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1. It has been shewn by Weber* that the functions associated with
the parabolic cylinder in harmonic analysis are solutions of a differential
equation of the form

y"+Zy = 0,

where Z is a quadratic function of the independent variable z. There is.
no loss of real generality in taking the equation to be

and, when a is a positive integer, a solution of the equation is

This function is intimately connected with Hermite's* polynomial

References to other investigations of the solutions of the differential'
equations are to be found in papers! published in the Proceedings in 1908
and 1910. It should be stated here that the standard solution of the

* Math. Ann., Vol. 1 (1869), pp. 1-36.
t Comptes rendus, t. 58 (1864), pp. 93-97, 266-273.
t Whittaker, Proceedings, Ser. 1, Vol. 35 (1903), pp. 417-427; Watson, Proceedings,

Ser. 2, Vol. 8 (1910), pp. 393-421. See Encyclopidie des Sciences Math., Vol. 2, t. 5, p. 325.
Reference may also be made to the work of Markoff, Bulletin de VAcadimie des Sciences de
St. Pttersbourg, Se"r. 5, t. 9 (1898), pp. 435-446, and A. Miln^, Proc. Edinburgh Math..
Soc, Vol. 33 (1915), pp. 53-59, concerning the zeros of DH (z).
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equation, when n is unrestricted, is taken by Whittaker to be

)
 c-*-i(W (-t)-^ dt,

and other solutions are Da{—z), D-n-\{+iz).
When n is a positive integer, then

The moat remarkable discovery which has been made concerning the
function Dn(z) is contained in Adamoff's* approximation, namely that,
'when n is a large integer and x is positive,

Dn(x) = 2h-nine-

where w*(x) =

and | S«(aO| < 3*35 ..., when n > 2 ; and ic,,(0) = 0 or £&/» (where
— 1 < 9 < 1), according as n is odd or even.

In my former paper, I shewed that Adamoffs investigation would be
extended to Blh{z), when z is complex, provided that \l(z)\ is not too large :
and this result made it easy to give a formal proof of a theorem enun-
ciated by Hermite and Whittaker, concerning the expansibility of an
arbitrary analytic function in the form 2 anDn (,?) :—a result analogous to
Neumann's expansions in series of Legendre polynomials and Bessel
functions.

In this paper, I investigate various types of asymptotic formulae and
expansions of Dn(z), hy the method of steepest descents ; the results con-
tained in the paper are therefore to be associated with those previously
obtained by Debyet and by myself I for Bessel functions.

It should be stated here that the method of steepest descents^ is a mode of discussing the
integral f e"Jif) <p (s) ds by choosing a contour which passes through a zero of / ' (s), and which

* Ann.del'Inst. Poly technique de St. Petersbourg, t. 5 (1906), pp. 127-143. More recently,
Perron, Archiv der Math. u. Phys., Ser. 3, Vol. 22 (1914), pp. 329-340, has given some
approximate formulae for the confluent hypergeometric function of which Dn {z) is a special
form, but the limits of error in the formulae are not investigated with the preciseness of the
•earlier work of Adamoff.

t Math. Ann., Vol. G7 (1909), pp. 535-558; Munchener Sitznncjsberichte [5], 1910.
% Proceedings, Ser. 2, Vol. 16(1917), pp. 150-174. The present investigation is much

more closely connected with this paper than with the paper of which it is nominally a sequel.
§ The method is to be traced to a posthumous paper by Riemann, Werke, 1876, p. 405.

See also Brillouin, Ann. de I'Ecole Norm. Sup., Ser. 3, t. 33 (1916), pp. 17-69
Riemann's method was a combination of the method of steepest descents and the method of
stationary phase.
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is such that If(s) is constant on the contour; so that Rf(s) falls away from its maximum as
rapidly as possible, f(s) being monogenic. The name is derived (like the German " Methode
der Sattelpunkte " and the French "Methode du Col") from a consideration of the surface
on which the coordinates of any point are R (s), I(s), Rf(s); the contour is the plan of a curve
drawn on the surface so as to pass through a saddlepoint and at all other points on it to be as
steep as possible.

2. Whittaker's integral for Z)n(2f0i).

It is convenient to take a new variable in place of z, the argument of
Dn{z). We shall write throughout z = 2£<\/n, x = %£<\/n, where £ is real;
it will be supposed that n is positive (except in §§ 10-14,16, 17, in which
it is assumed merely that B{n) > 0 and | arg?i | < ^TT), SO that, with these
exceptions, x is also real.

In Whittaker's integral, already quoted, we take a new parametric
variable s, defined by the equation

t = — zs*Jn,

where | arg s | < -K on the path of integration. This gives

Dn (3) = l ^ ^ j ( 0 + > s~n~l exp \ -\z*+nhs-W\ ds

1 f(°+)
if A7V(£) = ± j exp •; -n(?+i+\og s - 2

1 f(°+>

where r = f a +J+ log s-2^s+^s2.

We proceed to discuss the properties of Dn(z) by means of the slightly
simpler function An(£).

3. Inequalities satisfied by A,,(f) lohen £^1.

We shall now apply the principles of the method of steepest descents
to the contour integral for A,v(£), introduced in § 2, in the special case ia
which £ ^ 1.

Write £ = cosh a, where a > 0 ; then the value of r becomes

cosh2 a + | + l o g s—2s cosh a-f 2«2«
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Evidently r, qua function of s, is stationary when

(1/s) — 2 cosh a + s = 0,

i.e., when s = e±a.

At these points r is real, and so we choose (if possible) a contour on
which 1(T) = 0.

Writing s = reie, we see that the contour must be given by the whole
or part of the curve whose equation in polar coordinates is

6—2r sin 6 cosh a-\-r* sin 0 cos 6 = 0.

This equation is satisfied, either if 0 = 0 , or if

/• = sec 6 \ cosh a + y/(cos\i2 a—0 cot 6) \.

If the lower sign be taken for the radical /• is positive when
— 7r ^ 6 ^ 7T, and r is an even function of 0 ; as 0 increases froni 0 to ir,

y varies* from e~a to + oo .

If the upper sign were taken for the radical, r would vary from e- to + x> as 8 increases
from 0 to |ir; and when \n < 6 < n, r would be negative.

The curves on which d — 2rsin 6 cosh a + r'3 sin 0 cose vanishes are shewn in Figs. 1 and 2,
the latter shewing the special case a = 0; the dotted portions correspond to the negative
values of r.

PIG. 1. FIG. 2.

Consequently the curve r = sec 6 {cosh u — yXcosh2 a—6 cot 0)\ is a

* It appears that r does not necessarily increase steadily ; for, when 0 = 0, r is stationary
its second differential coefficient with regard to 6 is negative if cosh o < 2/ v'3.
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contour of the appropriate type; and it gives rise to the definite integral

where r is the stated function of 0 and T is defined as a function* of 0 by
the equation

T = cosh2 a-}-£+log r—2r cos 0 cosh a-f £r2 cos 20.

To indicate the dependence of T on 0 and a, we shall frequently write
T (0, cosh a) in place of T; we thus have

T(6, cosh a) = log [sec 0j cosh a—V(cosh2a-0cot0)(]+cosh2a+£-0cot20

—cosh a sec2 0 {cosh a—V (cosh2 a—0 cot 0) \.

Since r and T are euevi functions of 0, we see at once that

From the equations

dT/d0 = |(l/r) —2 cos0cosha + r cos20} (drjd6) + :2>- sin0(cosh a - r cos 0),

0 = 2sin0(>-cos0—cosha)(dr/d0)+(l —2/-cos0 cosh a+?-2cos20)

(the latter being derived from the fact that I(r) is zero on the contour), we
see that

dT/dO = r [2 sin 0(cosh a—r cos 0)]"1 [{l/r-2 cos 0 cosh a+r cos 20 •-

+ 4sin20(cosha-?-cos0)2]

= r[2sin 0(cosh a — /-cos 0)]"1 [|l/r—2cos 0 cosha + r}2

+ 4 sinh2 a siir 0] .

Since cosh a—r cos 0 = + V(cosh2 a — 0 cot 0) ^ 0,

we deduce that, when 0 ^ 0 ̂  -nr, T is a non-decreasing function of 0.

and so T > T (0, cosh a) = sinh a cosh a - a > 0.

It now follows immediately from the last integral given for A7l(f) that

0 < An (cosh a) < 7r<TuT(0>cosha).

An inequality for An(cosh a), which is stronger than that just obtained

* In fact T =• R (T) ; although T reduces to T on the contour considered, it avoids con-
fusion to make a distinction between T, a function of the complex variable s, and T, a function
of the real variable 6.
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(except when a is small) can be derived from the former of the pair of
expressions given for dT/dd; for we have

dT/dO > 2r sin 6 (cosh a — r cos 6)

_ 20 .( j cosh_o

1 cosh u+V(cosh2 a—6 cot 6)

since 0cot d < 1. Hence, on integration, T—T{0, cosh a) > i^d—e~2a),
and so

A,, (cosh a) < f exp { -nT{0, cosh a)-i?i02(l —e~2a)\ dO
Jo

< (i-H-/?!)* (1 — e-2orJ exp { —;ir (0, cosh a)} ;

and this is the inequality to which reference was made.
The results of this section may be summed up in the following

theorem :—

When x ^ 2\//i, Da(x) is positive and does not exceed the smaller of
the functions

T(n+l)eill(2n)-n \x

4. The behaviour of Ait(f) and A'n(£) when £^ 1.

It is easy to see that

—jpH^ = —r, o a—r^L c°sha sin20 —V(cosh2a —Ocot 0) 2

+ cos2e{cosh2asm2e+sinhVf]>0;

and consequently

' & = JQ [2 tan V(cosh2 a-6 cot 6)+ 2 cosh « (9- tan 0)].

From the integrals

dB, X(i) = - n T
Joo

it is now evident (i) that, when x ^ 2.01, Dn(x) is a positive decreasing
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function of x when n is fixed, and (ii) that, when $ is fixed, and not less
than 1, ATO(£) and — ?i~1A,'(£) are positive decreasing functions of n, since

T > T(0, f) = sinh a cosh a — a > 0.

5. Simple properties of A,, (1) a?irf A^(l).

The functions A» (1), £nU) ^re not so amenable to analysis as J,, (n), J',t (n). It is easily
verified that, when 0 is small, 27T(0, l)/03 ~ 8 v'3-120, and so T(6, l)/03 initially decreases,
though it ultimately increases, since it tends to infinity as 0 -> w.

From a theorem of Bromwich (see his Infinite Series, p. 444) it follows [since T(d, 1) ia
monotonic] that

Lim [n*A» (1)] = Lim fu* I exp(-8u v'3.»="27)dfl"| = | r (^)
.1—>K »l—>x L JO J

Also, it is easy to shew that

dn 3 U\_ d8

but, since the integrand is not one-signed, we cannot infer that n^A,, (1) is monotonic. On
the other hand, since the integrand is negative for sufficiently small values of 6, we can infer
that n^A,, (1) is a decreasing function of n when n is sufficiently large.

Similarly, if we put

2 fcanflv/fcosh'- o— 0 cot 6) + J cosh a (9 — tan 6\ = Gi9, COSh a),

it follows from § 4 that ?l!iI*£»HD = n* j " (TG'-%OT) e'"rde,

an J>.

where G is written in place of G (6, 1). Since, when 0 is small,

TG'-IGT 806/135,
it follows that — n~k A,', (1) is a positive increasing function of «, token n is sufficiently large.

[Added, December 15th, 1917.—A proof will be given at the end of $s7a that TG'-%QT
is negative throughout the range 0 < 0 < w. This result obviously shews that —«•-* A,', (1) is
a positive increasing function of n for all positive values of n.\

6. Properties of the contour introduced in § 8.

We shall now make a rather elaborate investigation with a view to
proving ultimately that Dn(2£\/n)IDn(2>*/n) is a non-increasing function
of n when £ is fixed and not less than 1, provided that £—1 is not too
large. The range of values of £ for which we shall prove the theorem is,
in fact, 1 ̂  £ ^ 1*2 approximately. The theorem may be true for greater
values of £> but it is then comparatively unimportant. The fact that it is
true for the range of values just specified will be found later (§ 18) to be
of vital importance in dealing with the convergence of series of Kapteyn's
type when £ > 1.

We shall retain the notation of § 3 and consider values of 6 between 0'
and IT only.
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Since d (r sin 9)jd9 = sin 0 (dr/dd)+r cos 0

= £(1 —r2)/(cosh a—rcos 0)

^ 2 a - 0 cot 0)-h-,

we see that the ordinate of the contour increases with 0 so long as r < 1,
and decreases when r > 1.

Now >• = 1 only when 0 — 2 cosh a sin 0+sin 0 cos 0 = 0.
Since* 0cosec 0-f cos0 decreases steadily from 2 to \-w as 9 increases

from 0 to \TT, and then increases steadily from \ir to +co as 0 increases
from \tr to TT, we see that there is one value only of 0 (other than 0 = 0),
say 0 = 0a. for which 0 cosec 0+cos 0—2 cosh a vanishes ; and 0a is an
obtuse angle exceeding 0O, where 0O is the value of 0 for which
Acosec0+cos0—2 vanishes.

[The angle 0O is 2*139 radians ; the sexagesimal measure of this angle is 122°32'.]

It is evident that! r < 1 when 0 < 0 < 0a, and r > 1 when
0a < 0 < 7r; and so r sin 0 increases steadily as 0 increases from 0 to
9n, and then decreases steadily as 0 increases from 0a to ir.

We shall subsequently (§ 7) require an upper bound to the value of
/(a), where /(a) is the value of r sin 0/(cosha—r cos 0) when 0 = 0a.

We have

/(a) = sin 0a/(cosh a—cos 0J = 2 sin2 0o/(0o—sin 0acos 0a).

But sin2 0a <; sin2 0O, 0a—sin 0a cos 0a ^ 0O—sin 0O cos 0O, since 0a and
0O are obtuse angles of which the former is the greater.

Hence /(a) < / (0 ) = sin 0O/(1—cos 0O) = cot £0O = 0*548.

That is to say, 0"548 is the upper bound of/(a). The fact which will
be found essential in § 7 is that this is less than unity.

We shall next shew that, when 0 < 0 < 9a, the contour is concave to
the initial line.

It is easily seen that

(2(>-sin0) _ (l-?-2)sin0 .
d(rcos 0) cos 0—2r cosh a-}-?-2 cos0 '

and the contour will be concave, when 0 < 0 < 0a, if this expression

* The differential coefficient of this function is —cos 0cosec20(0—sine cosfl).
t If o = 0, r = 1 when 6 = 0; for positive values of a, r < 1 when 6 = 0
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has a positive differential coefficient with regard to 0 for these values
of 0.

We shall need the following preliminary results (valid when 0 lies
between 0 and •*•) to prove this theorem :—

(i) 1 - 2r cos 0 cosh a + r 2 cos2 0 = 1 - 0 cot 0 > 0,

(ii) cos 0—2*- cosh a-f r2 cos 0 = cos 0—0 cosec 6 < 0,

(iii) cosh a — 2r cos 6 -f r2 cosh a ^ 1 — 2/- cos 0 cosh a -J- z-2,

(iv) 2 (sin 0 - 0 cos 0) > 0 - s i n 0 cos 0.

Proofs of (i) and (ii) are left to the reader. To prove (iii), we see that
the difference of the expressions is (cosh a—l)(l + 2/> cos0+7%2), and this
is never negative. To prove (iv), we observe that

2(sin 0 - 0 cos 0) - (0-s in 0 cos 0)

vanishes when 0 = 0, while for values of 0 between 0 and ir it has the
positive differential coefficient 2 sin 0(0—sin 0), and so is not negative.

Now it is easy to shew that

. AW a n u i 2 a,2 d rd{r sin 6) Id{r cos6)1
(cosh a—?• cos 0)(co80—2rcosha+r cos Or ^ I — J Q — / — ^ — J

= 2 (cosh a — 2r cos 0+>-2cosh a)(l — 2?1 cosh a cos 0+?>2 cos2 0)

H-r(cos 0—2?'cosh a + >-2 cos 0)(1 — 2/- cos 0 cosh a+/'2)

> 2 (1 - 0 cot 0) (1 - 2r cos 0 cosh a+r2)

—r (0 cosec 0—cos 0) (1 — 2>- cos 0 cosh a + J"2)

= 12(1 — 0 cot 0)—r(0 cosec 0—cos 0)} (1 — 2/- cos 0 cosh a + /-2)

> ( l - r ) (0 cosec 0-cos 0 ) ( l - 2 r cos 0 cosh a + >-2) > 0,

provided that ?•< 1. Hence the differential coefficient of

\d (r sin 6)Id(r COB 6)\

is positive when 0 < 0 < 6a, and so the contour is concave to the Initial
line for this range of values of 0.

7. A family of bicircular quartics associated with the contour.

It will next be shewn that

dT(6, cosh a) ldG{6, cosh a)
dO I d6
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is an increasing function of 6, when 0 < 0 < w ; where, with the nota-
tion of § 5,

G(B, cosh a) = 2 tan 0V(cosh2 a - 0 cot 0) + 2 cosh a (0—tan 0).

From the formulae of §§ 3, 4 it is evident that

dT(d,C08ha)/dG(d,CQ3ha) ( l -2 rcos 0 cosh a+»3)a+4yasinhaa sin2 0
dO / dO ~ 2>-sin0(r2—2r cos 0 cosh a+cosh 2a) *

Now write*

X = a (cosh a — ?- cos 0)/sinh a, Y = a?- sin 0/sinh a,

where a is any positive constant, and we have

dT(B, cosh a) /dG(0, cosh a) sinh a (X2+ Y2-a2)2+4a2Y2

dO / dd ~ 2a Y(X2+Y*+a2)

Hence, if we write

we have to shew that X increases steadily as the point (X, Y) traces out
the curve C denned by

X — a (cosh a — r cos 0)/sinh a, Y = ar sin 0/sinh a ;

where 0 is a parameter increasing from 0 to tr, and >• is, of course,,
written for brevity in place of sec 0 {cosh a —\/(cosh2 a —6cob 6)].

We shall consequently study the family of bicircular quautics

X being the parameter of the family. Only one quartic can be drawn:
through any real point, other than the points for which both Y=0
and X2+Y2 = a2; and all the quartics pass through these points, which
are ( ± o , 0). We shall shew that, as a point P describes the curve C
from 0 = -f- 0 to 0 = 7r, the value of X for the quartic through P steadily
increases from 0 to x>; and this will establish the theorem to be proved.

Each quartic is symmetrical with regard to the Y-axis, and it is
wholly above the Z-axis if| X ^ 0; it meets the Y-axis at (0, + ai),
[0, 2X«. + a(4X2—I)4], and the two latter points are real only when X ^s ^.

* The analysis breaks down when o is actually zero, but it can then be replaced by the
simpler analysis of § la.

t When A. < 0 the quartic lies below the A'-axis, and therefore we may confine our atten-
tion to positive (including zero) values of A.
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When X = 0, the quartic consists of the two points (±a, 0); all the
quartics touch the axis of X at these points, while the shape of the
quartics near them is that of the parabolas 2aXY = (X + a)2; these
parabolas increase in size with X.

Each quartic consists of a number of closed branches,* and this number
•cannot exceed 2 ; for if there were 8, a circle drawn through a point on
each branch would cut each branch a second time and would meet the
curve twice at each circular point, so that a quartic and a conic would
have 10 intersections, which is impossible. When X > ^, there cannot
even be two branches, for, by symmetry, they would have 0 or 4 intersec-
tions with the axis of Y.

Hence, when X < ^, each quartic is bipartite, and, when X > £, each
quartic is unipartite ; and by a consideration of the curves near (+ a, 0),
we see that the quartic (X) is wholly enclosed by the part or parts of the
quartic (X') when X' > X.

* The curves shewn in the figure are those for which \ = 1/V8, 5, 1/ *'2; the dotted
curve and line are the sextic and its asymptote which will be introduced presently; the line
Y — X cot |0,, is also shewn.
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When X = I, the quartic has a double point at (0, a), and we have a
transition from the bipartite to the unipartite type.

We shall next consider the inflexions of each of the quartics ; and we
shall discuss them by means of the obvious result that a closed curve
cannot have one inflexion without having a second, and if it has two (or
more) inflexions, a bitangent can be drawn such that two inflexions lie be-
tween its points of contact.

Now the quartic has the following* eight bitangents :—

(i) 7 = 0, 7 = 2aX/(l-X2).

(ii) X272+X2 = 0.

(iii) 7 = mX-f-c, where

c = a|l±VU-4X2)}/(2X), m2 = jc(l-X2)-aX(/(aX3).

The pair (ii) are always imaginary. The set (iii) are real if, and only
if, X ^ i , i.e., if the quartic is bipartite ; since

a2—(c/m)2 = acX > 0,

the set (iii) all pass between the two branches of the curve. Also 7 = 0
touches at (±a, 0), and Y = 2aX/(l —X2) touches at real points only if
X ^ l / \ / 3 ; these points of contact are given by

a 2 - X 2 = 4a2X7(l-X2)2,

and so they lie between the lines X = + a.
Now consider the area which forms the greatest possible region

bounded by arcs of any particular quartic, and the segment of contact
of the bitangent 7 = 0 and the segment of contact of the bitangent

7 = 2aX/(l-X2),

the latter being omitted if it does not touch at real points. The boundary
of this area is a simple closed curve with no real bitangents, except one
(or two) which touches at every point of a segment of a straight line.
This curve consequently has no inflexions, and since the whole of the
portion of the quartic lying on the right of X = a forms part of it, it
follows that no quartic has any inflexions on the right of the line X = a.

* Salmon, Higher Plane Curves, pp. 231-237, shews that a bicircular quartic has not
more than 8 bitangents, and gives a method for deducing them in pairs from four canonical
forms of the equation of the quartic ; as it does not seem easy to obtain all of the four forms,
I derived the bitangents by the direct process of substituting mX+c for Y in the equation,
and writing down the conditions that the result should be a perfect square in X.
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Hence, if a point starts from (a, 0) to the right and travels along the
quartic until it again reaches the line X = a, the tangent to the quartic
at the point has a continually increasing slope, which increases from 0 to
-+• oo and then (as the point moves to the left on the upper part of the
quartic) from —oo to a finite negative value.

Moreover, the locus of points of contact with the quartics of tangents
parallel to the Y-axis is the sextic

Y«+YHX2+a2)-Y2(Xi-10X2a2+ai)-(X2-a2)2(X2+a2) = O.

Since the product of the roots of this cubic in Y2 is positive, and the sum
of the roots is negative, the cubic has one positive root and cannot have
more than one ; and hence, corresponding to any positive value of X, there
is one and only one point on the sextic in the positive quadrant. The
ordinate of this point vanishes when, and only when, X = a.

The portion of the sextic in the region in which Y ^ 0, X > a con-
sequently consists of a single branch starting from {a, 0) and terminating
at infinity* on Y = X; and, at points between this branch and the X-axis,
the quartics obviously have positive slopes, and are consequently convex
to the X-axis.

Further, when X is sufficiently large (in fact when X ^ f t X l ' 9 ...
approximately), the sextic lies above the line Y = X cot £0O, since

cot i0o = 0*548 < 1,

and the asymptote of the sextic is Y = X.
Next consider the curve C (introduced on p. 125) traced out by the

point whose coordinates are

X = a (cosh a — r cos #)/sinh o, Y = ar sin #/sinh a,

as 6 increases from 0 to ir.
As 6 increases from 0 to da the point moves to the right from {a, 0)

with an increasing ordinate. This portion of the curve traced out by the
point has a decreasing slope, and consequently it cannot meet any par-
ticular quartic more than once, since each quartic has an increasing slope
on the right of X = a and an increasing ordinate.

The portion of C for which 6a < 6 < ir has a negative slope, and it
lies on the right of the line X = a. (cosh a—cos 0o)/sinh a and below the
line Y = X cot %60, by § 6 ; and so it lies entirely in a region in which
the quartics have positive slopes, if we choose a so that

a (cosh a—cos 0a)/sinh a ^ aXl'9

* The lines Y = ±X are the only real asymptotes of the sextic.
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Since 6a is obtuse, this condition is certainly satisfied when
coth a >.1*9 ..., i.e., when cosh a < 1'2 ....

When this condition is satisfied, the portion of G under consideration
obviously cannot meet any particular quartic more than once.

Hence, if a point P travels along C from 0 = -{- 0, the parameter \]<
of the quartic through P must be monotonic as 0 increases from 0 to da,
and it must also continue to be monotonic as 0 increases from 6a to tr ;
for. if \/. had any maxima or minima, we could find two points on the
curve (one on each side of the critical point) at which Xp had the same
value, and these two points would lie on the same quartic.

Since X^-^0 as 0->+O and X/.-> oo as 0 ->• -K, while Xp is posi-
tive when 6 = 0a, it is obvious that X;. must be a steadily increasing
function of B ; and so we have established the required result that, when
« has any fixed value such that 1 < cosh a ^ 12 ...,

dl\P, cosh a) /dG(6, cosh a)
dO I dO

i.s an increasing function of 6.

la. The simplification prodticed by making a = 0.

In the special case in which a = 0, the analysis of § 7 breaks down ; we then have to
prove that (1 —2rcos t) + r'2)/(2r sin 0) is an increasing function of H.

Write X = 1 — r cos0, Y = r sin 0, and we see that we have to prove that (X'2 + Y*)/(2Y) is
an increasing function of 0.

We therefore study the family of circles X*+Y~= 2\Y. These touch the axis of X at
the origin, and have positive slope when \ > 0, X > 0, Y ^ X. The curve traced out by
(1 — r cos 0, r sin 0), as 0 increases from + 0 to 0O, is concave to the axis of X, and the ordinate
and abscissa of a point on it are positive and increase as 0, the parameter of the point, in-
creases. This part of the curve consequently meets each circle only once. The portion of
the curve for which 0O < 0 < ir has a negative slope, and lies below Y = Xcot^0Ol and there-
fore in a region in which the circles have positive slope. The proof that (Xi + Yi)/(2 Y) in-
creases as the point {X, Y) moves along the curve now follows exactly as in § 7.

It may be remarked that, even in this particular case, a direct algebraical proof, that

(1 - 2r cos 0 + r2)/(2r sin n)

is an increasing function of 0 on the curve under consideration, seems to be so arduous as to
be impracticable.

[Added, December 15th, 1917.—The result stated at the end of § 5, that TG'-%GT is
negative when 0 < 0 < ir, may be proved by similar graphical considerations : here T, G
stand for T(9, 1), G (0, 1) respectively. For we have

where tan <p = YjX. Now, since X = 1—rcosfl, Y = rsin0, <p steadily decreases as 0 in-
creases from 0 to n ; for when 0 is less than <*0 the curve traced out by (X, Y) is concave to
the X-axis, and when 0 > 0O the curve has an ordinate which decreases as 0 increases. Hence

SEK 2. VOL. 17. NO. 1310. K
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<t> s teadi ly decreases from £*• to 0 as 6 increases from 0 to •*. B u t , when 0 < <p < ^w,

— (sin3 <p cos <p) = sin4 <p (3 cot2 <\>— 1) > 0,
d<p

and so GG'^jT2 is a steadily decreasing function of 8; hence

T (2GG" + G'2) - IGG'T" < 0,

that is to say, — [3T-2 (GT'/G1)] < 0.

Therefore 3T—2 (GT\G') is a decreasing function of 8 which vanishes when 6 = 0, and so is
negative when 8 > 0 ; and from this result it is obvious that 3TG' — 1GT is negative when
fl>0.J

8. The cardinal theorem concerning Dn(2£y'?i)/JD,,(2y'7i).

We are now in a position to prove the important theorem that, when
£ is fixed (and 1 ^ £ ^ 1 ' 2 . . . ) , D71(2£0i)/.Dn(2\Ai) is a non-increasing
function of n.

For the values of f under consideration, we have, from the results
of §§ 7 and 7a,

It follows that

djT'GIG') dT _ (T"G'-T'G")G
dd dd ~ G'2 ** '

since G is not negative ; for G is bounded* when 0 ^ 0 ^ ir, while G
vanishes when 0 = 0 and G' = dT/di > 0, by § 4, when 0 < B < x.

Hence (T'GIG')-T is a non-decreasing function of 6, and it is equal
to —T(0, cosh a) when 6=0; and hence we at once get

n,n i. N dT(6, cosh a) ^ ,m/a , , mif. , >, dG{6, cosh a)G (6, cosh a) —^ > - T (6, cosh a) — T(0, cosh a) r^ .
do civ

Next, we shall shew that

,(£) cAn(£) 5A?,(^)

We have

A,,(£) =

and, differentiating under the integral sign, and then integrating by parts,t

* I t is easy to see that G (ff, cosh a) = 2 (8 cosh a—r sin 6).
t Compare the corresponding analysis in the Proceedings, Ser. 2, Vol. 16, pp. 1G4, 1G5.
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we easily find that

0J0

where 0(0, ̂  = G(0, £) ̂ 1 > + i rty,, £ ) - T(0, f) f

by the result just proved ; and so we have

-when 1 < # < 1 ' 2 ....
It follows from this inequality, exactly as in Proceedings, Ser. 2,

Vol. 10, pp. 164, 165, that AH,(£)/AH(1) is a non-increasing function of n
when ^ is fixed and 1 <; £ ^ 1*2 .... Changing to parabolic cylinder func-
tions, we see at once that DutfEy/ifilDJ'Ju/n) is a non-increasing function
of n when £ is fixed and l ^ f ^ l ' 2

9. An upper bound to \Dn{z)\ when the order is a positive integer
and z is unrestricted.

It will now be shewn that, when n is an integer,

-where that value of \/{z2—4n) is taken which makes

1 f(0+)

In the formula A,,(£) = —. \ er^s^ds,

obtained in § 2, take the contour to be a circle, with centre at the origin,
terminated at the points at which arg s = + ir, together with the lines
joining the end points of this arc to — oc . The integrals along the lines
cancel, since n is an integer.

To obtain the best possible inequality, take the circle to pass through
a stationary point of T, namely, the point at whieh ,s = e~ia+m = sQ, say,
where £ = cosh (a+i/3) and a ]> 0, — nr <; /3 ^ IT.

Writing s = e~a+ie on the circle and putting r =• rQ when s = s0, we
K 2
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see that, when s is on the circle,

JB(T—r0) = 2<r2a sinH (0+/3){e2a-cos(0-/3)| > 0.

Hence the modulus of AJif) cannot exceed -K |exp(—IIT0) .

Now .<?„ = cosh (a+i{3) — sinh {a+0) = £— <\/(f2—D.

where that sign is given to the radical which makes | s01 < 1 ; and on
substituting for T0 in terms of £, and thence of z, we afe once obtain the
inequality stated.

Since ^(TO) = | sinh 2a cos 2/3—a > 0,

if « = 0 or if /3 = 0, we see that, if z is positive and equal to x (whether
greater than, less than, or equal to 2\/n) then &n(£) < TT, and so

\Da(x)\ < r(w + l)c*Hw-4".

This inequality shews that AdamoiFs function iv^ix) is, in reality, 0 (n) at
most, where the constant involved in the symbol 0 is independent of x.

It is easy to construct a very similar inequality when n is not restricted to be an integer
by obtaining a suitable upper bound for the integrand on the straight lines which pass from
the circle to infinity.

10. The expression of a definite integral in terms of parabolic cylinder
functions.

We shall subsequently need the result

s-"-1 exp(— l ^+rizs - lns^ds = (2xnn)M*('l+l)'riZ)_11._i(+ iz).

The upper or lower sign is to be taken according as the path of integration
passes above or below the origin.

This is most simply proved by taking R{n) < 0, deforming the contour
into the rays arg s = 0, arg s = + -K, expanding exp (n*zs) in powers of
z and integrating term by term ; the result follows for all values of n by
the general theory of analytic continuation.

11. Asymptotic expansions of Dn(z) when-z and n are large.

We shall now investigate asymptotic expansions corresponding to those
obtained by Debye for Jn{z). The analysis is similar to that given by
Debye, and will be stated very briefly, except in the discussion of the
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range of validity of the expansions ; the portions of Debye's work which
correspond to the last mentioned investigation seem to be somewhat in-
adequate.

The expansions will be deduced from the following Lemma:—

LEMMA.—If (i) fit) is analytic when \ t ^ a-\-S, where a > 0, 6 > 0,
except at a branch-point at the origin, and

f(t) = 2 a,,^"l"->-]

iclien 11 ̂  a; (ii) \f it) | < Kebt, where K andb are independent of t, when
t is positive and t ^ a; (iii) j argn | <; £71-—A, where A > 0 ; (iv) j n j
is sufficiently large : then there exists a complete asymptotic expansion
given by the formula

e-ntf

The proof of the lemma is easy ; for, if If be any fixed integer, we
have

J V - 1

j\c)— Zu awi

throughout the range of integration, where K1 is some number indepen-
dent of t.

Hence f e~ntfit)dt= s ' f e-'ltant
lmlr)-ldt+RM,

Jo . »»=» Jo

where | RM\ < \ \ e~>u | K, 0lr)~l ebtdt
Jo

<K1TiM/r)l\Ri?i)-b}Mlr,

provided that R(n) > b, which is the case when \n\ is sufficiently large;
and since \Rin) — 6}"1 = O(l/n) for the range of values of n under con-
sideration, we have

(<* jif-i

e~ntf(t)dt= 2 aMJo »»=i

and so the integral possesses the complete asymptotic expansion, which is
of Poincar6's type.
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12. The application of the method of steepest descents to Whittaker's
integral.

We take the form of Whittaker's integral obtained in § 2, namely,

f(0+)1 f(0

= ^ J
where T = f a+£+log s-2£

this formula is obviously valid when | a rg« | < ITT — A, where A is any
positive number. As in §9, we write £ = cosh(a-H/3), where a ^ 0,
— 7r ̂  ft ^ 7r, and also s = reie; further, let a-\-ift = y, e~y = sQ.

It is evident that r is stationary when s = s0; let the value of T at
this point be T0.

Then T - T 0 = log >+<*->• |eacos(0+/3)+e-° cos(0-/3)[

cos20+l+ie- 2 a cos 2/3

—r{e- sin(0+/3)H-e~a sin(0-/3)}

It is necessary, before we apply the method of steepest descents, to
study the form of the curve on which T—T0 is real, namely

z-2 sin6 eosO—r\ea sin(0+/3)+e-a sin(0—/3)\ -f0+/3—e~'u sin^cosifi = 0.

The curve has already been considered (§§ 3, 6) when /3 = 0 ; and
since its equation is unaffected by changing the sign of 1/3, provided that
the sign of 6 be also changed (so that the curve is reflected inlthe real
axis), it is sufficient to consider in detail values of ft such that 0 < ft ^ -K ;
further, since the effect of increasing ft by IT leaves the equation un-
affected, provided that 6 be diminished by 7r {i.e., provided the curve is
turned through two right angles), it is really sufficient to consider values
of ft between 0 and %ir.

Suppose therefore that 0 < ft <^ ^7r, and consider the values of r
corresponding to various given values of 6.

We have 0-h/3—e"2asin/3 cos/3 positive when 0 < 6 <; TT, and
e°sin {QJtft)-\-e~a sin(0—ft) changes sign once (from -f- to —) at a
value of S greater than ^TT.

Hence, when JTT < 6 < TT, there is one positive root of the quadratic
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in /•; this root is a continuous function of 0 and tends to a limit
when 0 -> £TT ; but it tends to + <x> as 0 -> -w (in the latter case, the
negative root tends to a finite limit).

When 0 < 0 < %TT, there are two distinct positive roots so long as

)ettsin(0+/3)+e"a sin(0-/3)(2-4 sin0 cose |0+/3-<T2asin B cos/3\>0.

The last expression may be written in the form

4sin0cos0[{sinh2asin2(0+/3)/(sin0cos0)}

+ | sin(0+£) cos /3 sec6>J- -6-8].

The differential coefficient of the expression in square brackets is

sin (0+/3) sin (6-/3) sec2 6 {sinh2 a coseca0+1},

and so the expression has one minimum in the range of values of 6 under
consideration, namely 0 = /3 ; its value is then cosh 2a sin 2/3—2/3.

[The expression cosh 2a — 2/3 cosec 2/3 is positive* when £ (= $-\-i*i) is
on the right of the curve shewn in Fig. 4 by a continuous line on the
right of the >/-axis; the curve has a point saillant at £ = 1, »/ = 0.]

FIG. 4.

There are thus three cases:—(i) If £ is on the right of the curve, we

* The expression is written in this form to cover the case when 8 is negative. The render
should note that it did not seern practicable to draw the curves in Figs. 5-11 accurately; and
the sketches given indicate merely the general form of the curves.

The dotted curve in Fig. 4 (which is drawn accurately) is sinh2acos 28 = 2a; see § 18.
The other continuous curve is the image in the 77-axis of the first curve ; see § 16.
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get two distinct values of r for each value of 0 between 0 and \ir, as in
(ii) If {is on the curve, the contour has a second double point-Fig- 5.

FIG. 5.

where 6 = /3, as in Fig. 6. (iii) If £ is on the left of the curve, there
are two values of 0 such that between them r is imaginary, and the
curve is as in Fig. 7.

FIG. G. FIG. 7.

Next, when O > 0 > — %TT, one value of r is positive so long as
# > — ($+e~'ia sin/3 cos/3, and when 6 is less than this value, both are
positive, provided that ea sin (0-f-/3)+e~a sin (9-/3) vanishes for a greater
value of 6 than — (3+e~2a sin /3 cos/3, i.e., provided that

tan"1 (tanh a tan /5)—

and this inequality is always true.

sin /3 cos /3 < 0;
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[To establish the inequality, we call the expression on the left f(a, 8); then

rif(a, p) _ e-'-'-sin 0 cos 0 (sinh2a-cos2/3)
oa cosh1 a cos2 0 + sinh2 a sin8 H

Hence, if cos20 < 0, /(a, B) < /(oo, 0) = 0; and if cos2j3 > 0, f(a, 0) decreases as a in-
creases from 0 to | s inh- ' (cos 25), and subsequently increases, so that /(a,/9) does not
exceed the greater of / (0, j3) and/(oo, /3). Therefore, always, / (a , /3) < 0.]

Consequently, when —fi-\-e~2a sin/3 cos /3 > 0 > — ^7r, there are two
positive values of r which coincide only when 0 = — /3 [the maximum of
sinh2a sin2 (0+/3)/(sin 0 cos 0)+ {sin (0+/3) cos /3 sec 6[ —0- /8] .

The larger root tends to + ® asO->-^TT, and when 0 <C — Jx it
becomes negative; the other root remains positive and tends to a finite
limit as 6 -̂> — ir ; when 6 < — ir, there are two positive roots (the
negative root becoming positive through infinity when 6 = — TT) SO long as
J, sinh2 a sin2 (0+/3)/(sin0 cos 0)} + jsin (0+/3) cos/3 sec 0}—0-/3 is nega-
tive ; since the expression has become positive when 0 has decreased to
— 7T—/3, the curve must lie as shewn in all three figures.

13. Asymptotic expansions derived from Whittaker's integral.

We now consider r-: I e~nTs~1ds,
2* J

taken along the contour marked in that one of Figs. 5, 6, 7 which is appro-
priate to the particular value of £ under consideration.

On each contour, r decreases from + oo to T0, and then increases to
+ °o • We accordingly write the integral in the form

1 f p-nr (
2'i JT(> I

l Q g te
2'i JT(> I d r dr i aT'

where slt s2 are the two values of s corresponding to a specified value of T,
so chosen that arg H^—ft^ arg s2.

Now, if we write v = log (s/Sf), we have

w--= 0

where cm = (2"l+1s2-s2

For sufficiently small values of | T — T 0 | this series can be reverted,
giving an expansion of the form

m=ii

provided that c0 ^= 0, i.e., provided that sQ^= + 1.



138 DR. G. N. WATSON [Dec. 14,

civ K

Hence we get ^ - = 2 ^am(r-r0)^
m-l\

To determine the radius of convergence of this series, we observe that

and so v is a monogenic function of T except when s = e±y; hence the
only possible singularities are at the values of r given by the formulae
r0—2riri, —ro-\-2riri. Of the latter system the only points which are
singularities of the particular branch of v under consideration (defined by
the power series and its continuations for positive values of r—rQ) are the
three points — T0, — TQ + ITTI. For, the singularities being given by
T—T 0 = Znri, — 2T0+2nri, we see that if T0 be varied so as to make
—2T0+2rxi tend to zero, then the radius of convergence will tend to
zero, and so c0 must tend to zero ; for, if c0 did not tend to zero, the series
would have a non-zero radius of convergence.

Now consider the zeros of — 2T0+2r7n, i.e., of 2y—sinh 2y-f-2/#7ri.

If 2y —sinh 2y-|-2rir* = 0,

then 2rir—2iy = sin (2rir—2iy).

This, regarded as an equation in y, has a triple zero* when

iy —2rir = 0,

and it has simple zeros, two in the strip TT<B (2?-7r—2iy) < fir, two in
the strip 2TT < jR(2r7r—2zy) < fx, and HO on ; none of these latter zeros
are on the boundaries of the strips and none are such that

r7r—2iy) = 0.

Hence the only zeros which make c0 vanish are those for which

2iy—2?-7r = 0 ;

and y = 0, ± TT are the only ones for which — ir ^ /3 ^ nr; these cor-
respond to the values 0, + 1 of r.

Hence the radius of convergence of the series for v is the smallest of
2-7T, | 2T0 I, | 2T0 + 2-7ri |; and none of these are small except when y is
nearly equal to 0 or ± -K.

Hence the Lemma of § 11 is applicable except near the points £ = + 1,
which will require special consideration.

* These results are due to Hardy, Messenger of Mathematics, Vol. 31, p. 163.
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Following the methods of Debye,* we find (by using what is practically
Lagrange's expansion) that am is the coefficient* of vm in the expansion of
?>"l+1 (T—T0)~*(m+1) in ascending powers of v.

We shall write a2mc™+- = Am{y),

so that

My) = i .

Ai(y) = £ — JJ coth y+TjV c o t n 2 V»

^a(y) = & - * coth y + T W ? coth2 y - # f t coth3 y-f flfa coth4 y.

In the case of slt it is easy to see from Fig. 1 that we must take

c"4 = + i/\/(e~y s i n h y),

where y^sinh y) is positive when y is real and positive; for .s.2 we must
take the other value of c~-, and hence we find that

2/;JT,,e I AT d r ) a r

e~"T" v Aw(y) f _n(T-T,,)/ _ ) «

-^'(Sinh y COSh y-y) » ( — ) « ^ w ( y ) T ( W + ^)

~v 3inh y) TO=0 (ne"7 sinh y)'"

Hence, if y &e si<c// that cosh 2a —2/3 cosec2/3 > 0, i.e., if £ be on the
right of the curve shewn in Fig. 4, then the asymptotic expansion of Dn{z)
is given by the formula

" A ; ^ 2 V ( 1 l + 1 - v i h ) mt,, (we~Y sinh y)m

" 1where y = cosh

[The dominant term in this expansion, namely,

| r (n +1) exp {\n~n sinh y cosh 7 + 717)/^fim'" *' c ' s inh 7),

is the second of the two approximations given at the end of § 3 in the special case when z is

positive and exceeds 2 ^n.]

* In Debye's expression (Math. Ann., Vol. 67, p. 545) a factor 3 is omitted from the
coefficient of c^cjed* in a4. The effect of this correction is to change the expression 5 ^ cot-T0

which occurs in his subsequent work into 5 % cot2 T0.
t Expressions for the coefficients a.,, as determinants, whose elements are multiples of

the coefficients c , are given in the Messenger of Mathematics, Vol. 46, pp. 97-101.
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If, however, £ is on the left of the curve given by

eosh 2a — 2/3 cosec 2/3 = 0,

then the integral

d log (SJSQ) d log (s2/s0)) ,1 f „-•»
2iJT u

62iJTu
6 ( dr d r ) a T

still has the same asymptotic expansion, though it represents a different
function of z. For the contour in the s-plane (Fig. 7) is no longer one
which is symbolised by (— oo; 0+) ; it is a contour going from cce~n'
to +oo below the origin, or from + x to ooe™ above the origin, accord-
ing* as I(£) > 0 or /(£) < 0, provided that £ is on the right of the curve*

cosh 2 a - 2 {8 ± TT) cosec (2£ ± 2TT) = 0.

Hence, by the result of § 10, the integral is equal to

and so we obtain the asymptotic expansion!

D . . . .
y) tu=o {ne"y sinh y)"

where the upper or lower sign is taken according as /(£) > 0 or /(£) < 0,
and it is supposed that £ lies between the curve

cosh 2a—2/3 cosec 2/3 = 0,

and the curve cosh 2a—2(/3 + T) cosec (2/3 ± 27r) = 0.

* If I(Q = 0 and —1 < (< 1, we may take & positive or negative at pleasure

t If f were on the left of this curve we should get a contour starting at + oo , cneircliruj the
origin, and returning to + oc. This curve is the image in the imaginary axis of the curve
cosh 2a = 2£ cosec 2£ (see Fig. 4).

\ When £ is actually on the curve given by cosh 2a = 2/8 cosec 2)8, there is a second
stationary point on the contour in the s-plane at which T = — T,> ; near this point,
d[logs)/d.T is O {(T+ ro)--j ; this pole of the integrand raises the order of the integral along
the part of the contour near the point by n', which is o {exp ( —2TIT())J, because T(, is not
small and R (TIP) < 0 (since £is on the left of the dotted curve in Fig. 4); and so the asymptotic
expansion is unaffected when n is positive. If n is complex we may get an additional series to
be inserted ; this series is easily written down, and it seems unnecessary to give it here. In
this case we may go along the contour either to + oo or to — en; and so the two functions
D,,(z) and e±4"wr(n + l)(2ir)""*Z>-n-i (± iz) have the same asymptotic expansion when ( is on
the curve and is not close to the point ( = 1.
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14. The asymptotic expansion of D_n_i(+is).
In the preceding section we obtained the asymptotic expansion of

D-,,.-i(±iz) when z lay in a certain region of the plane and the upper or
lower sign was taken so as to make R(±iz) <; 0. We shall next consider
D_ u _i (+^) , where B(±iz)^0.

To do this we make use of the second stationary point of

namely, s'0 = e+{a+m; at this point T = —T0, and the contour given by
the method of steepest descents has for its equation in polar coordinates

r2 sin 0 cos 6-r \ea sin (0+/3)+e"a sin (0—/9)( +0-/-J+e2 a sin /3 cos£ = 0,

with a double point where r = ea, 6 = /3.
When /? is positive and acute, the curve is as shewn in Figs. 8, 9, 10,

and when fi is positive and obtuse, it is as shewn in Fig. 11. The effect
of changing the sign of ,# is to reflect the curve in the real axis. When
,8 = 0, the figure degenerates into Fig. 1, and when 6 = ± IT the figure

PIG. 8. FIG. 9.

FIG. 10. FIG. 11.

also degenerates ; in the special case /3 = 0, the contour may be taken to
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go either from cce™ or from <x>e~ni to -foo, the important stationary
point (cf. footnote I, p. 140) being that at —r0; the cases 6 = + TT are
derivable from /3 = 0, since —i cosh (a + iif) = + * cosh a. The contour
going from ooe±ir( to -\-<x> gives, in general, the asymptotic expansion of

Writing w = log (s/so), we have

where c'n - j (2»+ 1-l)«-«-l}/(i i i+2)!,

And hence d(\ogs)/dT = 2£a',i(T-r-T0)'"~-,

where «o = cj,"*, a{ = — cj/c'o", ..., (cj = eysinhy), and, generally,

To j&x the sign of ^/C'Q, we observe that, for the branch of the contour
going from sd to + oo, d (log S)/C?T is positive in the limiting case when y
is positive ; and so we get, in general,

y) in^0 (wev sinh

where arg (sinh y) is zero when y is positive.
From this result* we at once get (except when ,8 = ±-)

e e e » ^ f f l ( —y) T(?
+ V sinh y) wto

[The asymptotic expansion of D_,,_, (± is) on the right of the curve cosh 2a — 2flcosec '2#
is now at once derivable from the formula

DH (z) = (2w) - i r (n +1) {e*'"" D. „ . , (M) + e - 4""" D - , . - , ( - w)) ,

by a use of the result of § 13.]

Next, write A^ly) = AM.i(y)4-Amtt(y), where Aw^(y), A,,,rAy) are
respectively even and odd functions of y. From the formula just quoted,
which connects Dn{z). D-n-i\;iz), .D_u_i(—iz), we see that between t)ie
curves whose equations are

cosh 2a = 2/3 cosec 2£ and cosh 2a = 2 OS ± x) cosec (2)8 ± 2TT),

* When S = 0, there is a second double point on the contour, but this doe.s not affect the
result (cf. footnote %, p. 140).
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Dn(z) possesses the asymptotic expansion

r f r i + D e g r
n(Z) ~~ / ( w n + 1 s i n h ) L t

n+1 sinhy) Lto (n sinh y)m

«ti (n sinh y)"1 J1

where i<j>m =• \y + ^7ri—«T0+

provided that — 7r< /3<7r , awid! ^ e wp^er or Zo2<?er .s«̂ ?t is ta&en through-

out according as /3 < 0.

15. TAe connexion of the asymptotic expansion with Adamoff's
formula.

We shall investigate in detail the form assumed by the asymptotic
expansion just obtained, in the special case when z is real (= x) and
— 2 ^ 1 < x < 2*/n, n being positive. To interpret >\/(sinh y) we suppose
that £ starts by being greater than + 1 , and then describes a semi-circuit
about the point + 1 in the counter-clockwise direction, so that, at a point
where — l < f < l , /3 is positive, a is zero, and arg (sinh y) = -\- ^TT,
sinh y reducing to i sin /8 ; and x = 2;i- cos /?, so that

sin /3 = W\(4n

while /3 = £TT—sin"1

The upper sign is to be taken in the final asymptotic expansion of § 14,
and so we have

sin # n
J'

where 0m = ^«\/(4n-- «2) + ('« —w—^sin"1^/^?^)—\nir,

= ~ H cot

The dominant term in the expansion of Dn(x) is

T(n+l)ein | l - (*9 /4»t) | -J (7r7iw+1)-icos <p'o,
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and, when x is small compared with nh, we have

$> ~ xy/n—%mr,

with an error O(x3n~h); from this we deduce the approximate formula

Dv.(x) ~ r(?i+l) ein{irnn+Y* coQ(x^n-^nr),

which is in agreement with Adamoffs approximation.

16. The asymptotic expansion of Dn (z) in the region hitherto iwcon-
sidered.

In §§ 13 and 14, the asymptotic expansion of Dn{z) was obtained,
(i) when £ is on the right of the curve cosh 2a = 2/3 cosec 2/6. and (ii) when
£ is in the region between this curve and its image in the imaginary axis.
We now consider the expansion when £ is on the left of the curve

cosh 2a = 2(/3 ± TT) cosec 2 (/3 ± ir).

We take the formula

and we have — z = 2;i* cosh (a-M/3 + iir),

the upper or lower sign being taken according as 6 is positive or negative.
Writing — z for z in the formulae of §§ 13-14, we have

-»(Blnh Y co.h V-T) » ( - V ' M m (y)

TOt,,

11-1 ^ ^ ^ V(2^n+1e:F2irie1'8inhy) mt0 (7?^ sinh yV"

This gives the result

r ( n + 1 ) e ^ e e ( ? ^ ^
V* Kz) - 2 V ( T T ^ + 1 e~y sinh y) tsinh y) wt0 (we~v sinh y)"1

sin ( ? l 7 r ) ^ e ± ^ e - u ( y -
sinh y)"1
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Putting z = 2?i4 cosh (a + i-n), we get

V in 4-11 <An plnnip-n («»h o cosho-a)

D,(-2n4 cosh a) = ( V * V i 1. • u N
2\/(-jrnn+l e a8inh a)

m=o (ne~a s inh a)

v m=0 (nea s inh a)"1

This is the form of the result which is useful when the a rgument of the
function is real and negat ive ; and here the positive sign has to be given
to each radical. [The reader will remember tha t , in the former equation,
arg (ey s inh y) was + 27r].

I t will be observed tha t cosec (mr) Dn(—x) is negative when x is
sufficiently large and positive, and n is not an i n t e g e r ; this is in agree-
ment with the result given by the ordinary asymptot ic expansion.*

17. Asymptotic expansions connected ivith Dn{z) when z

We shall now obtain the asymptot ic expansion of Dn(z) when
£ ( = \n~*z) is nearly equal to one of the two critical values + 1.

We write T = f + l o g s—2s+£s2,

and consider J e~"T+t{s~l) s~lds,

where e is a small number, not restricted to be real, which will be specified
precisely later, and the path of integration is one of the following three
portions of the contours shewn in Fig. 2: (i) from s = l to s = 4roo>

(ii) from s = 1 to s = <x> eni, (iii) from s = 1 to s = oo e~n.
In each case we may write the integral in the form

e-'lTexpje(e"-l)} ^ dr,
Jo »T

where v = log s, and so
w = 2 cmvm+3,

m=0

and cw

We may revert the series expressing T in terms of v, and when we

* Proceedings, Ser. 2, Vol. 8, p. 397.

SBR. 2. VOL. 17. NO. 1311.
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substitute the result in exp{e(ev—1)} |(CZ«/<ZT), we find from Lagrange's
expansion that

= % 2 T * < " - 8 > c 0 - * 1 » ( ) ,
m=O

where c~J(m+1)I?TO(e) is the coefficient of vm in the expansion of

ym+1(§4-«—2e'+£e2trHm+1)exp \e(ev-l) \

in ascending powers of v.
The following formulae give the values of the first few coefficients :

B0(e) = 1, Bx{e) = - %+e, B.(e) = | S -

It is easy to see, from an inspection of Fig. 2, that we must define c~* for
the respective contours to mean 3s, 3M"\ 3*e"Siri.

Moreover, the expansion in powers of r defines a function which, with
its continuations, is analytic except where v fails to be a monogenic func-
tion of T ; since dv/dr = 1/(1 — Zev-\-e2v), the singularities of the function
are the points where ev = 1, i.e. where r = Zriri; the radius of conver-
gence of the expansion is consequently 2-7T.

Applying the Lemma of § 11, we find that

f e- exp \.V-1>\ | dr ~ J £ oo-*«—
 £ " ( J

and a few terms of this series will give a good approximation to the in-
tegral, provided that e = o (w*).

Now D.(«+2V») = g t y 1 e-^^-Js-1^,

where 0(s, w) = (l+Jft^-^+J+log s—2(l-H«>w~4)s+£sa

provided that eo = e?i"*.

From this result, we get at once

5;
7T7t

where co must be 0 (?i~"), and
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Similarly, from the formulas of § 10, we get

147T« ; e e

and hence

X 2 3*(m~2M2sin

We have now obtained all the results analogous to those obtained by
Debye for Bessel functions.

18. Series of Kapteyn's type.

The analogue of Kapteyn's type of series of Bessel functions is

where n takes the values u, v-\-l, v+2, i '+3, ..., and v is positive, but not
necessarily an integer.

From the result of § 8, combined with the formula (cf. § 17)

where Xo, Xlf X2
 ai'6 independent of n, it follows, exactly as in the corre-

sponding investigation for Bessel functions {Proceedings, Ser. 2, Vol. 16,
pp. 171-173), that the convergence of the series 2a»r(-»+l)(e/w)4nro~* is
the necessary and sufficient condition both for the convergence and for
the uniform convergence of the series 2a,,D(1.(2£v/w) throughout the range
1 < £ < 12 .... It is also a sufficient condition for the uniform conver-
gence of the same series when £ ;> 1'2 ..., by reason of the inequalities
of § 8.

It). The stationary points of Dn{x).

Since D] {x)+D',f(x)l(n+^ — }x2) has a positive differential coefficient,
namely, lxD'n

2(z)l(n+%—^x2f, when x is positive, it follows as in Pro-
ceedings, Ser. 2, Vol. 16, p. 169, that the values of | D,4(a;) | at its
stationary points form an increasing sequence as x takes in turn the
critical values between 0 and 2 0 i going from left to right. This

L 2
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seems a little remarkable when it is considered that Dn(x) is the product
of the negative exponential exp (— â;2) and a polynomial (when n is an
integer), but it is quite consistent with the extension of AdamofFs formula
given in § 15.

It would be possible, but it seems unnecessary, to obtain limits for the
greatest value of | Dn(x) | by methods which I have previously applied to
Bessel functions ; the results appear to be of no special interest.

20. The completeness of the system of functions formed by Bessel
functions and parabolic cylinder functions.

The results contained in this paper, together with those given by
Debye, complete the discussion of integrals of the type

, - M - l ex^\—nAsm—nBs))\ds,

where m and p are integers (other than zero) by means of the method of
steepest descents, when the construction of the appropriate contour in-
volves the solution of only a quadratic equation in s ; the case m = 0 is
reducible to the Eulerian integral for the Gamma function. The memoir
published recently by Brillouin contains the simplest results when an equa-
tion of degree higher than the second has to be solved, but owing to the
logarithmic term present in log s-\-Asm-\-Bsp, the analysis necessary to
discuss the integral when m and p have not the values -J-l, — 1 ; 1, 2 ;
or — 1, —2, seems, in general, to be extremely elaborate, and it is unlikely
that it leads to results of much interest.

[Added June 15th, 1918.— I have found that, since my paper was
communicated to the Society, a paper by Perron has appeared in the
Munchener Sitzungsberichte, 1917, pp. 191-220. This paper, which was
read in May 1917, deals with the general problem of applying the method
of steepest descents to functions represented by contour integrals.]


