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I
Introduction and Summary of Results.

1. The number d(N) of divisors of N varies with extreme irregularity
as N tends to infinity, tending itself to infinity or remaining small accord-
ing to the form of N. In this paper I prove a large number of results
which add a good deal to our knowledge of the behaviour of d(N).

It was proved by Dirichlet* that

d(l)—l—d(‘l)—l—c;(]?))—i—...—{—d(N)___1 gN+42y—140 (

s

where y is the Kulerian constant. Voronéi] and Landau§ have shown
that the error term may be replaced by O(N~%9), or indeed O(N~%log N).
It seems not unlikely that the real value of the error is of the form
O(N~%*9), but this is as yet unproved. Mr. Hardy has, however, shown
recently| that the equation

A1) +dD+4B)+... + dN)
N

is certainly false. He has also proved that
d)+d@+...+d(N—1)+3d(N)—Nlog N— 2y—1) N—1}

= logN+2y—140(N"%)

= x/N d(n) [H, {47/ N)} — Y, {47y/(N)} ],

* Werke, Vol. 2, p. 49.

T f= O(¢) means that a constant exists such that |f| < K¢ : f= 0(p) means that
fi¢ 0.

I Crelle’s Journal, Vol. 126, p. 241.

§ Gittinger Nachrichten, 1912,

I Comptes Rendus, May 10, 1915,
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where Y, is the ordinary second solution of Bessel’s equation and

2 (7 we ™dw
ry — — _
Hl(l‘, VL »\/(102—1) ,

™

and that the series on the right-hand side is the sum of the series
Nt 2 dw) .
= & ( Nyt
/2 T ot cos {dma/(nN)—%7r},
and an absolutely and uniformly convergent series.
The ‘“average’ order of d(N) is thus known with considerable
accuracy. In this paper I consider, not the average order of d(N), but
its maximum order. This problem has been muech less studied. It is

obvious that d(N) < 2¢/N.
It was shown by Wigert* that

. iy
(l) d (N) < Qlouglog N

for all positive values of e and all sufficiently large values of N, and that

. JogN
(11) d(N) > 2loglogN

for un infinity of values of N. From (i) it follows in particular that
d(N) < N?

for all positive values of é and all sufficiently large values of N.

Wigert proves (i) by purely elementary reasoning, but uses the “* Prime
Number Theorem "’ + to prove (ii). This is, however, unnecessary, the in-
equality (ii) being also capable of elementary proof. In §5 I show, by

elementary reasoning, that
log N log N

d (N) < 9log log A’+ 0 (log log N)?

for all values of N, and
log N log N

_Jogh + 00—
d (N) > Qlog log N (log log N)*

for an infinity of values of N. I also show later on that, if we assume all
known results eoncerning the distribution of primes, then

d(N) < 9 l.i(log N+ O [log Ne~ 0V lvxlog A

* Arkiv for Matematik, Vol. 3, No, 18,
x

1 The theorem that r(x) ~ 108"

= (r) being the number of primes not exceeding x.
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for all values of N, and

d(N) > 9Li(log N)+0 [log Nemayiogleg Ny

for an infinity of values of N, where a is a positive constant.

I then adopt a different point of view. 1 define a highly composite
number as a number whose number of divisors exceeds that of all its. pre-
decessors. Writing such a number in the form -

N = 2%.8% 5%, p%,
1 prove that A= Q3 2= Q5 == ... == Qp,s
and that a, = 1,
for all highly composite values of N except 4 and 36.

I then go on to prove the indices near the beginning form a decreasing
sequence in the stricter sense, ¢.e., thab

Ay = A3 > Ag 2> ... 2> @A,

where A is a certain funection of p.
Near the end groups of equal indices may oceur, and I prove that there
are actually groups of indices equal to

1, 2,8, 4, ..., m
where u again is a certain function of p. I also prove that if A is fairly
small in comparison with p, then

logp.
log 2’

o

alog A ~

and that the later indices can be assigned with an error of at most unity.

I prove also that two successive highly composite numbers are
asymptotically equivalent, i.e., that the ratio of two consecutive such
pumbers tends to unity. These are the most striking results. More
precise ones will be found in the body of the paper. These resuits give
us a fairly accurate idea of the structure of a highly composite number.

I then select from the general aggregate of highly composite numbers
a special set which I call ““ superior highly composite nambers.” 1 deter-
mine completely the general form of all such numbers, and 1 show how a
combination of the idea of a superior highly composite number with the
assumption of the truth of the Riemann hypothesis concerning the roots
of the {-function leads to even more precise results concerning the maxi-
mum order of d(N). These results naturally differ from all which precede
in that they depend on the truth of a hitherto unproved hypothesis.
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11,
Elementary Results concerning the Order of d(N).
2. Let d(N) denote the number of divisors of N, and let
0))] N = pi plpls ... po,
where p,, pg, Ps, ..., pu are a given set of n primes. Then
(2) d(N) = 1+a)A4a)(14ay) ... A4a,).
From (1) we see that

(1/n) log (py P2 ps --- Pu N)
= (1/n) {1 4a,) log p;+(1+ay) log po+ ...+ (1 +a,) log p.}
> {A4a)(1+a)(14ay ... 1+a,) log p, logps ... logp.} 1™

Hence we have

{(/nm)log (prpaps .- pu N}
log p; log py log ps ... log p» '’

(3) d(N) <

for all values of N.
We shall now consider how near to this limit it is possible to make
d(N) by choice of the indices a,, a,, @, ..., @, Let us suppose that

@) 14an=v }ggf’“ e m=1,28, .., 1),

where v is a large integer and —3 < e, <} Then, from (4), if is evi-
dent that

(5) e, = 0.

Hence, by a well known theorem due to Dirichlet*, it is possible to choose
values of v as large as we please and such that

6) le ] <e, e <e [e]|<e vy a1 <6
where e < v~ V"1, Now let

&) t=vlogpw  In= enlogpm
Then from (1), (4) and (7) we have

(8) log (py s ps ... PuN) = nt+ Z 6.

* Werke, Vol. 1, p. 635.
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Similarly, from (2), (4) and (7), we see that

_ (tFo)(t+dy ... (t446.)
O av) = log p, log pa log pg ... log pa

(28, =8 38 )

texp = —g@ TaE T

log p, log p, log p, -.. log p»

o nZE—(Zé.)?
n BXp '{ —_—

2T 8 —(24,)° }
ant? + I3 e
log p; logpy log p, ... log pa

= (t+22)

n

_ 1Qa/mlog(pypeps. . .paN) 1"
log p, log p, ... log p,

[1—3(log N)~2 {62 —n(E8.)%} 4.,

in virtue of (8). From (6), (7), and (9) it follows that it is possible o
choose the indices a,, a, ..., @,, so that

{(1/m)log (pypaps ... pa NI} ™ 2=
10 d = 1—O(log Ny~ M@= 1L,
10 () log p, logp, ... log pn { O(log )- }

where the symbol O has its ordinary meaning.

The following examples show how close an approximation to d(N) may
be given by the right-hand side of (3). If

N = 27 7%,
then, according to (3), we have
11) d(N) << 1898°00000685 ... ;
and as a matter of fact d(IN) = 1898. Similarly, taking

N = 258  g8s
we have, by (3),

(12) d(N) << 204271:000000872 ...;

while the actual value of d(IV) is 204271. In a similar manner, when

N = 264 i 340 . 527’
we have, by (3),

(13) d(N) < 74620°00412 ... ;
while actually d(N) = 74620.



1914.] HIGHLY COMPOSITE NUMBERS. 858

8. Now let us suppose that, while the number n of different prime
factors of N remains fixed, the primes p,, as well as the indices a,, are
allowed to vary. It is evident that d(N), considered as a function of N, is

greatest when the primes p, are the first » primes, say 2, 8, 5, ..., p,
where p is the n-th prime. It therefore follows from (8) that
(14) AN) < {(1/n)log(2.8 .p.N)I™ ’

log 2 log 3 logo .o logp
and from (10) that it is possible to choose the indices so that

{(1/m)log(2.8.5...p.N)|"*

(15) d(N) = log2 log 8 log5 ... logp

{1 =0O(log N)=2/(a=11 1

4. Before we proceed to consider the most general case, in which
nothing is known about N, we must prove certain preliminary results.
Let 7 (x) denote the number of primes not exceeding x, and let

9@ = log2+log8+logs+...+logp,
and w@) = log 2.log8.log5 ...... log p,

where p is the largest prime nof greafer than wx; also let ¢(8) be a
function of ¢ such that ¢’(f) is continuous between 2 and x. Then

£ 3
(16) j 7 (8) ¢' () dt =j_ ¢ (B) dt+2j ¢ (t)dt+3j P (6 d

+4j ¢ BOdt+.. +7r(w)j ¢ (B dt

= {¢@—0 @} +2{pB)—¢B)} +3{p(MN—e®)}
F+4{pAD) =D} +...+7 @) {p@)—p (D)}

= 7(2) p@)—{pR+ B+ B)+... +p(p)}.

As an example let us suppose that ¢(¢) =1logf. Then we have

an (@) log z—9 (@) = j 7@ g,
2
Again let us suppose that ¢(f) = loglog . Then we see that
Y lao oo () — | @
(18) 7(x) log logz —logw (x) = L flog ¢

Cwl) g 1m0, L,
Bus Ltlogtdt_logwj t+_L (u(logu.)2 52 ¢ dt) du.

SER. 2. voL. 14. xo. 1243, 2 A
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Hence we have

(19) = (x)log ‘__%_(_} —log w (&)

_ 9@ o, 1 [ * 1 “oar(t)
= () log { 7(2) log.z') + log x L t dt+52 <u (log w)? 52 ¢ dt) du.

(8@
(@) log - {7 (x)loga)

_ (1 faBg 1 (m@
—W(x)loglw(x)logz_gg ¢ d)< logxs Ly

(x) log 2 —3(@) |

But w(t) log J

= 7=(x)log - 1 1——

and so

1 T
(20) 7 (z) log [ w(x)(fgg x } + log x J 2 at < 0.

Aga.in,

S b =(x) log z—3(x) |
(@) log 1 w(x)logz ) w () log | { 1 + S(x) J

w(t) w@) (*r@) ...
— — w(z) log - 1+9()S 0 41} > 5()5 0 e
and so
/ @) (1) __ w(@)]logx—3(@) (* = ()
(21) (z) log { x(x)log ) + log z 5 at > () logx L - %

— 1 () .12
o S(w)log.z:'jg t dt} ’

It follows from (19), (20) and (21) that

S: ( 1 -su () dt) du > =(@)log {S(w) \ - —log = (x)

« (log u)? t
(* 1 “ (1) 1 7 (1)
= L (-u(log w)® _L dt) du— S@)log i« | L dt

Now it is easily proved by elementary methods* that

wz) = 0(@), S—}w—)z o(+);

and 80 L z(® dt =0 (_@_)

log x

* See Landau, Handbuch, pp. 71 et seq.
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Hence

1 7@ HPSYL N S NS B S
5 (u(log n)gj Tt dt)d ,S 0 ( (log w)® | du = O {Qog x)®) ’

and
P

!
(log )"

1 (@ 5,12 _ 1 [
S(z)log lL dtJ YY) ]og.z:o ((ogx)?®) — 0 {
Hence we see that

22) w = o0 le/logay]
w (X)

5. We proceed to consider the case in which nothing is known about N.
Let
N' = 21 3% 5%, p*.

Then it is evident that d(N) = d(N"), and that
(23) S(py < log N' < log N.
It follows from (8) that

(24

i o I = (p)
([(N)Zd(N’)< 1 (S(P)""lonN ‘ P

= (p) | T(p)
f log N} "® {S(p)/m(p)}"®
< *35p] =)
— { log N\ =(p) 0 (o/ogpy] — | log N \ = (p) + 0 [p/(Qogp)?]
tsm) ¢ TN ’

in virtue of (22) and (23). But from (17) we know that

() log p—S(p) = O (logp)

andso  $(p) = 7(p) {logp+ 0@} = = (p){log 3(p)+OD)}.

Hence

= 1 l
@5) () =3P tlog%(p)+o{log3(}7)}2,l :
It follows from (24) and (25) that
)]
d(N) < 1+ log N | m2dts* 1|o§§‘2p)y.

Y@
24 2
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Writing ¢ instead of 3(p), we have

(26) ) < (14 BN e e

and from (28) we have

@en t < log N.

Now, if N is a function of ¢, the order of the right hand side of (26), con-
sidered as a function of N, is increased when N is decreased in comparison
with ¢, and decreased when N is increased in comparison with ¢z Thus
the most unfavourable hypothesis is that N, considered as a function of ¢,
is as small as is compatible with the relation (27). We may therefore
write log N for ¢ in (26). Hence

log A

log N
(28) dN) < 21080108 w9tz log N)?

for all values of N.*
The inequality (28) has been proved by purely elementary reasoning.
We have not assumed, for example, the prime number theorem, expressed

by the relation r

log

D

A

(L) ~ p

We can also, without assuming this theorem, show that the right-hand
side of (28) is actually the order of d(N) for an infinity of values of N.
Let us suppose that

N=2.83.5.7...p.

.L_+()_.t_
Then d(N) = 97 (1) — Qlogt (log )2,

* If we assume nothing about = (x), we can show that

_log N olox Nloglogloz &
loglog N (log log A')*

d(N) <2
If we assume the prime number theorem, and nothing more, we can show that

108N 4o qny . JosN
loglog N U (loglog N

d(N) <2

If we assume that () d

= % _x
" logz + (log x)?’

JorN | _log N, logN
loglog & (loglog N)* og log &)

we can show that aN)y<2

T ¢ (x) ~ ¢ (x) means that ¢ (z)/y(x) »1 asax > >.
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in virtue of (25). Since log N = S(p) = ¢, we see that

log N +0 log N
(Z(N) — Qloglog N (loglogN)*’

for an infinity of values of N. Hence the maximum order of d(N) is

log N +0 log N
Qloglog N (loglog N)*,

III.

The Structure of Highly Composite Numbers.

6. A number N may be said to be a highly composite number, if
d{N") < d(N) for all values of N’ less than N. It is easy to see from the
definition that, if N is highly composite and d(N') > d(N), then there is
at least one highly composite number M, such that

(29) N<M<N.

If N and N’ are consecutive highly composite numbers, then d(M) < d(N)
tfor all values of M between N and N'. It is obvious that

(80) d(N) < d(2N)

for all values of N. It follows from (29) and (80) that, if N is highly
composite, then there is at least one highly composite number M such
that N << M < 2N. That is to say, there is at least one highly composite
number N, such that

(81) ¢ < N < 2z,

N
if £ > 1.

7. I do not know of any method for determining consecutive highly
composite numbers except by trial. The following table gives the con-
secutive highly composite values of N, and the corresponding values of
d(N) and dd(N), up to d(N) = 10080.

The numbers marked with the asterisk in the table are called superior
highly composite numbers. Their definition and properties will be found
in §§ 82, 38,
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dd (N) a(N) N

2 2=2 *9 =9

2 3=38 4 = 9°

3 4 =22 *6¢=12.8

4 6 = 2.3 *12=1292%3

4 8 = 23 24 = 923,38

3 9 = g2 86 = 22,82

4 10 = 2.5 48 = 2.8

6 12 = 22.3 *60 =2%.3.5

5 16 = 2¢ *120 = 23.8.5

6 18 = 2.38? 180 = 22,325

6 20 = 22, 240 = 2*.3.5

8 24 = 23.3 *360 = 2%.32.5

8 80 = 2.3.5 720 = 2,825

6 32 = 2°f 840 = 2%.8.5.7

9 36 = 22,82 1260 = 2%2.32.5.7

8 40 = 2%.5 1680 = 2%.8.5.7
10 48 = 2.3 *9520 = 28.82.5.7
12 0=2238.5 *5040 = 21.8%2.5.7

7 4 =26 7560 = 2%.8%. 5.7
12 79 = 923,82 10080 = 2°.3%2.5.7

10 80 = 2.5 15120 = 2*.3%.5.7
12 84 = 22.83.7 20160 = 26.32,5.7

12 90 = 2.8%.5 25200 = 2.82.5%.7

12 96 = 2°.38 27720 = 2%.3%.5.7.11

9 100 = 22.5% 45860 = 2*.8%.5.7

12 108 = 92.83 50400 = 2°.8%,5%.7

16 120 = 2%.3.5 *55440 = 2*.3%2.5.7.11

8 128 = 27 83160 = 28.8%.5.7.11

15 144 = 2¢.8? 110880 = 25.8%2,5.7.11

12 160 = 25.5 166820 = 2¢.8%.5.7.11

16 168 = 23.8.7 221760 == 28.3%,5.7.11

18 180 = 22.32.5 277200 = 2t.8%.52.7.11
14 192 = 2.3 332640 = 25.8%.5.7.11

12 200 = 28,52 498960 = 2*.8%,5.7.11
16 216 = 23.8° 554400 == 25.32.52.7.11
12 224 = 25.7 665280 = 26.3%.5.7.11
20 240 = 2*.8.5 *790720 = 2%.32.5.7.11.18

9 256 = 28 1081080 = 23.83.5.7.11.18
18 288 = 2°.8¢ *1441440 = 25.32.5.7.11.138
14 320 = 28,5 2162160 = 2*.3%.5.7.11.18
20 386 = 2¢.8.7 2882880 = 206.32.5.7.11.13
24 360 = 23.82.5 36083600 = 2'.8%.5%.7.11.13
16 884 = 27.3 ¥4824320 = 2°.8%.5.7.11.18
15 400 = 2,52 6486480 = 2¢.3*.5.7.11.18
20 432 = 2¢.8°% 7207200 = 2°.8%2.5%.7.11.18
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14
24
24
10
21
24
16
24
30
18
18
24

28
30
11
24

18
28
36
20
21
40
28
18
32
36
12
27
36
32
42
22

20

a(N
448 = 92%.7
480 =2%.3.5
504 = 23.8%.7
512 = 2°
576 = 26,32
600 = 23.8.5%
640 =275
672 =925.8.7
720 = 2*.8%.5
768 = 28.3
800 = 2°. 5%
864 = 25,33
896 = 27.7
960 = 28.3.5
1008 = 2*.8%.7
1024 = 21
1152 = 27, 3*
1200 = 2%.3.5%
1280 = 28.5
1344 = 25.83.7
1440 = 2%.82.5
1536 = 2°.8
1600 = 28,52
1680 = 2.8.5.7
1728 = 26,38
1792 = 23.7
1920 = 27.8.5
2016 = 2%.32.7
2048 = 21
2304 = 28,32
2400 = 2°.8.5°%
2688 = 27.3.7
2880 = 28.82.5
3072 = 21,3
3360 = 2°.8.5.7
3456 = 27,83
8584 = 2°.7
3600 = 2%, 3%, 52
3840 = 28.3.5
1082 = 26.3%.7
4096 = 212

4820 = 2°.8%.5
4608 = 29,32

4800 == 28,
5376 = 28.

N

8648640 = 25.3%,

10810800 = 2*.3?
14414400 = 2°.3?
17297280 = 27.8°
*21621600 = 2°.32

43248200 = 2°.8°
78518440 = 2°.8°

110270160 = 2*.8*

183783600 = 2*.83
245044800 = 2° .32
294058760 = 27.3°
*867567200 = 2°.33%
551350800 = 2.8*

1896755860 = 2°.8%

2205403200 = 25,34

*6983776800 = 2°.8?

64250746560 = 2°.87

.5%.7.11.18.17.
10475665200 = 2*.3%,
*18967558600 = 2°.83,
20951330400 = 2°.3%,
27985107200 = 27.8%,
41902660800 = 2°,3*,
48886437600 = 2°.3%.

5.7.11.13

.5%.7.11.13
.5%.7.11.13
.5.7.11.13
.52.7.11.18
82432400 = 2*.8%.
86756720 = 2*.8%.

52.7.11.18
5.7.11.13.17

.52.7.11.18
61261200 = 2*.3%.

5%2.7.11.18.17

.5.7.11.13.17
.5.7.11.13.17
122522400 = 2°.8%.
147026880 = 2°.83,

52.7.11.18.17
5.7.11.18.17

.5%.7.11.18.17
.5%.7.11.18.17
.5.7.11.18.17
.5%.7.11.18.17
.5%.7.11.18.17
698377680 = 2.8,
785184400 = 26.83.
1102701600 = 2°.8*,

5.7.11.183.17.19
52.7.11.138.17
5%.7.11.18.17

.5.7.11.18.17.19
2095183040 = 2*. 3%,

7.11.18.17.19

5.

.5%.7.11.18.17
2327925600 = 2°.8%.5%

2798510720 = 2°.8%.
3491888400 = 2*.8%,
4655851200 = 2°.32,
5587021440 = 27,37,

.7.11.18.17.19

5.7.11.18.17.19

5%.7.11.18.17 .19
52.7.11,18,17.19
5.7.11.18.17.19

19
52.7.11.18.17.1¢%
52.7.11.18.17.19
52.7.11.13.17.19
52,7.11.13.17.19
52.7.11.18.17.19
52.7%2.11.18.17.19

.5.7.11.18.17.19.23
73329656400 = 2*.3*.
80813433200 = 2*.8%.
97772875200 = 2°.3%,

128501498120 = 27.8%.
146659312800 = 2°.8%,
1606268G6400 = 2°.3%.
240940299600 = 2* 8*.

*3921253782800 = 25,83,

52.7%.11.18.17.19
52.7.11.13.17.19.238
5%.72.11.13.17.19
5.7.11.18.17.19.23
52,72.11.18,17.19

52.7.11.18.17.19.28
52.7.11.18.17.19.23
52.7.11.18.17.19.23
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dd (N) d(N) N
18 5760 =27.8%.5 481880599200 = 2°,3%,52,7.11.18.17.19.23
24 6144 = 2113 642507465600 = 27.3% 52.7.11.18.17.19.23
56 6720 =2%.8.5.7 963761198400 = 2%.8* 52.7.11.18.17.19.23
36 6912 = 28.3° 1124388064800 = 25 8% 52.72.11.18.17.19.23
22 7168 = 21,7 1606268664000 = 25.3%. 5°.7.11.18.17.19.23

54 7200 = 2°.382.5° 1686582097200 = 2*.8* 5%2.7%.11.18.17.19.23
10 7680 = 2%.8.5 1927522896800 = 27 . 8* 5%.7,11.18.17.19.23
48 8064 = 27.8°.7  *2248776129600 = 2°.8% 52 7% 11.18.17.19.23

14 8192 = 218 8212537828000 = 27.43.5%.7.11.18.17.19.23
56 8640 = 28.8%.5 8373164194400 = 2°,38*,5%,72.11.18.17.19.28
83 9216 = 219.32 4497552259200 = 27.3% 52.77.11.18.17.19.28

72 10080 = 2°.8%.5.7 6746328388800 = 2°.8%.52.72.11.18.17.19.28

8. Now let us consider what must be the nature of N in order that N
should be a highly composite number. In the first place it must be of

the form 9t 80 5% T4 | p,

where

(32) U2 U352 A5 2> ... =2 0y = 1.

This follows at once from the fact that

dmymyey .. wr) = d(2%.8%.5% ... pi),

for all prime values of =y, w3, w5, ..., =,

It follows from the definition that, if N is highly composite and
N' << N, then d(N’) must be less than d(XN). For example, 3N < N,
and so d(gN) << d(N). Hence

(1+ ;1) (1+ a%) > (1+ 113%),

provided that NV is a multiple of 8.
It is convenient to write

(33) a =0 (A>p).

Thus if N is not a multiple of 5 then a, should be considered as 0.
Again, a,, must be less than or equal to 2 for all values of p,. For let
P, be the prime next above p,. Then it can be shown that P, <p?! for
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all values of p,.* Now, if @, is greater than 2, let

N/:N{z)l
b

Then N’ is an integer less than N, and so d(N') < d(N). Hence
A+a,) > 2(a,,—1),

or 3> a,,

which contradicets our hypothesis. IHence

(34) a’?”: < 2’

for all values of p,.
Now let p1, p1, b1, Py, P1 be consecutive primes in ascending order. Then,
if p>5, a,y must be less than or equal to 4. For, if this were not so,

we could suppose that _ NP,

N' ==2.
(})1)3

But it can easily be shown that, if p, > 5, then
(PP > Py;

and so N' << N and d(N') < d(N). Hence

(35) A+ay) > 2 (@ —2).

But sinee ;- > 5, 1t is evident that

(1 + a’p’l’) < 2 (aj" —2),

7
i

which eontradicts (85) ; therefove, if p; > 5, then
(36) a, < 4.

NI — NP’IIP1

Now let ==
YA 4

* It can be proved by elementary methods that, if z > 1, there is at least one prime p
such that © < p < 2x. This result is known as Bertrand's Postulate : for a proof, see Landau,
Handbuch, p. 89. It follows at once that P, < p?, if p > 2; and the inequality is
obviously true when p, = 2, Some similar results used later in this and the next section may
be proved in the same kind of way. Itis for some purposes sufficient to know that there is
always a prime p such that 2 < p < 3z, and the proof of this is easier than that of Bertrand’s
Postulate. These inequalities are enough, for example, to show that

log P, = log p, + O (1).
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It is easy to verify that, if 5 < p, < 19, then
P1py > 1Py
and so N < N and d(N') <d(N). Hence
(Lt ap) At ag) A14a,) > 20, a, 2+ az),

(D) 1) > (1 ).

But from (86) we know that 1+a,, < 5. Hence

87) (1+ (—l];) (1+ él—) > 2z,

TFrom this it follows that a, = 1. For, if a, > 2, then

(14 ) (143 ) <21,

1

in virtue of (82). This contradiets (37). Hence, if 5 < p, < 19, then
(38) a,, = 1.
Next lot N' = NP, Pi/(p, p1pY)-
It can easily be shown that, if p, > 11, then
PP <ppipt;
and so N' < N and d(N) < d(N). Hence
I+ta,)1+a)A+a,) > da, aap;,

or

(4 2) (4 2) (&) >

From this we infer that a, must be 1. Yor, if «, > 2, it follows from
(82) that 1 1
(1+5) G+ ) B+ ) <o
Ap, ai'{

which contradicts (89). Hence we see that, if p; > 11, then
(40) ay, = 1.

It follows from (88) and (40) that, if p; > 5, then
(41) ty = 1.
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But if p; = 2 or 8, then from (34) it is clear that
42) a, =1 or 2.

It follows that a, = 1 for all highly composite numbers, except for 2,
and perhaps for certain numbers of the form 2°.8%. In the latter case
@ > 2. It is easy to show that, if « > 8, 2*. 8 eannot be highly compo-
site. For if we suppose that

N' =2¢1.8.5,
then it is evident that N' << N and d(N") << d(N), and =0
3(1+a) > 4a,
or a < 8.

Hence it is clear that @ cannot have any other value except 2. Moreover
we can see by actual trial that 2% and 2%. 8% are highly composite. Hence

43 Ay, = 1
Jor all highly composite values of N save 4 and 36, when
ap = 2.

Hereafter when we nse this result it is to be understood that 4 and 86
are exceptions.

9. It follows from (32) and (43) that N must be of the form
(44) 2.8.5.7 ...... Py

where p; > py = p3s == py == ... and the number of rows is a,.
Let P, be the prime next above p,, so that

45) log P, = log p.+ O(1),

in virtue of Bertrand’'s Postulate. Then it is evident that
(46) a, =7, a, Lr—1;

and so

47) ar < a,—1.
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It is to be understood that
(48) ap, = 0,

in virtue of (88).
It is clear from the form of (44) that » can never exceed a,, and that
(49) Do, = A
N

10. Now let N' = = \logv/log Al *
1

where v < p,, so that N’ is an integer. Then it is evident that N' < N
and d(N') << d(N), and so

A+a)d+a) > a (1+at[(2E2 ]),

or
(50) (A+a) > a, | 108

log A’

Since the right-hand side vanishes when » > p;, we see that (50) is true
for all values of X and ».

Again let N' = Nu\—1=[ognu/logAl

where [log u/logA] << @,, so that N’ is an integer. Then it is evident
that N' << N and d(N') < d(N), and so

(51) A+a)d+a) > @+ay) (ah—[iggf\‘ ).

Since the right-hand side is less than or equal to 0 when
ar < [log u/log A],

we see that (51) is true for all values of A and x. ¥From (51) if evidently
follows that

log (A
(52) (1+a) < @+a) 31%—;%’ ,

From (50) and (52) it is clear that

log log u
(53) a, [log <o <at@ta [15% ,

for all values of A, u and ».

* [x] denotes as usual the integral part of .
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Now let us suppose that v =p, and u = P, so that «, = 1 and
a, = 0. Then we see that

log p, log Pl]
(54) Tog A Tog X

for all values of A. Thus, for example, we have
=3 1ILKLa<<s;
=35, 2La<4;
=17 2<LaLb;
pr=11, 83, <6;

and so on. It follows from (54) that, if A < p,, then

(55) arlog A = O(log py), axlogX = o(log py).

11. Again let
N' = NA[V{(H'"‘H.“P) log rfloga}] M—1—[V{(l+ax+a“)log)\/logp}]’

and let us assume for the moment that
a, > &/ {(1+a +a,) log Aflog u},

in order that N’ may be an integer. Then N' < N and d(N') < d(N),
and so

(56)  (1+a)1+a) > (14at+[v{Q+ata)logu/logr}]!
x {a,—[v/{(1+ar+a)log\/log u}] )
> {a,\-l-x/{(l—*-a)‘-}-a,‘) log ue/log A} }
X {aM—V{(l +ax+a,) log Aflog . } }
It is evident that the right-hand side of (56) becomes negative when

a, < /{(14+ar+a,) log \log u},

while the left-hand side remains positive, and so the result is still true.
Hence

(57) a,logu—aylog A < 24/ {(1+ar+a,) log A logu},
for all values of A and u. Interchanging A and & in (57), we obtain

(58) arlogA—u, log u < 24/ {(1+ax+a,) log A log u}.
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From (57) and (58) it evidently follows that
(59) | axlog A—a, Jog u | < 24/ {(1+ax+a,)log X log u},

for all values of A and u. It follows from this and (55) that, if X and u
are neither greater than p,, then

(60) a,log A—a, log u = O/ {log p, logA\w)},
and so that if log A = o(log p,), then
(61) aylog2~azlog 3 ~azlogh~... ~a,logA.

12. It can easily be shown by elementar); algebra that, if », y, m, and
n are not negative, and i

|z—y | < 24/ (ma+ny4mn),
then

(I vzt —vyt+m)| < yimtn);

(62)
[I Vie+n)—a/(m+n) | </ (y+m).

From (62) and (59) it follows that

(68) | v i +a)loghl —y/ {14a)logu! | <a/{log Am},
and
(64) |V {A4a)logh} —4/{log O} | <4/ {(1+4a)logut,

for all values of A and u. If,in particular, we put =2 in (63), we obtain
(65) &/ {(14ap log2} —4/ {log(20)} < &/ {(1+4a,) log A}

</ {(1+ay) log 2} +4/1log @N)},
for all values of A. Again, from (63), we have

(14anlogh < (v {(14a,) log v} +4/ {log(Ww) })?,

or
(66) ax log A < (14a,) log v+log v+ 24/ {(14a,) log v log(\) .

Now let us suppose that A < u. Then, from (66), it follows that
(67) axlog A+logu < (1+a,) log v+log(uv) 424/ {(14a,) logv log A}
< (1+a,) log v+log(w)+ 24/ {(1+a,) logv log (u)}
= {¥ {1 4a,) log v} +/log () }
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with the condition that A < u. Similarly we can show that
©7) aylogA+log u > {4/ 1 (14a,) log v} —a/log(un}?,
with the condition that A < «

18. Now let

N' = _1)% QUIOgA/{r () 10§ 2}] GLIOEA{r W) I0g Y] |, (0N {r () Tog})

where 7 (u)logu <logX logp,, Then it is evident that N' is an
integer less than N, and so d(N') < d(N). Hence

(1+ ;}:)u +a)A+a)(l+ay ... (1+a,)

( logA Vo logh | logA ),
> s+ w{u) log 2) (a3+ mw)log8) U w(wlogm )’
that is
logA) | oy log A logA)
a2 log 2+ 0? )}, 1 as log 8+ :(M)} (a log n+ O(gM) I

(1 + )(a2 log 2+ log 2)(as log 8+1og 3). .. (@, log u-+1log u)

(1+ )(az log 2+4logu)(as log 84logu).. (a“ log u+log u).

In other words,

68 (14 )

m—logu I logx—bg# ) ( j~—10gﬂ }

(1) 7 (@) ! 1 ar (u)
+ aylog u—+log u |

ok ay log 2+log u [ azlog 3+logpu | *

(
j log A

7 ()
> {_1+ (v {(1+a,)logv} +~/10g(;w))2)

where v is any prime, in virtue of (67). From (68) it follows that

log A )
) 0BM !

< + )Aln(n)_l)'"

—t

()

(69) A 11+ a,) log v} +4/log(uy) > \/

provided that = (u)log u <logA << logp,.



368 Mkg. S. RaMANUJSAN {June 11,

14. Again let

N’ = N\ g-1-{loga/{r(w) log 2}] g—1-[log A= (wy 1og 31 M—l——[log,\/{fr(p.)logu}],

where u < p, and A > u. Let us assume for the moment that

log A
()’
for all values of « less than or equal to u, so that N' may be an integer.

Then by arguments similar to those of the previous section, we can show
that

a, log « >

) m{w)

14-a, ; ( )
7o 2+ax>11 W {(1+a,) logv| —VIngu))ﬂ)

From this it follows that

( log
(71) IV{(1+av) lOg V}—\/log(ﬂ'y) <q/1 T(<1)+a >1Irr(p.) ?
1
A

24a
provided that u < p, and w < A. The condition that
a.log k > {log A/ (w) }

is unnecessary because we know from (67') that
log A
72) |/ {1+ @) logy} — v/log ) |< v (e logr-tlogu) </ { B2 Hlogu |,
when a, log ¢ < {log A/m(w)},
and the last term in (72} is evidently less than the right-hand side of (71).

15. We shall consider in this and the following sections some important
deductions from the preceding formulx. Putting » = 2 in (69) and (71),
we obtain

log A —1o )
) S H ]
(73) V (14ay 10g2f >J 1\ 7k —'»\/lOg('Z,u.),
()
provided that = (u)log u <<log A < log p,, and
! ( ]:g A flogu |
(74) v {(1+ay) log 2} <J | ( +4/log (2u),
1—

l+(l ‘ 1fm )
2+a)\> )
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provided that x < p;, and u <A. Now supposing that A = p, in (73),
and A = P, in (74), we obtain

o% y —log |
(75) A/ {(14ay) log 2} > 7—217,—(;,—? ) —/log(2w),

provided that =(u)logu << logp,, and

170:251 +loﬂp.)
(76) vV i{l+ay) log2} < W | +/log (2u),

provided that u << p;. In (75) and (76) « can be so chosen as to obtain
the best possible inequality for a,. If p; is too small, we may abandon
this result in favour of

log P log P,
an g l<n<e 10g2],

which is obtained from (54) by putting A =

After having obfained in this way what information we can about a,,
we may use (73) and (74) to obtain information about a,. Here also we
have to choose u so as to obtain the best possible inequality for a,. But
if A is too small we may, instead of this, use

T8 &/ {(14amlog 2} —a/log(2A) < &/ {(14ay) log A}

< v/{(1+a;) log 2} +/log(@N),

which is obtained by putting x = 2 in (63).

16. Now let us consider the order of a,. From (73) it is evident that,

if ) log w <log A << log py, then
log A —lo
() gH

1 1 1/m(w) 1'
(hﬁ)

(79 (1+ag)log2+log(2u)+ 24/ { (1 +ay) log 2 log 2u) | >

But we know that for positive values of wr,

L=lion -L=0(d)

SER. 2. VOL. 14, wxo. 1244, 2 B

efE
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log A 1 _logia| =@ )
Hence = +0Q) .
7 (u) 1\ (u) 1 |
(1+ aT) 1 | log <1+a7) j
log A (logA1®
o 1 Far(u) )
log <1+ aT)
and log u =0 (_TM‘L ’ = O(uay).

(1+ wl)\)””(“)—l l log <1+ al—)\) )

Again from (55) we know that a; = O(logp,). Hence (79) may be
written as

(80) a,log 2+ 04/(log p, log w)+ O(log w)

log A (logA)
»

>log (1‘*’@%) 0 .

4+ O(uay).
(1)

But log u = Ofua,),

_ M — wlog L 1)
ua,\—logx(a,\logk)—O( 10g>\ N

log A {log A log u )
2= 0 )
() ( o )

log A log u 4 log p,

Again > 24/(log p, log u) ;

7 log A
log A lo x lo
and so 4/logp, logn) = O < g " g u + 105{").
Hence (80) may be replaced by
log A (log Alogu | ulog pl>
(81) aglog2 > ———— 40 . + Tog \

1
log (1+ &7>
provided that =(u)logu <logA <logp,. Similarly, from (74), we can
show that

Jog A 1
(82) aslog 2 log )\ 40 (2BAOBM log p, ’
1 (1 ) M log A
og {1+ 1ta,
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provided that « < p; and u <<A. Now supposing that A = p, in (81),
and A = P, in (82), and also that

m = On/(log p, loglogp,), w3 oa/{logp, loglog py),*
we obtain
1
aylog 2 > %g—pél 4+ 04/(log p, log log py),
(83) ¢

loo
08 2721 + O 4+/Uog py log log py).

a;log 2 <
From (88) it evidently follows that
(84) a; log 2 = 1%;% + 0 4/(log p, log log py).
And it follows from this and (60) that if A < p, then
(85)  aylogA = % 40 [4/(log p; log \)+4/(log p, log log py) |-

Hence, if logA = o(log p;), we have

(86) aglog2~azlog3~aslogs~...~aslog >\~110Lg};1

17. The relations (86) give us information about the order of a, when
A is sufficiently small compared to p,, in fact, when X is of the form pj,
where ¢ > 0. Such values of A constitute but a small part of its total
range of variation, and it is clear that further formule must be proved
before we can gain an adequate idea of the general behaviour of a,. From
{81), (82) and (84) it follows that

{(87)
log A lo log A log lo )
1 logg% +0 [ E+5 10;’){) *++/(logp,loglogpy) -,
log <1+ ‘;)
{
log A log 1‘91 +0 | log A log oy log p, +/dogp, loglogp,)l ’
1 1og 2 N log A J
log (1+ 1+a>\)

provided that =(u)logu < log A < logp,. From this we can easily show

* f=£0(¢) is to be understood as meaning that || > Ky, where K is a constant, and
f 5 O(¢) as meaning that | f|/¢ = . They are not the mere negations of f = o(¢) and

F=0(¢)
252
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that, if = (u) log u < log A << log p,, then

((.l,\ < (QlosMlogri_1)=14 () ( log u +,U- log p, + +/(log p, log log py) )

( (log A\)2 log A [
69 ] I ) (log p, log log p))
log Aflog vy __ 1y—1__ ( ogu , pmlog by og p; log log p,
Now let us suppose that
log p, )
log A o \/ (log logp/~

Then we can choose u so that

log log p,

'"'_O l \/(Iogpl )}’

w0 flogny (SE5))

Now it is clear that log x = O(log log p,), and so

ogu _ (log log pl) — o | ~/og p, log log py) ] :
M “ { log A ’

plogp, _  (+/(ogp loglogpy)
and that (logN)* — 0 1 log A

From this and (88) it follows that, if

logA # o V/ (Lg_]g_)

log log p,
then
(@ < @eellosr—1)7140 | vogpiloglogp |
(89 log A

ax > @oertionn _1y-1_1 4.0 (ilogpaloglogp |
©

Now we shall divide the primes from 2 to p, into 5 ranges thus

(YRR o

(logp)c  e* (logpy¥ geV(logp, Jloglog i) gr¥dog p,loglozp,)

Wae shall use the inequalities (89) to specify the behaviour of @, in ranges
I and II, and the formula (85) in ranges IV and V. Range III we shall
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deal with differently, by a different choice of u in the inequalities (88).
We can easily see that each result in the following sections gives the most
information in it particular range.

18. Range I: log A 5= O+/(log p, log log p,).*
Let A= [(Qlogf\llogp,_ 1)_1]’
and let (QlosMogn__1)=14 ¢

where —3 << ¢, << 3, be an integer, so that

90) (QlosloEn —1)~1 = A-1—e¢,
when e, > 0, and
91 (2lrM2P 1)t = A —¢,

when e << 0. By our supposition we have

99) 4/ (log Iix loglog p))
0g A

= o(1).

First let us consider the case in which

{4/ (log p, log log py) |
a¥0 { log A )’
go that

v/ {log p, log log p;) _
(93) Tog = o(e)).

It follows from (89), (90), and (93) that if e, > 0 then

RN L A4 1—ea+ole),
l a > 1&—6‘,\+0 (€A)-

Since 0 < e, << 3, and a, and A are integers, it follows from (94) that

(94)

(95) a/,\ < A/X, ax > A"‘l.
Hence
(96) a, = A.

* We can with a little trouble replace all equations of the type f = O (¢) which occur by
inequalities of the type | f| < K¢, with definite numerical constants. This would enable us
to extend all the different ranges a little. For example, an equation true for

loga %= O V{log p))

would be replaced by an inequality true for logA > K v/(log p,), where K is a definite constant,
and similarly log A = o v/(logp,) would be replaced by log A < k+/(log ).
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Similarly from (89), (91), and (98) we see that if e, << O then

(97) { a, < A—€A+0(€4\):

ax > A—-1 ‘—'6)\+0(€A_).

Since —3} < e, <0, it follows from (97) that the inequalities (95), and
therefore the equation (96), still hold. Hence (96) holds whenever

+/{log p, log logpy) |
(98) e 0 { log A )
In particular it holds whenever
(99) €a # 0(1)9

Now let us consider the case in which

— n {~logploglogp))
(100) €) — O l l()g )\ J ,

so that e, = o(1), in virtue of (92). It follows from this and (8%9) and (90)
that, if ¢, > 0, then

Lan < A+140(D),

(101) {

a, = A+o(l).
Hence LA+l anz= A
and so
(102) ar=A or A+1.

Similarly from (89), (91), and (100), we see that, if ex << 0, then
[arn << Ato(D),

(103) \

ay =z A—140(1).
Hence a, < A, ay>=A—1;
and so
(104) a=A or A-—1.

For example, let us suppose that it is required to find a) when A ~p!®.
We have
(srlosm_1)-1 = (218 —1)"140(1) = 11.048... 4+0(1).

It is evident that A = 11 and ¢, 3=0(1). Hence a, = 11.
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19. The results in the previous section may be rewritten with slight
modifications, in order that the transition of a, from one value to another
may be more clearly expressed. Let

log(1+1/x)

(105) A=p

and let x +e,, where —2% <<e << 1, be an integer. Then the range of «x
which we are now considering is

(106) e=0\/ (Talg%)’
and the results of the previous section may be stated as follows. If
[ Jloglo ‘
aor e 0 oy (AL
(108) a, = {z].
As a particular case of this we have
ar = [«],
when ¢. 7= 0(1). But if
aon o= 0 {ay (onloazy)
then when ¢, > 0
(110) a =[x} or [z+1];
and when ¢, <0
(110" a, = [z] or [x—1].
log A = O 4/(log p, log log py),
20. Range 11:

/( logpy
log A # 0 \/ (log log pl)'

From (89) it follows that

: og Mlog - (lo log log py) |
(11 ay = (2leMloen—1) ‘+O{\/ gzi:)gf . j
' - log p,
logNflogpr 1 —
But (QlosMloer 1)~ = 10g2 10g)\+0(1)‘
Hence

1
(112) a logh = % -+ O«/(log p, log log py).
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As an example we may suppose that
A ~ gv{og r)
Then from (112) it follows that

an = +/(log p,)

10g2 +O\/(10g10gp1)'

flogx: 0y (mg)-{%ﬁt)’

log A # o (log p,)%.

21. Range III:

Let us suppose that u = O(1) in (88). Then we see that

(June 11,

{

‘ ___logp, {logu | ulogp, |, a/(logp, loglog p))

log 2 log A
or

J"a

| 1 log A 1
(1]4) a,,‘logk: 1(();(;}‘))1 +O{ 0og u 1og +M OgEI +\/(]081)110g10gp1)} X

” log A

log wlog N __ _ <log' 1)
plogpy _ (10 pl)
log A logA/’
, — log Pl)
&/ (log py loglog p) = O (log ~ )
Hence
— logp, leg,z%l)
(115) wlog A =1o000 +O<log>\ .
For example, when
A ~ gllose’®)
1 5,8 N
we have ay = (log py)"” + O og p,)*.

log 2

log A = Odog p,)?,
22. Range 1V: (8’ &1
| log A == o (log log py).

In this case it follows from (85) that

1
(116) axJog A = %g_];l +0.4/(og p, log ).
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As an example in this range, when we suppose that

log pit
xz\,e( 8 P ,

we obtain from (116)

(log p,)** ,
a = % + O(log py)**.

28. Range V: log A = O(log log py).
From (85) it follows that

117 alog A = 110(%;1;1 +04/(log p, log log py).

For example we may suppose that

A ~ ev0og logm)

—_ log p,
Then a, = Tog 2/(log log py) + O y/log py).

24. Let X' be the prime next below A, so that N’ << A—1. Then it
follows from (68) that

(118) V{AFan) log N} —v/ {(T4a) log A} > — o/log \\).

Hence

(119) &/ {Q+alogA—=1}—4/{(14a) logh} > —4/{2logA].

1 1 \?,
But log(A—1) < log 7\_? <logA (1— 2X log ?\> ’

and so (119) may be replaced by

. Vdtay)
(120) Vtao) —vlta) > GEr — 2,
But from (54) we know that

logp] logp  logp,
1+ay > 1+[log A > log \' > logA ~

From this and (120) it follows that

v/ dogpy)
(121) V+a)—v1+a) > o+ Tog A’)g V2.
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Now let us suppose that A%(logA)® < 1logp,. Then, from (121), we

have Vl4a)—yd+ay) >0,
or
(122) Ay > Q.

From (122) it follows that, it A% (logA\)® << L log p,, then

(123) Ao > A3 2> A5 > A > ... > Q.

In other words, in a large highly composite number
20.8%.5%.7% .. py,

the indices comparatively near the beginwing form a decreasing sequence
in the strict sense which forbids equality. Later on groups of equal indices
will in general occur.

To sum up, we have obtained fairly accurate information about a, for
all possible values of A. The range I is by far the most extensive, and
throughout this range @, is known with an error never exceeding 1. The
formul® (86) hold throughout a range which includes all the remaining
ranges I1I-V, and a considerable part of I as well, while we have obtained
more precise formule for each individual range II-V.

25. Now let us consider the nature of p,.. It is evident that » cannotb
exceed a,; t.e., » cannot exceed

1
(124) (132 g)lz +04/(log p, log log py).

From (55) it evidently follows that

{ a,, log p, = O(log py),

(125) v
ayp, log pr # olog py) ;
(126) { (14agp) log p., = Oflog py),

(14agp) log p, F o (log py).
But from (46) we know that

a, log py = rlog p,
(127) { v OB P

(14ap)log pr < 7 log pr.
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From (125)—(127) it follows that

r log p, = O(log py),
(128) { 8y sp

r log p, sF o(log py) 5
and

ap,, = O0@),
(129) { o

ap, Fo(r).

26. Supposing that A = p, in (81) and A = P, in (82), and reme:n-
bering (128), we see that, if ru = o (log p,), then

log p. log
(180) log (1+ap)>;;91%§ {1+0(‘;#“+1ogpl)} ,
and
‘ 1 log P, lo
(131) log (1+ 1+a,,'> < 01002 1 1+0 (jﬁ + 10%1’1)}

But, from (47), we have

log (1+ ) < log (1+

Also we know that

log P, = log p,+0(1) = log p{ 140 (@1—27) L =1ogp. {1+0(10g pl) L

Hence (181) may be replaced by

(132) log (1+ = ) ;;’ié’rg{pr (%J_‘_,_lo )}

From (130) and (182) it is evident that

_ logp, logee , e \)
(138) log (H‘ 1) a21og211+ (m +10gpx)"

In a similar manner

= hE 140 (log#‘*'logp,)}

(134) log (1+ 1+ap) T aylog2 | ru

Now supposing that
(T =0 (log p,

(135) !
{ ru 5= O(log u),
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and dividing (184) by (133), we have

log (1+ 1+ap) 140 (log,u + )
1y 10gp1
1 1+ —
g (1+)
1 og p / 3l
or 1+ 1+a;, 1+ +O ( + logp) @y, I
. 1 _ 1 log u 1
that .1s, 14ap,  a, 1 140 ( + logpl)
Hence
(186) l°g K
‘ a, = ap+140 +10gp1
in virtue of (129). But ap, < r—1, and so
(137) a, <r+0 (logM + logpl)

But we know that a, >> r. Hence it is clear that
log u )
138 = 0(
(188) a, = r+ + log y
From this and (186) it follows that
log u )
(189) ap, = r—14+0 ( -+ logpl

provided that the conditions (185) are satisfied.
Now let us suppose that » = o4/(log p;). Then we can choose u such
that r’u = o(log p;) and u % O(1). Consequently we have

lo% = o(1), rh o(1);

log
and so 1t follows from (188) and (139) that
(140) a, = 14-ap, =,

provided that r = 04/(log p;). From this it is clear that, if » = 0 4/(log p)),
then

(141) Dy P> P3Py oo Py
In other words, in a large highly composite number

202, 8% 5% .. p,,
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the indices comparatively near the end form a sequence of the type
eb.04..8.0.2. 01

Near the beginning gaps in the indices will in general occur.
Again, let us suppose that r = o(log p)), 5 oa/(logp,), and x = O(1)
in (188) and (189). Then we see that

W
(142) “e =0 (10;2%)
ar, = r+0 (lo;p) ;

provided that » = o (logpy) and r == 04/(log p;}. But when r 5= o (log py),

we shall use the general result, viz.,
ap, = 0@, ap, F o),
(143) { Dy Py

a‘l",. = O(/r), aP,. # 0()'),

which is true for all values of r except 1.

27. It follows from (87) and (128) that
(144)

I !
’ oap:_ L10RB 1o (OBPLORK 4, 4 log p, loglog ) | -
og 2 ™
JEres

|
RPNk () (IOKPUORE 1y y log p, loglog p) |
(log(1+ 1+ap) ¢ |

with the condition that r« = o(logp,). From this it can easily be shown,
by arguments similar to those used in the beginning of the previous sec-

tion, that

lOgPr logpl (10‘,[)1 lO;.{M. 1 loo 1 L
145) i = Toge TO1 ™ +ru++/(log py loglogpy)

provided that »u = o(log py).
Now let us suppose that » = o(logp,); then we can choose w such that

MZO(M>, n = 0.

7
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Consequently ru = o(log py) and logu = o(u), and so

lo log.u e
SEELOBE — o 16k p.
From these relations and (145) it follows that if r = o(logp,) then

log pr log p,.
(146) Togd+1/) ~ Tlog2’

that is to say that if r = o(logp,) then

(147) logp, _ _logp,  logpy _ _logp.
log2  log(1+3) log(+% =~ log141/n

Again let us suppose that » = O4/(log p, loglogp,) in (145). Then it
is possible to choose u such that

f re = 04/ (log p, log log py),

(148)
ru = 04/(log p, log log p)).

1t is evident that log u = O(loglog py), and so

logpy logu _ (logpl log log p,

” P ) = O«/(log p, log log py),

in virtue of (148). Hence

log p» __log p,
(149) g (L1 — Tog 2 + O 4/(log p, log log p,),

provided that r = 04/(log p; log log p)).

Now let us suppose that r = o (log p,), r % 04/(log p, log log p,), and
w = 0(1), in (145). Then it is evident that

logp, = 00®,  4/(ogp, loglog p) = OG),

log p, logu _ 0 (logp1> =00
rm 7 )

and

Hence we see that

log p, __logp, N
{150} fog 1-+1/9) = Tox 2 + O ),

if r=o(ogpy), rFos/(logp, loglogp,).
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But, if r =0 (logp,), we see from (128) that

log p,
T i = Odog py).
(151) { log (1+1/r)

10};']%
t Tog(i+ 1/ * ©Ulogpd

From (150) and (151) it follows that, if » = 04/(log p, log log p;), then

log p, log p
152 = 1 9
{152) og A1/ — loga 1O

and from (149) and (152) that, if » = o(log p,), then

logp. __logp
log(141/r) log2’

in agreement with (147). This result will, in general, fail for the largest
possible values of r, which are of order log p;.

It must be remembered that ail the results involving p, may be written
in terms of N, since p, = O(log N) and p, 7 o{log N), and consequently

(153) log p; = log log N40(1).

28. We shall now prove that successive highly composite numbers are
asymptotically equivalent. Let m and » be any two positive integers
which are prime to each other, such that

{154) log mn = o(log p,) = o(log log N} ;
and let
(155) T — b g% 5% . o'P,

n

Then it is evident that

(156) mn = 2151 gial 5ist o4l

Hence

{157) dx log A = O (log mn) = o(log py) = o(arlog A);
50 that Sx = olay).

Now

asy) 4 (%) =am(1+ ljf%) (1+ 1j_3a3) (1 li“;p).
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Buft, from (60), we know that
ax log A = aqlog 2404/ (log p; log A).

Hence
X _ drlog A { log A\
(159) 1+ 1+a =1+ a,log 2 +0 1 LN (logpl) )
Sxlog A logA //logp
1+a log2+o l "llogp \% <logpl)}

logp, VY logp,

j dx log 7\ |6,\| log A \/ (log mn)
{aglog 2 log p, log p,

{aglog 2

1t follows from (155), (156), (158), and (159) that

(g log 2463 log 8+4...+3dp log @
P a,log 2

(160) d(%’:—N) = d(N) ex

|6 |log 24|45 |log 8+... 4| dp |log®

p (GalogA +O(l6"| log A /logp)_l_o (M‘)z)

[June 11,

log p, J

log ps
Log (mfn) n log mn) ¥
—_— d(N) e ((210g2 log py
o log mn
_ d(N) eazlogzﬁlog +010gmn,\/ __.__.mgpl)}.

Putting m = n+1, we see that, if

log n = o (log py) = o (log log N),
then

d(N) e 10 3 ( g(l+—)+()(logn,\/ll(‘)’";‘) :

lI

(161) d{N (1+ —)}

H—O I log m\/(mlog i

{ 1 glog N
= d(N) <1+ 7L> felvs

Now it is possible to choose n such that

n(log n)* == 04/ (log log N),

and 1+0 l n log N\/ <10g1;01%\f> I > 0;

that is to say
1
(162) d {N (1+ —n—> ] > d)

v (mep))
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From this and (29) it follows that ¢f N is a highly composite number
then the next highly composite number is of the form

( N (log log log N)})

(168) N+0 SR

Hence the ratio of two consecutive highly composite numbers tends to
unty.

It follows from (163) that the number of highly composite numbers
not exceeding x is not of the form

(log z4/(log log x) |
| Uogloglogz)t ) °

29. Now let us consider the nature of d(N) for highly composite values
of N. From (44) we see that

(164) d(N) = 27 @) =G gried==@d 4r@I-v00 (1 4qy).

From this it follows that

(165) d(N) = 2%2.3%.5% ... w'=,
where = is the largest prime not exceeding 14a;; and
(166) an == 7 (pr-1)+0 (pn).

it also follows that, if ©,, #,, #3, ..., #» are a given set of primes, then a
number » can be found sueh that the equation

d(N) = #5903 ... 98u .. 93

is impossible if N is a highly composite number and B8, > x. We may
state this roughly by saying that as N (a highly composite number) tends
to infinity, then, not merely in N itself, but also in d(N), the number of
prime factors, as well as the indices, must tend to infinity. In particular
such an equation as

(167) d(N) = k.2",
where k is fixed, becomes impossible when m exceeds a certain limit de-

pending on k,
SER. 9. von. 14. No. 1245. 2 ¢
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It is easily seen from (158), (164), and (165) that

w = O(ay) = O(log py) = O(loglog N) = O {log log d(N)},

(168) {
@ 3£ 0 (ay) = o (log p,) = o (loglog N) = o {loglog d(N)}.*

It follows from (147) that, if A = o(log p,), then

loga, _logay log ay log ax

( ~ ~ ~ eI A
169 Yo (1—D “Tegi—b “Toga—D T ioga—1/m°

Similarly, from (149), it follows that if A = O4/(log p, log log p,) then

. log(l4a) _ _ logp, ‘ v
170) fog0—1/N " log 2 + 0 4/(log p; log log py).

Again, from (152), we see that if A 5= 04/(log p, log log p;) then

log(l+a) _  log p,

In the left-hand side we cannot write a, instead of 14a,, as a, may be
zero for a few values of A. '
From (165) and (170) we can show that

log d(N) = aylog 24 Ofay), log d(N) 5 a; log 2+40(a3) ;
and so
log (3/2)

(172) log d(N) = aylog 2+4-¢ 1082

log pi + Ov(log p; log log p))

But from (168) we see that
log log d (N) = log p,+ O(log log p,).
From this and (172) it follows that

log(3:2), v ]l logloglog d(N))

(178)  aylog2 = log d(N)— {log d(N)} Ioe? Iiclog 1)

80. Now we shall consider the order of dd(N) for highly composite
values of N. It follows from (165) that

(174) log dd(N) = log 1+u))+log (1+as)+...+1og (1 +ay).

* More precisely w ~ a;. But this involves the assumption that two consecutive primes
are asymptotically equivalent. This follows at once from the prime number theorem. It
appears probable that such a result cannot really be as deep as the prime number theorem,
but nobody has succeeded up to now in proving it by elementary reasoning.
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Now let A, X', \", ... be consecutive primes in aseending order, and let
= 04/(log p, log log py),
A 7= 0 4/(log p, log log p)).
Then, from (174), we have
175)  logdd(N) = log(l+ay +log(l+ay) +...4+log(l+a)
+log (14 an)+log(l+ayw)+ ... +log (14 aq).

But, from (170), we have

176) log(1+a,)+log(l+ap+...+log(l+a)

— _logpy (1 _xy1—1yq—1 _ 1y
= — JeBog {a—pa—ha g)...(1 )\)}

1 04/(log py log log py) log ‘( 1—3H(1—3 ... (1— —>1\—) } .

It can be shown, without assuming the prime number theorem,* that

(177) —log } 1—-HA-HA-D) ... (1— %) ] = loglog pt+v+0 (10;p>=

where v is the Eulerian constant. Hence

log {1 —Ha—pa—p ... (1— %) L' = 0(log log ).

From this and (176) it follows that

(178) log(14a)+log(1+am+...+log(1+an)

)}

>

_ __logp o 1 — 1 (__
= T Tog2 lool(l Ha—4H... (1

+ O {4/(log p, log log p,) loglog A }

— _logpi, | 1y
= 1ogzllog-((1—%)(1—-—%)... (1 7\))

+ O {4/(log p, log log p;) log log log p; }.

* See Landau, Handbuch, p. 139.
2c¢2
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Again, from (152), we see that

(179) log(1+ax)+log(l+ay)+...+log (14 ay)
=g (1) (1= 2) - (- 1))
0 g (1) o 1 ) 4o (1 1)
— 8 (1 1) (1= 1) o (1= 1)) 0 rimren

=—1100‘gg_1;110g {(1_%> (1_%> ’ (1— _>} +0 (lolgolo];lpl>'

From (175), (178), and (179) it follows that
(180)
1

log dd(N) = ll‘(’;i-‘z’l log {(1—hA—).. <1_7>}

+0 {+/llog p, log log py) log log log p, |

_ logp, *i>< _l) 1y log p, )
log 5 108 l(l ) =% (1 ;> )'_'_O(loglogpl

llogp1 log - (1—1)(1—“ . (1_ %) ‘} +0 (GL%I)

— ll‘;‘:};l Hog log -+ +0 (- )| +0 (282 )

logw/) log log p,

l()npl (

_ o log oo 1 W\ JM)
et 1002 (l() l(.) l()éj)l_*_y_r <10g Ingl)J+O(10g10g})1

— loglogN ( . o ____l___>}
= og 2 llot,loc,loglooN+y+O( ~/) [

log log log

in virtue of (177), (168), and (163). Hence, if N is a highly composite
number, then

LS « 1
(181) AN = (log Njoe 18507+ () |

81. It may be iuteresting to note that, as far as the table is constructed,
2,98 95 .., 28 3,3.28.92,..,38.2" 5.2 5.2% .., 5.2
7.25,7.25% ..., 7.2% 9,9.2,9.2°, .., 0.29
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and 80 on, occur as values of d(N). But we know from § 29 that %k.2"
cannot be the value of d(N) for sufliciently large values of m; and so num-
bers of the form %.2™ which occur as the value of 4(N) in the table must
disappear sooner or later when the table is extended.

Thus numbers of the form 5.2™ have begun to disappear in the table
itself.- The powers of 2 disappear at any rate from 2 onwards. The
least number having 2'® divisors is

27.3%,5%,7,11.18 ... 41.43,
while the smaller number, viz.,
28.8%.53.72.11.18 ... 41

has a larger number of divisors, viz., 185.2", The numbers of the form
7.2" disappear at least from 7.2" onwards. The least number having
7 .21 divisors is
26.3%.5%.7.11.18 ... 81,37,
while the smaller number, viz.,
29.8%.5%2.72.11.18 ... 81

has a larger number of divisors, viz., 295,98,

Iv.
Superior Highly Composite Numbers.

82. A number N may be said to be a superior highly composite num-
ber if there is a positive number e, such that

dN) . dWN")

(182) e = N
for all values of N' lesgs than N, and

adlN) AN
(188) N > N

for all values of N’ greater than N.
All superior highly composite numbers are also highly composite.

For, if N’ << N, it follows from (182) that

N

AN) > AN ( 5

)E > AN ;

and 80 N is highly ecomposite.
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38. Now let us consider what must be the nature of N in order that
it should be & superior highly composite number. In the first place it
must be of the form

(184) 2%.8% 5% ... pi»

or of the form 2.8.5.7...... »n
X2.8.5.7...p,
xX2.8.5... p4
Xoaaann

i.e. must satisfy the conditions for a highly composite number. Now let
N’ = N/A,
where A < p,. Then from (182) it follows that

.1+a,\ (429
A“"R > AE("'A—” )

or
1
(185) A< (1+ ).
ax
Again let N' = NA.
Then, from (188), we see that
l14a 2+4a
Ast(AA > Ae(a*+§)’
or
Vi € —_.__1
(186) x> (14 1+ak).
Now supposing that A = p, in (185) and A = P, in (186), we obtain
log 2 log 2
(187) g P, =~ <logp,”
Now let us suppose that e = 1/z. Then, from (187), we have
(188) n<¥ <P,

That is, p; is the largest prime not exceeding 2°. It follows from (185) that
(189) o < (\VE—1)"1

Similarly, from (186),

(190) ay > AP —1)"1—1.
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From (189) and (190) it is clear that

(191) ay = [\ =11,

Hence N is of the form

(192) gl —n "1 g -1 gre'"-n Pos

where p, is the largest prime not exceeding 2°.

34. Now let us suppose that A = p, in (189). Then
ap, < (P;/‘T—'l)'l-
But we know that » < @,. Hence

r < (pif—1)"1,
or

(193) < (1+ %)

Similarly by supposing that A = P, in (190), we see that
ap, > (PV*—1)-1—1,

But we know that r—1 > ap. Hence

r > (P:/z_l)—l’
or

1
(194) P> (14 7)

From (193) and (194) it is clear that p, is the largest prime not exceeding

(141/7". Hence N is of the form

(195) 2.8.5.7 uu.. P

where p, is the largest prime not greater than 27, p, is the largest prime
not greater than (3)*, and 8o on. In other words N is of the form

(196) P ENHI@THI@
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and d(N) is of the form
(197) QTED By @ (Hym@T

Thus to every value of £ not less than 1 corresponds one, and only one,
value of N.

dWN)  d(N')

for all values of N', it follows from (196) and (197) that

35. Sinece

o (2% (%)n(%) (%yr ®
LN 3@ LUDIE LSy T

(198) A(N) < NV=

for all values of N and x4 and d(XN) is equal to the right-hand side when

(199) N = 69(2‘”)+3(%)‘+.9(§)”+... .
Thus, for example, putting x = 2, 3, 4 in (198), we obtain

(AN) < VBN,
(200) . d(N) < 8(8N/35%,
\ A(N) < 96(3N/50050)%,

for all values of N; and d(N) =4/(8N) when N =2% 3; d(N)=8(3N/85)
when N = 2%.8%.5.7; d(N) = 96(8N/50050)* when

N = 2°.8%.5.7.11.18.

86. M and N are consecutive superior highly composite numbers if
there are no superior highly composite numbers between M and N.

From (195) and (196) it is easily seen that, if M and N are any two
superior highly composite numbers, and if M > N, then M is a multiple
of N; and also that, if M and N are two consecutive superior highly
composite numbers, and if M > N, then M/N is a prime number. From
thig it follows that consecutive superior highly composite numbers are of
the form

(201) Ty 1Ty TiTgTgy T1TgTgTyy ..o

where Ty, my 73, ... are primes. In order to determine wy, wy, ..., wWe
proceed as follows. Let i be the smallest value of = such that [27] is
prime, x; the smallest value of z such that [(3)*] is prime, and so on; and
let @, o ... be the numbers x;, x3, ... arranged in order of magnitude.
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Then =, is the prime corresponding to x,, and
(202) N =mymymg ... m,
it r, <o <Tmir

87. From the preceding results we see that the number of superior
highly composite numbers not exceeding

(203) e.‘} CH+I@+IG +..

18 T2+ 7B+ @Y+ .
In other words if x, < X < r,.1 then

(204) n=a2Y+ 7@ *+r@Er+....

It follows from (192) and {202) that, of the primes =y, 7y, w3, ..., Ty, the
number of primes which are equal to a given prime = is equal to

(205) [@—1)-1].

Further, the greatest of the primes m, 7y, w3 ..., 7o i8 the largest prime
not greater than 27, and is asymptotically equivalent to the natural n-th
prime, in virtue of (204).

The following table gives the values of 7, and ., for the first 50 values
of n, that is till z, reaches very nearly 7.

™ =2 I e

my =3 I, = }—zg—g = 15849 ...
my = 2 Ty = lloof(f) = 1°7095 ...
m, =5 2, = ig—g—z’ = 23219 ...
= 2 zs = 1%‘;5(% = 24094 ...
g = 3 zy = IL‘;gé = 2'7095 ...
Ty =1 Z, = igg; = 28078 ...
g — 2 Iy = —l—%ﬁ = 31062 ...
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™y = 11 Ty = %% = 8'4594 ...
e =18 @y = 829 — 37004 ...
— oy = 282 _ 38017 ...
T = 8 Tg = —22. = 38188 ...
Ty = 5 i3 = = 39693 ...

e = 17 Iy, = —2— = 40874 ...

s = 19 7y = BV = 109479 ...

= 4°4965 ...

Ty = 23 Cg = 22 = 4'5285 ...

=B L = 47992 ...

Ty = 29 L9 = T = 4’8579 ...

T = 3 Toy = = 4'9238 ...

Ty = 81 Loy = 7 = 49541 ...
Ty = 2 Loy = T—a = 51908 ...

7o = 87 Loy = = 52094 ...

ey = 41 Ty = —B22 — 58575 ...

T = 43 Ty = = 54262 ...

= 47 v = 28T snnas

Tog —
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Mg

a9

T30

T35

LE"

a1

T3

T39
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58

59

11

61

67

71

73

79

13

83

89

97

101

103

Lo

Tog

wil =

Tyg =

L3 =

Lyg =

log 5

g — 55945 ..
1_;35?551 = 57279 ...
l?§g529 = 58826 ...
1?5 (2) = P89
122(1%1) = 5'9189 ...
%%1_ = 59307 ...
l:;_g(g) = 60256 ...
lfoggﬁg = 60660 ...
lﬁi’ 721 = 61497 ...
1;)()_%_722 = 6'1898 ...
lﬁi;zg = 63037 ...
;;;g_(lgi; = 68259 ...
1;>_Ogg_82§ = 6'3750 ...
1120?2_9 = 64757 ...
El‘;%gq_ = 65790 ...
1120% = 65999 ...
l%(g)_g%l = 6°6582 ...
log 108 _ c.oroy

log 2

395
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log 107

T = 107wy =SETT = 67414
g = 7 Ly = 1%%;&(?% = 67641 ...
To =109  z, = L(;%gigﬁ = 67661 ...
T = 113z, = 1"1"(’;;;3 = 68201 ...
mo = 1T npy = ig; (1,,7) = 69875
mo = 127 2y = lﬂgogl? = 69886

38. It follows from (17) and (198) that log d(N) < F(x), where

7 (f) Vo (f) T(t)

@06) F)=LiogN+1 L dt-}-S dt-{—S Q.

for all values of Nand 2. In order to obtain the hest possible upper
limit for log d(N), we must choose = so as to make the right-hand side a
minimum,

The funection F(z) is obviously eontinuous unless (141/r = », where
7 18 a positive integer and p a prime. It is easily seen to be continuous
even then, and so eontinuous without exception. Also

207) F'(x):—%lOgN—%-(j: T(t)dt—!-r LAUIE .

+% {7(2) log 24 7(3)* log 3-+...}

iQ 19@)+ 9@ +9@)+... —log NI,

unless (141/r)* = p, in virtue of (17).
Thus we see that F(z) is continuous, and F'(x) exists and is econtinuous
except at certain isolated points. The sign of F'(x), where it exists, is

that of S+ 93 +9(2)f+... —log N,
and @)+ FF+5E7+...,

is a monotonic function. Thus F'(z) is first negative and then positive,
changing sign once only, and so F'(r) has a unique minimum. Thus F(z)
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is a minimum when « is a function of N detined by the inequalities

208) S+ W+ | <logN =

>logN (y>2
Now let D(N) be a function of N such that
(209) D(N) = 27@) @y @ (4= @"

where x is the function of N defined by the inequalities (208). Then, from
(198), we see that

(210) d(N) < D(N),

for all values of N; and d(N)= D(N) for all superior highly composite
values of N. Hence D(N) is the maximum order of d(N). In other
words, d(N) will attain its maximum order when N is a superior highly
composite number.

V.
Application to the Order of d(N).

39. The most precise result known concerning fhe distribution of the
prime numbers is that

[r(.r) = Lie)+ OGee™V0%9),

(211) _
19@) = & +Ore 8T,
. o x i
e Lite) = S log ¢

and @ is a positive constans.

In order to find the maximum order of d(N) we have merely to deter-
mine the order of D(N) from the equations (208) and (209). Now, from
(208), we have

log N = 929+ 0@ = $(&+o0 (227);
and so

(2192) $ %) = log N+o(log Nt
and similarly from (209) we have

log D(N)

(218) T =

+o(log Ny
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It follows from (211)-(218) that the maximum order of d{N) is-

(214) 9Li(log N)+0 [log Ne™* Vilog log 1‘”3.

It does not seem to be possible to obtain an upper limit for d(N) notably
more precise than (214) without assuming results concerning the distribu-
tion of primes which depend on hitherto unproved properties of the
Riemann {-funection,

40. We shall now assume that the *“ Riemann hypothesis ” concerning
the {-function is true, i.e., that all the complex roots of {(s) have their
real part equal to 3. Then it is known that

@15) @) = s—n/2—3 ip'f +0@,
where p is a complex root of {(s), and that
(216)
m(x) = Li(r)—3% Li(y/x)— = Li(xz?)+ 0 (x¥)
—Liw—YE - 2ve 1 g2 1 1+0 “/ !

logz (ogx® logzx™ p  (log .1:)2 log z)° )’

P
since 2 —ﬁ—k is absolutely convergent when £ > 1. Also it is known that

@17) > fp— = 0 {y/z(logz)?} ;
and so
(218) @) —z = O {4z (logz)*}.

From (215) aud (216) it is clear that

@) —=x [_NVE )
(219) w(x) = Li(@)+ ——— log @ —R{)+O l(]ogx)" :
where
2/r+2 51;%
(220) R@x) = —————E—(log e

Bat it follows from Taylor’s theorem and (218) that

©21) Li S(@)~Lix) = S(ﬁ) +0(log ),
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and from (219) and (221) it follows that

e TS (YL
(229) 7)) = Li 9 @)—R@)+0 l(log.z:)3}'

41. It follows from the functional equation satisfied by {(s), viz.,

(223) @2m T () {(s)cosdms = 3{(1—s),
that (1—s) 2T (1 ";‘/ 8) ¢ (1 2‘”)

is an integral function of s whose apparent order is less than 1, and hence

is equal to ) s }
r@é@HU  1—o—5 -

( 2p—1))
From this we can easily deduce that
“les1ds » s
(224 sQ4s)x 2T {—2) a4 =1 (14+—=).
) sa+9 7 7 T (5E) cado =1 (14 )

Subtracting 1 from both sides, dividing the result by s, and then making
s —> 0, we obtain

(225) > % = 1413 (y—log 4m),

where vy is the Eulerian constant. Hence we see that

1 1, 1
—\/leT(l—__—;)_VLz(p +1—p)

£

P
(226) <z

P
p o
p

= 2/x X % = J/x 24+y—log 4x).
It follows from (220) and (226) that
(227) (Jog dm—vy)v/z <L R@)(log 2)* < (4+y—log 47)+/x.

It can easily be verified that
[ log 4m—v = 1'954,

(228) !
| 44y —log 47 = 2:046,
approximately.
__ 2/x+8(x)
42. Now R@x) = ———(10g e

where S(x) = E%: ;
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8o that, considering R(x) as a function of a continuous variable, we have

B = L _ Wrt2S@ | S'@
7T Ve (log z)? z (log x)® (log z)?
) 1 )

" (log z)? +0 Mx (log 2% )’

for all values of z for which S(z) possesses a differential coefficient.
Now the derived series of S(x), viz.,

S) = — 3 =,

is uniformly convergent throughout any interval of positive values of .r
which does not include any value of z of the form # = p™; and S(@) iz
continuous for all values of z. It follows that

Se)—S(xy) = Y S (x) dz,

for all positive values of x; and z,, and that S(x) possesses a derivative
8’ (@) = S(x),

whenever z is not of the form p™. Also

S ((lonw) ]
S(x) = { \/a' -
Hence
] _ X+ h ( (IOO' t)Q}
. (I (log xz)? 1
=Rx)4+0 : _—_\/1' i

43. Now log N =9@)+3E)+ 0@y
=9(@)+@'+ 0 (£*@D¥] +0E@"
= 329+ G+ 021,
Similarly  log D(N) = log 2. 7(2%)+log (3) Li(3)*+ O (253,
Writing X for 2°, we have

( log N = 9(X)+Xs@/ls2+ O(X5),

2800 - ‘ ,
{log D) = log 2.7 (X)+log () L7 | X« ®fios2) 4 (X7,
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It follows that log N = X+ O X"& d/log?] ,
and so
@81) X = log N+0 [(log Ny=®/os?]
Again, from (230) and (231), it follows that
(282) log N = 9(X)+(og N)les@®/le2 4 () | (log N)¥s}; -
and
(288) log D(N) = log 2.7 (X)+log (3) Lz(log N)le®/lg2 4 O {(log N}

]
= log 2 {Lz 9(X) —R(X) +O[(lonr 5 ]
+10g (%) L {(log N)k’g('i)llog-.’?} +0 {(log N)ff : ,
in virtue of (222). From (231) and (283) it evidently follows that

(284) log D(N) = log 2. Li$(X)—log 2. R(X)+log (3) Lz { (log N)1ee(®/leg 2}

{_/log N) 1
+0 { (log log N»? |

= log 2. Li {log N—(log N)le®/62 4 O(log N)}
—log 2. R {log N+ O(log N)ioe®/lea2,

+/(log N) }

3\ 7 log (§)flog 2 ) {
+log (3) L7 {(log N) **+0 { (log log N)?

in virtue of (281) and (282). But
Li {log N—(log N)le@)/oe2t O(log N)* }

o __ (log N)'o8 @) log 2 - (log N)™ ) { (log N){2los @) /1og 2} -1 }

= Lalog\) log log N { log log N J +T0 (log log N)*

L . (log IN)los () /ler 2 " N

= Li{log N) ——-—-10g log N + 0 dog N)*5;

and

R {log N+ O(log N)*e@/o62) = R (log N)+ O {(log N)tes@/s2}-4 oz log N2}
= R(logN)+ O(log N)v,

in virtue of (229). Hence (284) may be replaced by
(285) log D(N) = log 2. Li(log N)+1og () L { (log V)l (i/log 2}

(log N)los () flog 2 ( d(logN) b
loglogy 1082 BllogN)+ 01 oo -

SER. 2. vorn. 14. wo. 1246. 20>

—log2
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That is to say the maximum order of d(N) is

(236) QL Gog M)+
where
_ log (%‘) . log(log 21 __ (log N)les (Pflog 2 _
P = log 2 L i (log NY®27, log log N R(logN)
[ y/(og N) |
+0 (loglog N)®j *

This order is actually attained for an infinity of values of N. -

44. We can now find the order of the number of superior highly com-
posite numbers not exceeding a given number N. Let N' be the smallest
superior highly composite number greater than IV, and let

N’ :._.,83(2”)+.9(;)’+8(§)’+...A_
Then, from § 87, we know that
(287) 2N < N' < 2°N,

80 that N’ = O(Nlog N) ; and also that the number of superior highly
composite numbers not exceeding N’ is

n=7@)+r@+=E’"+....
By arguments similar to those of the previous seetion we can show that

log (3)/log 2
(288) n = Li(log N)+ Li(log N)le®/tog2 % —ER(log N)

( /logN
+0 {(log log NP J °

It is easy to see from § 37 that, if the largest superior highly composite
number not exceeding N is

ot 3o 5% . pf,

then the number of superior highly composite numbers not exceeding N is
the sum of all the indices, viz.,

aytagta,+...+a,.

45. Proceeding as in § 28, we can show that, if N is a superior highly
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composite number, and m and » are any two positive integers such that

log mn = o(log log N),
then

. m n\ log mnr \2
239) d (_:.’:_ N) — () a0 (i)

From this we can easily show that the next highly composite number is
of the form

{ N{log log log N)*|
(240) N+ O log log N

3

Again, let S’ and S be any two consecutive superior highly composite
numbers, and let
S = LG HIW .
Then it follows from § 85 that

e
@41) AN < (%’-) A,

for all values of N except S and S'. Now, if S be the n-th supevior
highly composite number, so that

Ty < Z < xn+1,
where ., is the same as in § 36, we see that

N\ Yo,
(241') am < (g) as,
for all values of N except S and §’. If Nis S or ', then the inequality
becomes an equality.

It follows from § 86 that d(S) < 2d(8’). Hence, if N be highly com-
posite and S’ << N << 8, so that d(8') < d(N) < d(S), then

39 < ANy < d(8), d(8)<d(N) < 2d(S).

From this it is easy to see that the order (286) is actually attained by
d(N), whenever N is a highly composite number. But it may also be
attained when N is not a highly composite number. For example, if

=(2.8.5 ...pl)x(2.3.5...p.z)g

where p, is the largest prime not greater than 2¢, and p, the largest prime
not greater than (3), it is easily seen that d(N) attains the order (286):
and N is not highly composite.

2 p 2
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VI.

Special Forms of N.

46. In §§ 33-88 we have indirectly solved the following problem: to
find the relations which must hold between x,, ,, 3, ... in order that

AN LS CONE LI
may be a maximum, when it is given that
S (@) +S(r)) + (g ...
is a fixed number. The relations which we obtained are

log 2 - log(2) _ log 3)
logz, logzy logay 7

This suggests the following more general problem. If N is an integer of
the form

(242) 6013(x1)+013(£2)+cu 3(.t;,)+._.,

where ¢, ¢, 5, ... are any given positive integers, it is required to find
the nature of N, that is to say the relations which hold between
xy, &g, Tg, ..., when d(N) is of maximum order. From (242) we see that

1+01+02>"(":2) (1 +01+02+08) T o

k242l) d(N) pesd (1+cl)”(xl) (

1+4+¢ 14c¢+cs

1f we define the * superior ” numbers of the class (242) by the inequalities
d(N) . d(N')
AYG > (N')e 7

for all values of N’ less than N, and

d(N)
N¢

d(N')

~ Wy

for all values of N’ greater than N, N and N’ in the two inequalities being
of the form (242), and proceed as in § 33, we can show that

. (Mote) SR
(Lpeym o™ \ T

o fx = ol 14¢ 409\ 7/ cs
doforarart e (5E)

(243) d(N) < NV*

for all values of z, and for all values of N of the form (242). From this
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we can show, by arguments similar to those of § 88, that N must be of
the form

14 +e\r e lacpdeateg\*ca
8 QHmY ey s (MUEL) Sy g (Lratatayra,
pe A+a) 2 T+e, c3 ( T+ortos +

(244)

3

and d(N) of the form

e f1e 4o\ 1+c,+m.)r;c, 1T4¢,4c,4c "(1+61+Co+63)x,t‘;
244" (1 m+a) (——1-———2> THe; <__._1_2____3> THe 4
@dd) ) 1+4¢, T+c+c,

From (244) and (244') we can find the maximum order of d(N), as in § 48.

47. We shall now consider the order of d(N) for some special forms
of N. The simplest case ig that in which N is of the form

2.3.5.7...p;
80 that log N = $(p),
and AdV) = 270,
It is easy to show that
245) d(N) = Q1i00gN)~RogN)+0 {a_g‘g%'_ﬂ:)y}

In this case d(NN) is exactly a power of 2, and this naturally suggests the
question : what is the maximum order of d(N) when d(IV) is exactly a
power of 2 ?

It is evident that, if d(IN) is a power of 2, the indices of the prime
divisors of N cannot be any other numbers except 1, 8,7, 15, 81, ... ; and
go in order that d(N) should be of maximum order, N must be of the form

EHNF2IEIHAI (803 4.
and d(N) of the form Qr(addm(z)tm@s)t...

It follows from § 46 that, in order that d(N) should be of maximum order,
N must be of the form

(246) 68(1:)+28(va)+43(13)+88(1.‘)+...,

and d(N) of the form

(247) 2n(x)+n(w)+w(a*)+w(.a.-i) o

Hence the maximum order of d(N) can easily be shown to be

. 4v(og N) _ " ¥(og N)
(248) gliQog M)+ oo 1?>g Ty~ Fdog M+0 { {og 1og NP } .



406 Mgz. S. RAMANUJIAN [June 11,

It is easily seen from (246) that the least number having 2" divisors. is
(249) 2.8.4.5.7.9.11.13.16.17.19.28.25.29 ... to n factors,

where 2, 8,4, 5,7, ... are the natural primes, their squares, fourth
powers, and 8o on, arranged according to order of magnitude.

48. We have seen that the last indices of the prime divisors of N must
be 1, if d(N) is of maximum order. Now we shall consider the maximum
order of d(N) when the indices of the prime divisors of N are never less
than an integer n. In the first place, in order that d(N) should be of
maximum order, N must be of the form

o3 (x)+ 3 (@) +3 (a)+ .
»

and d(N) of the form

2 +'n> = (%) (3 +n) ™ (%)
wy) (21 77
(L+4n) <1+n sta) e
It follows from § 46 that N must be of the form

: 2 3+u
3 LAY + ﬂ)
en Qi+ (1+n +9 (A+?

(250)
and d(N) of the form

e (G ()

Then, by arguments similar to those of § 48, we can show that the maxi-
mum order of d(N) is

(252) (m41)% {armlog N+ o ,
where
= g0t ) gl L g ) B
pN) = | log(n+1) 1_; Ly 1<n log N} TogGu+D ,
( l N Xog(n+2) —
— log ) log(n+1)
1 ( WogN) )
- —r (Lg) o o1
” ogN)+O | Tog Tog °

n log (-;;— log N >

If n > 8, it is easy to verify that

" log(n-2)

lognt1) — 7% < &5
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and so (252) reduces to

Li{(t/n)log N} =B {(1/n) log N}+ 0 | 0% V) 1

(2568) m+1) {{logTog N7 1|
provided that n > 3.

49. Let us next consider the maximum order of d(N) when N is a
perfect n-th power. In order that d(N) should be of maximum order, N

must be of the form
et )+ 3@)+n S @)+ ...

and d(N) of the form

) 1+2n>"‘“’2) (1-!—37;)"("3)
w(e) {2V 20 L Edstel
(14 ( 14+n 1420 e
It follows from § 46 that N must be of the form
(254) en.‘)(l+n)’+us(ll—-i2?'—r)y+n3 (}—::'_—-g:t z+.“’
and d(N) of the form
3 1+27l)ﬂ(ﬂ!’)x <1+3)l>n’ 1+?”’)"‘
."'(1+71) = = 1+n o 1+2n
(255) (L+m) < 14n " 1+2n ¥ o

Hence we can show that the maximum order of d(N) is

. ’ _ o _~{logN)
(256) 1) Li{Q/n)10g N}~ B {(1{n)log N} + 0 | Gog Tog NP 1|

provided that » > 1.

50. Let {(N) denote the least common multiple of the first N natural
numbers. Then it can easily be shown that

(257) l(N) —_ 2[log N/log 23 . 3[log N/log3) . 5[log Nllog 5] e D,

where p is the largest prime not greater than N. From this we can
show that

(258) IN) = ¢* (M+I W) +3 (V) + 3N+ ;
and so
(259) d{UN)} = 2@ @rom @yrah

From (258) and (259) we can show that, if N is of the form I(3), then
(260) d(N) = QLilogN)+¢ ()
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whers

_log(®) o/Qog N) | 4log(d) v(ogN) (_o/(loghN) |
~ log 2 loglogN log2 (log log N)? k(log N)+0 ((log log N)®) ~

It follows from (258) that
(261) I(N) = eN+O{VN(logN)2};

@(N)

and from (259) that
(262) d {Z(N) lr — 2Li(N)+O(¢N]ogN).

51. Finally, we shall consider the number of divisors of N!. It is
easily seen that

(263) N1 = 2% 3% 5% pul‘,

where p is the largest prime not greater than N, and

w =[RS

1t is evident that the primes greater than 3N and not exceeding N appear
once in N!, the primes greater than 4N and not exceeding 3N appear
twice, and so on up to those greater than N/[4/N] and not exceeding
N/([v/N]—1), appearing [4/N]—1 times.* The indices of the smaller
primes eannot be specified so simply. Hence it is clear that

S IN)HSGNY+3EN)+.. + 4 (ﬁ) %

(264) N!=e 242 3% ,5% |, wiw,

where » is the largest prime not greater than 4/N, and

N N
e m = B[R} (-
From (264) we see that
(265) AN = 2" (R)ym@N) (HmGN) | §o [4/N] —1 factors
X eO{log(l+u,)+]og(1+a3)+...+log(1+aw)}
= 2"V Gy (56N | to [o/N] —1 factors

X 0 w1080 +an}

= LW (HLGN) (HLIGNY | ¢o [4/N] factors

X e0 (VNIO;N)_

* Btrictly speaking, this is true only when N = 4.
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. oo N (_N
Since Li(N) = fog N +0 1 log N7 *
we see that

_‘L.;..O _f__N_[
(266) d(N') = Cl8¥ =~ 'Q&¥P)
where C=QA4+1)a+3a+»ra+di....
From this we can easily deduce that, if N is of the form M!, then
log¥N 2log Nlogloglog N, ,, (  logh |

267) AN) = C(loglogN)’ (loglog NV 3 {({loglog V)3 ,

where C is the same constant as in (266).

52. It is interesting in this connection to show how, by considering
numbers of certain special forms, we can obtain lower limits for the

maximum orders of the iterated functions dd (n) and ddd ().

that N= 22-1'33—1 ---P&_l.-
we can show that

V(Zlog 7n)
(268) dd(n) > 4Tozlogn

for an infinity of values of n. By supposing that

p_

. 9251 gits_1 1
N=2 .3 s pttT

: — [logp]_
where a, = [log 7\] 1,
we can show that
(269) ddd(n) > (log n)loslogiog log»

for an infinity of values of n.

By supposing





