional case it is clear that, when $n \to \infty$.

$$\lambda_n \rightarrow \sqrt{5}.$$

To be more explicit, suppose a_r is the last a that is greater than unity, then $\lambda_n > \sqrt{5}$ for n-r odd,

and $\lambda_n < \sqrt{5}$ for n-r even.

Hence we have the result, first explicitly stated by Hurwitz, that for any irrational θ there is an infinite number of approximations x/y such that

$$\left|\frac{x}{y}-\theta\right| < \frac{1}{y^2\sqrt{5}},$$

while, if $k > \sqrt{5}$, there are irrationals θ having only a finite number of approximations such that

$$\left| \frac{x}{y} - \theta \right| < \frac{1}{ky^2}$$

We have only to see, in fact, that, for all irrationals θ , $\lambda_n > \sqrt{5}$ for an infinite number of n's.

The class corresponding to a value of k is always infinite if $k \leq \sqrt{5}$, but if $k > \sqrt{5}$ it is finite for some θ 's.

The simplest exceptional θ is

$$\theta = \frac{1}{2}(\sqrt{5}-1) = (1, 1, 1, ...).$$

5. Proceeding now to the proof of the Theorem (A), which is my main thesis, it may be remarked that, when an approximation x/y is assigned, there are only two fractions x'/y' (x' < x, y' < y) that satisfy the condition

$$xy' - x'y = \pm 1,$$

viz. one giving the upper and one the lower sign. Thus we have only to examine whether one of these two fractions is the member of the class that next precedes x/y.

If the condition for the class be too severe (*i.e.*, if the value of k be too large), the preceding member may be further away from x/y than either fraction x'/y', while if the condition be too lax the preceding member of the class may be nearer to x/y than either. This rough argument indicates the nature of the theorem and the manner of reasoning to be used in proof.

6. Another remark will be more directly useful. Suppose $x = p_n$, $y = q_n$, p_n/q_n being, as usual, the convergent to θ corresponding to a_n . Then, unless $a_n = 1$, the fractions x'/y' for which

$$xy' - x'y = \pm 1$$

are clearly the convergent p_{n-1}/q_{n-1} and the auxiliary one just preceding p_n/q_n .

If $a_n = 1$, the latter does not exist, and is replaced by the convergent p_{n-2}/q_{n-2} .

If x/y is the auxiliary convergent just before p_n/q_n , and $a_n > 2$, the two fractions x'/y' are p_{n-1}/q_{n-1} and the auxiliary convergent just before x/y.

If $a_n = 2$, the latter is absent and is replaced by p_{n-2}/q_{n-2} .

Finally, when x/y is the auxiliary convergent just after p_{n-1}/q_{n-1} , the two fractions in question are p_{n-1}/q_{n-1} and p_{n-2}/q_{n-2} .

These are all the cases that need be mentioned.

7. PROOF OF THEOREM (A).

I. If k > 2, all the approximations x/y must be principal convergents. We can readily construct a case in which, while p_{n+1}/q_{n+1} satisfies the condition, we have $a_{n+1} = 2$, but p_n/q_n does not satisfy it; for here

$$\lambda_n < 2 + \frac{1}{a_{n+2}} + \frac{1}{a_n},$$

and by taking a_n and a_{n-2} large enough we can ensure $\lambda_n < k$.

1916.] THE CLASSIFICATION OF RATIONAL APPROXIMATIONS.

It follows (§ 6) that the member x/y next preceding p_{n+1}/q_{n+1} does not satisfy $p_{n+1}/q_{n+1} = 1$

$$p_{n+1}y - q_{n+1}x = \pm 1.$$

II. If k = 2, all the members are again principal convergents. If p_{n+1}/q_{n+1} satisfies the condition, then, if $a_{n+1} > 1$, p_n/q_n does also (2.1), while if $a_{n+1} = 1$, p_n/q_n may not. Yet since

$$\lambda_{n-1}+\lambda_n>4,$$

either p_n/q_n or p_{n-1}/q_{n-1} must satisfy the condition; so that in either case (see § 6) the preceding member x/y does satisfy

$$p_{n+1}y - q_{n+1}x = \pm 1,$$

and the theorem is proved.

III. If $k < 1\frac{1}{2}$, we have only to indicate an exception to the relation

$$xy' - x'y = \pm 1.$$

We take $a_n = 3$, so that between p_{n-1}/q_{n-1} and p_n/q_n there are two auxiliary convergents, viz.,

p/q corresponding to a = 1, $\beta = 2$, p'/q' ,, a = 2, $\beta = 1$;

and we are going to arrange that p/q satisfies the class condition

$$\left|\frac{p}{q}-\theta\right|<\frac{1}{kq^2},$$

while p'/q' does not. In this case p_n/q_n must satisfy the condition (§ 3), and the preceding member p/q does not obey the formula

$$p_n q - q_n p = \pm 1.$$

A simple calculation is needed.

- We can write
- $\lambda = \frac{1}{2+\xi} + \frac{1}{1+\eta},$ $\lambda' = \frac{1}{1+\xi} + \frac{1}{2+\eta},$ $\dot{\xi} = (a_{n+1}, a_{n+2}, ...),$ $\eta = (a_{n-1}, a_{n-2}, ...),$

 $\lambda - \lambda' = \frac{1}{(1+\eta)(2+\eta)} - \frac{1}{(1+\xi)(2+\xi)},$

and we have

so that $\lambda > \lambda'$ if only $\xi > \eta$.

It will be clear now that, k being less than $1\frac{1}{2}$ but ever so near it, we can so arrange a case that

$$\lambda > k$$
 and $\lambda' < k$;

this completes the argument for $k < 1\frac{1}{2}$.

What has been stated refers to cases where k is nearly $1\frac{1}{2}$, but to deal with other cases we need only take $a_{n+1} = 4$, 5, &c., instead of 3. The *crux* of the matter is that $\lambda > \lambda'$.

IV. The final case is $1\frac{1}{2} \leq k < 2$.

If an auxiliary convergent between p_{n-1}/q_{n-1} and p_n/q_n belongs to the class, we must have $a_n = 2, \quad a = \beta = 1$ (§ 2).

Suppose now that p_n/q_n satisfies the condition

$$\left|\frac{p_n}{q_n}-\theta\right|<\frac{1}{kq_n^2}.$$

The preceding member of the class may be the intermediate convergent if $a_n = 2$, but if $a_n > 2$ it must be p_{n-1}/q_{n-1} ; and both these satisfy

$$p_{x}x-q_{y}y = \pm 1$$
 (§ 6).

There remains the case $a_n = 1$. Clearly p_{n-1}/q_{n-1} may not belong to the class; if it does not, no auxiliary convergent between p_{n-2}/q_{n-2} and p_{n-1}/q_{n-1} can possibly belong (§ 3), while, since $\lambda_{n-2} + \lambda_{n-1} > 4$, p_{n-2}/q_{n-2} must belong.

This completes the proof as far as a principal convergent p_{n-1}/q_{n-1} is concerned.

It remains to discuss the member immediately before an auxiliary convergent that is like the one above. As indicated $a_n = 2$, $\lambda_{n-1} > 2$, and p_{n-1}/q_{n-1} is the preceding member.

Since it satisfies the condition, the proof is now finished.

8. In cases where successive approximations of the class satisfy the relation $m' = m' = \frac{1}{2}$

$$xy'-x'y=\pm 1,$$

 $\mathbf{254}$

the whole class will differ from the class of principal convergents to θ in two possible ways :---

- (i) if $a_{n+1} = 1$, the convergent p_n/q_n may have to be rejected;
- (ii) if $a_n = 2$, the auxiliary convergent between p_{n-1}/q_{n-1} and p_n/q_n may have to be inserted (§ 7, IV).

In these cases the C.F. for θ can be modified* (by the introduction of some minus signs, if necessary), so that the approximations of the class and no others occur as principal convergents.

Suppose, in fact, that x/y, x'/y', x''/y'' are three consecutive members of the class, so that

$$xy' - x'y = \pm 1, \qquad x'y'' - x''y' = \pm 1$$
$$x = \lambda x' + \mu x'',$$

We can write

 $y = \lambda y' + \mu y'',$

and it readily follows that λ , μ are integers of which μ is ± 1 ; since λ must be positive this is the continued fraction algorithm. If $\mu = +1$, the partial quotient λ is preceded by a positive sign, otherwise by a negative sign.

A simple example will best indicate the method of modification.

Take $\theta = (4, 2, 4, 1, 4, ...):$

then the principal convergents are

$$\frac{1}{4}, \frac{2}{9}, \frac{9}{40}, \frac{11}{49}, \frac{53}{236}, \dots,$$

and the auxiliary convergent between $\frac{1}{4}$ and $\frac{2}{5}$, viz. $\frac{1}{5}$, may belong, while the principal convergent $\frac{9}{40}$ may not. In fact, taking

$$\left|\frac{x}{y}-\theta\right|=\frac{1}{\lambda y^2},$$

 $\lambda > 1.6$,

we have for the first

[•] Cf. Hermite, *l.c.*, who deals with $k = \sqrt{3}$, and Minkowski (*Math. Ann.*, Vol. 54, p. 91; Ges. Abhandlungen, Vol. 1, p. 320), who deals with k = 2. The process is a definite one, as there stated, but not a direct one.

and for the second $\lambda < 1.5$,

so that, with k = 1.6, the first must be inserted and the second rejected.

First, change from (4, 2, 4, 1, 4, ...), to (4, 2, 5, -5, ...):

the new convergents are $\frac{1}{4}, \frac{2}{9}, \frac{11}{49}, \frac{53}{236}, \dots,$

and $\frac{9}{40}$ has disappeared.

Secondly, change to (4, 1, 1, -6, -5, ...), and the convergents are

 $\frac{1}{4}, \frac{1}{5}, \frac{2}{9}, \frac{11}{49}, \frac{53}{236}, \ldots,$

as desired.

The rules will be obvious and are easily established.

It may be mentioned that, since

$$\lambda_n + \lambda_{n+1} > 4,$$

two consecutive principal convergents have never to be rejected.

9. We have seen (§ 4) that, if

$$\theta = \frac{1}{2} (\sqrt{5} - 1) = (1, 1, 1, ...),$$

and $k > \sqrt{5}$, there is only a finite number of rational approximations x/g to θ , such that

$$\left|\frac{x}{y}-\theta\right| < \frac{1}{ky^2}.$$

A more general result has been established by:Markoff,* viz. that, if θ has only a finite number of rational approximations such that

$$\left|\frac{x}{y}-\theta\right| < \frac{1}{3y^2},$$

then θ must be a quadratic surd.

The first result, and some idea of Markoff's method, can be alternatively obtained by following the line of argument used by Liouville⁺ in his classical proof of the existence of transcendent numbers.

256

^{*} Math. Ann., Vol. 15, p. 381. It will, I think, be clear to any reader that the results of Hurwitz quoted earlier all really occur in this paper.

t Liouville's Journal, Vol. 16, p. 133. The argument has been often reproduced: see, e.g.. Young, The Theory of Sets of Points, p. 7.

In fact, with the above value of θ , we have

$$f(\theta) \equiv \theta^2 + \theta - 1 = 0,$$

whence

$$f\left(\frac{x}{y}\right) - f(\theta) = f'(\xi)\left(\frac{x}{y} - \theta\right),$$

where $\dot{\xi}$ is between x/y and θ . It follows that

$$\left| \frac{x}{y} - \theta \right| = \left| \frac{f(x|y)}{f'(x)} \right|.$$

Now, x and y being integers,

$$\left|f\left(\frac{x}{y}\right)\right| = \frac{\lambda}{y^2},$$

where λ is a positive integer, and so

$$f'(\xi) \to f'(\theta) = \sqrt{5},$$

when $x/y \rightarrow \infty$. We deduce that for any rational approximation

$$\left|\frac{x}{y}-\theta\right| \to \frac{\lambda}{y^2\sqrt{5}},$$

when $y \to x$; since $\lambda \ge 1$, the result follows at once, and it also follows that $\lambda = 1$ for the best approximations.

In general, when θ is a quadratic surd, λ will be the minimum of a certain indefinite quadratic binary form, and it was in finding λ that Markoff succeeded.

10. I shall now attempt to supplement the just quoted theorem of Markoff.

Suppose that, to make up the digits in the continued fraction for θ , we have a cycle of m 1's and another of m 2's, it being understood that each cycle can be used any number of times in succession. It is quite clear that the set of θ 's so constructed is non-enumerable, and therefore that there are non-algebraic—*i.e.* transcendent—numbers among them; it is easy to see that the value of λ_n corresponding to a partial quotient a_n is distinctly less than 3, except when a_{n+1} is a 2 with a 1 and a 2 adjacent to it. In this case, when $m \to \infty$ and $n \to \infty$, $\lambda_n \to \frac{\sqrt{5-1}}{2} + \sqrt{2+1}$, say ϕ ,

SER. 2. VOL. 17. NO. 1318.

257

and it follows that, if $k > \phi$, there are transcendent numbers with only a finite number of approximations such that

$$\left|\frac{x}{y}-\theta\right| < \frac{1}{ky^2}.$$

The value of ϕ is $3.0322 < 3\frac{1}{30}$.

It seems likely that, by a different choice of the two cycles, we could reduce the critical value of ϕ to 3, but I do not see at present how to do this. I may add that Markoff's result relating to the quadratic surds is by no means easy to establish; it probably does contain the key to the supplementary theorem here indicated.