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It was in Vol. v. of the American Journal of Mathematics that
Sylvester first proposed the problem of the enumeration of the
perpetuants of given degree and weight.* Of a given degree
Cayley’s rule gives a generating function which enumerates the
asyzygetic seminvariants. A knowledge of the perpetuants of lower
degrees leads to the generating function for the compound semin-
variants of the given degree. Since these forms are not linearly
independent, it i3 neccessary to find the generating function of the
syzygies which connect them. We have, then, the means for arriving
at the generating function of the perpetuants. It is merely necessary
to subtract the generating function of the syzygies from that of the
compound forms, and then subtract the difference from that of the
asyzygcetic forms.  This procedure was adopted by Sylvester. For
the first four degrecs no syzygies arise, and the perpetuant generating
functions were found to be

0o o 2 2

I (I=a)(l—-2) (—a)(1-2)(1—-2")’

respectively ; the enumeration of the perpetuants being given, for a
weight w, by the coefficient of 2” in the developments.

% ¢ On Sub-Invariants, i.e., Semi-Invariants to Binary Quantics of Unlimited
Ovder,” Amer. Math. Jour., Vol. v., p. 79.
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Syzygies first present themselves for the degree 5. Sylvester, in
the paper quoted, did not succeed in correctly enumerating them.
This was a,ccomphshed by Hammond,* who established the generating

function .

A-a)(1=a")’

which immediately led to the true genera,tmg function for per-
petuants of degree 5, viz.,

3}“

A-2)A=a)(1=2)(1-2")’

Cayleyt continued the investiga,tiori on the same lines, but adding
the notion, due to the author of the present paper, of the transforma-
tion of seminvariants into non-unitary symmetric functions. Con-
siderable light was thus thrown upon the structure of the syzygies
in gemeral, and in particular upon those of degree 6. No new
generating function was obtained, as the enumeration of the syzygies
of degree 6 proved to be impracticable. The simplest perpetuant of
degree 6 was first obtained by the aunthor of this paper.} It proved
. to be of weight 31. The research proceeded on the lines laid
down by Sylvester, Hammond, and Cayley, and principally by the
use of Cayley’s exceedingly useful algorithm for the multiplication
of symmetric functions, the whole of the syzygies up to the weight
31 inclusive were calculated as far as was necessary for the purpose
in hand. The generating function for the syzygies was not obtained.
It should be mentioned also that on p. 45 of the paper the perpetuant
of weight 31 is correctly identified, but that the non-exemplar per-
-petuants of this weight are incorrectly enumerated. The number
was given as 5, whereas, as will subsequently appear, we now know
the number to be 16.

In a second paper§ in the same volume, the author again con-
sidered the question, and showed that on a certain hypothesis, the
truth of which he was unable to assert, the generating function far
pevpetuants of degree 6 (>2) was

221

(1-a)(1—2") ... 1—a)"

® Admer. Math, Jour., Vol, 1v. '(1882), pp. 218-228, ¢ On the Solution of the
Difterential Equation of Sources.”’

+ dmer. Math, Jonr., Vol. vir, (1885), pp. 1-25, ¢* A Memoir on Sewminvariunts.”’

1 ¢ On Perpetuants,’”” Amer. Math. Jour., Vol v, .y PP. 26-46.

§ ‘¢ A Second Pnper on Perpetuants,’”” Amer. Math, Jour.,Vol, vir.; pp. 259-263.
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This prediction was subsequently verified by Stroh,* who, in § 10 of
the paper quoted in the foot-note, established the generating function
by an ingenious method which differed totally from that adopted by
previous investigators in the same field.

Cayleyt followed with interesting remarks and developments of
Stroh’s theory.

Stroh considers the general seminvariants of degree 8 and weight.w,

Q:J = (“Iﬁl +“aﬁ9+ +“sﬂo)wy

where B, f, ... B, are arbitrary quantities merely subject to the

pondition S8 =0,
and a,, ay, ... a, are umbra, such that, after expansion,
a=ay=..=a,= (1) or =a,
Assuming
A+uB)A+pB)) ... A +pB,) = 1 +p B+ 4By + ... +p'D,
the expanded function Q)

can be exhibited as a linear function of products of powers of
B, By, ... B,

of weight w. Appearing as a coeflicient of each B term of this
function, we find a seminvarviant of the binary quantic

wh— (?{) a4 (g) au*t—... =0,

where » may be supposed to be infinite. Stroh shows that the whole
of the seminvariants of degree § and weight w. thus present them-
selves. To exhibit certain of the seminvariants in terms of semin-
varianta of lower degree by means of products of degree 6, we ma.y,
since f3,, By ... Bs avo merely subject to the condition

3B =0,
suppose Bi+B:+ ... +8, =B, a+By+... +8, =0,

where ¢ may be any integer less than 6.

¢ ¢t TUcher dio Symbolirche Darstellung den Grundsyzyganten einer biniiren
Form scchster Ordnung und cine Erweckerung der Symbolik von Clebsch,’ Math.
Aun., t. xxxve. (1890), pp. 263-303.

+ “On Symmetric Functions and Scmmvnrmnts,” Amer. Math, Jour., Vol. xv.,
pp. 1-69,
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We have then Q)= (Q,+Q,_,)",

and Q) is thus shown to be reducible. DBut €7 is no longer the per-
fectly general seminvariant that it was proved to be before tho
introduction of the new conditions

ﬁl+532+ +l30 = ﬁ¢>l+ﬁo+2+"° +ﬁo =0.

These conditions necessitate the vanishing of a certain function of
the quantities D. B B
B % 2]

so that a certain number of B products, and therefore also of semin-
vaviants, have disappeared from

Q.
These are the perpetuants of the degree 8 and weight w.

This is very clearly stated by Stroh; and Cayley, with farther
aumplification of statement, actually determines the conditions for the
first six degrees.

The above is merely historical.

I am now principally concerned with the two papers of Stroh and
Cayley last mentioned, which, from their recent appearance, will bo
fresh in the memory of mathematicians.

I propose to present Strol’s theory and Cayley’s developments
from a purely algebraical point of view—that is to say, without the
employment of any umbral symbols—and also tp actually identify
each of the whole scries of perpctuants of all degrees and weights.

Fivst, consider a transformation of Stroh’s general scminvariant
obtained by employing umbrse with a different signification.

In the form
Q= (.4 a0+ ... +a,8)°
let @, be an umbral symbol, such that after evolution o] is to be re-

placed by o! a,.

!
w w. n m
We find Q, = m—,—*ﬂl'ag o (ﬂ'lﬂ"...)g, .
1 Mgt e

where (7,7, ...), denotes the symmetric function
3606 ...

Thence Q =w!3a,a,.. (™" .. )

®y T
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The symmetric functions on the dexter side are to be expressed in
terms of the elementary functions B, By, ... B,y and the dexter has
then to be arranged as a linear function of products

BB, ...
Let : (mmy...)s =320, B,B,...;
then Lor=s2{s0.0,a, . }BD.... -
w.

The whole coeflicient of B, B, is

300,08,

But C,,, is the coefficient of B, B, ... in the expression of (my75...)s5
therefore, by the well known law of reciprocity, it is also the coeflicient
B, B, ... in the expression of (st...), or of a,,a,, ... in the expression

of (st...), where (st...) denotes a symmetric function of the quantities
of which .
L T MR S

are the elementary symmetric functions. Hence
3C,.a,0, ..=(s..),
1

and —;9:’ =3 (st...) B,B,....

w!

Since B, =0, we have on the right a linear function of the non-

unitary symmetric functions of weight w and of degree not exceed-

ing 6. ‘
These non-unitariants (Cayley, loc. cit.) of the roots of the equation

m"—a,m""-}-azn"“’—— = 0
are, as is well known, seminvariants of the binary quantic
zt—na, 2" y+n (n—1) a2" ' — ...

Thus transformed, Stroh’s general seminvariant assumes a simple
and elegant form, and suggests the following method of viewing the
subject.

I, first of all, retain B,, so as to consider the reducibility of sym-
metric functions in general, and subsequently cause B, to vanish, so
as to restrict the investigation to seminvariants,
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Teking an arbitrary quantity g, let _
‘ (14 pa) (1 +pa))(1+2ay) ... ad inf.
=1+p (D +p ) +p (1) +...
= 1+ pa, +play+play+ ...,

where a,, ay, ay, ... are not the umbre before mentioned, but quanti-
ties obeying the ordinary laws of algebraical quantity. .

Let, also, A +p3)A+upy) ... A+pu8,)
= 14uB,+p'B;+ ... + #°Bs;
then (A+pa,B)( +Pa;ﬁ-z) e (L4 pa,f3))

= 1+pa,B,+p'a By+ ... +p'a’ B,
and 1}(1+ya./3l)(l+;xa.ﬁg) e (14+pa,B,)
= I‘I 1+ pa, B+ p’al By + ... + p'a’ B,),
the products extending to the quantities -

L. : a;, ag, dg ...
of unlimited number.

Multiplying out the dexter of thisidentity and therein representing
the coefficients of p* by Z, ,, we have

V4 pZ,, 032, 0+ g2 25+ ... |
= 14p (1) B+ {(2) B+ (1) B}
' +p* {(3) By+(21) B,B,+(1%) B} +...,
where on the right the coefficient of u* invol;ves linearly all the sym-

metric functions of ay, ag, ag, ... of weight « and degree not exceed-
ing 0.

[Taking Q, with changed umbree

1

N

Z.,o =

and the sinister is (when B, = 0)

exp (pﬂ.).] »
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Thus 4= () B,
L = (2) B+ 1% Bf,
Zy,, = (3) By+ (21) By B, +(1°) B},
Z,,=3(pppy..) BB

the summation being for all partitions of « into parts not excecding 0
in magnitude.

Taking ¢ <0, write
(A +pB)A+pBy) ... (1+4B,)
= l+4+pB+p°B;+... +p*B,
(l+f‘/’;4+l)(1+l‘ﬁv+2) o (L+pB)
= 14uB +p*B)+...+p"* B,
and thence 1T (1+4pua,B)(1 +;m;ﬁ.1) (l.+;4a,ﬁ,)
=TI (L+pa, B+ 5 B, +... + p*a? B))
1:[ (1 +F“uﬁ¢+l)(l +P“uﬁp+2) (1 +P“aﬁu)
=1I(1 +pa,B;'+p2aZ B +... +,u""’a:'¢B;’.¢),
whence we derive
1+p 2, ,+p32, ,+ 122, ,+ ...
= l+p (1) Bi+p* {(2) B+ (1*) B’} +...,

the parts of the partitions being limited not to exceced ¢ in magni-
tude; and
1 +[-lZ|_3_¢+F'QZg,9. ¢ +[‘3Z3_9_¢ +...

=1+u (1) B+ {(2) By + (1) B*} +...,

the parts being limited not to excced 6—¢ in magnitude.

Morcover, 14 uB+p*B;+... +p°B,
= (1+pBi+p*Bi+ ... +p*B) (1 4+ pBY + 4B + ... +p°* L),
and Vply o+ 182+ 12 25,0+ ..

SN CE IS ST ANE TR 0E SN IQE TP AWIOE S AN T AReE SR
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Comparing coefficients of p*, _
Ze=2, A2y Zrogt v Dy oyt Dy

Z,, involves symmetric functions of weight « and of degree < 6,
while any product on the right

Zrs Zy oy
involves products of two symmetric functions, the onc of weight x—s
and degree <¢, and the other of weight s and degree 20—¢.
Moreover, the quantities
‘ B, B, ... B,

are expressible in terms of the quantities
s By ... By BY, B, ... B,
by a series of relations of the form
B,= B+ B, B/ +...+ BB, + B,
and, by reason of these relations, . .
B, B,, ... B,
are not subject to any condition.

Hence, by comparison of the two sides of the relation

Zn,o = Z-,;""' Zx-l,¢ Zl,e-¢+ + Z.,o-p

we are able to express certain symmetric functions of weight « and
degree <0 as sums of products of pairs of symmetric functions, cach
pair involving one function of degree <o, and one of degree <60—o.

We have, in fact, a general theorem of reducibility.

Supposing 6>1 and ¢ any one of the integers 1, 2, 3, ... 0—1, it can
be demonstrated that every monomial symmetric function of degrec
0 is reducible by the aid of symmetric functions whose partitions are
subsequent to it in dictionary order, and of products of paivs of
tunctions of degrees <¢ and Z6—g¢, respectively.

Consider in Z,, the terin

(67, 6-17, 6—2°%, ...) B B™ B™, ...,

v=1
where the literal part is equal to

(BB Y (B B+ BB ) (Byea iy By Bty BT )%
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Of this consider the portion
Brco Bnr. Bu"a Buvo+a,+vn+--- .

The weight of BB\ B, ...
is . (p(a'°+ol+a',f}-...)—01—26,—... =,
and that of Bttt

_ is - (8—¢)(v,,+a,+a,+,..) =«",
where . . K" =k -

Hence the literal portion considered must arise in the dexter of
the identity in the product

Z"n ¢ Z‘”- -9
as

(470 9—1%9—2% ...) B B\ BYY, .. (9—grobertertor) Brytotort

On the sinister side the whole coefficient of

170 Blal Blo'! Bl;ﬂo+d'l+0'2+

(23
must be the sum of the monomial functions obta,med by the multi-
plication of the two functions

(¢’o¢_17, ¢ ~27 .), (0—¢"0+°’1+0’l+...)’

»

and the first of these in dictionary order is
(076 ~1716—27 ...).
Hence this function together with other functions subsequent to it in_
dictionary order must be equal to the product
(¢ao¢_ 1"|¢_2’ﬂ . __)(0_¢¢o+’|+¢3+---)_
‘In other words, the function is reducible, and the actual reduction is

given by the identity. For a given value of ¢ symmetric functions
are, in general, reducible in more ways than one.

Ez. gr—Take «x =6, 6 =4, ¢ =2,
Zo = Ziga+ 230 Bla+ 242 2o+ 23,0 Zin+ 70y 203+ Zia Zsnt Za)as

single and double accents being introduced to distinguish forms
which, from the circumstance that ¢ and 6—¢ are equal, would be
otherwise indistinguishable.
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Zy,s = (42) B, B, + (41°) B, Bi + (3°) B, + (321) B, B, B, + (31*) B, B}
+(2%) B+ (2°1*) B, By + (21') B, Bi + (1°) B,
Zia= (2 B+ (219 BB+ (219 B L+ (19 BY, |
Z;,= (21) BB+ Q1) BB+ (1) P,  Zi'y= (1)B/;

Zia= @B+ QBB+ DY, B = () B+ (1) B,
Zia= COBB+(1%) B,  Zy, = (21) By B+ (1% I3,

Zj, = (2) B+ (1) B, Uiy = () B+ (21%) By B+ (19 B
Z,,= () I, Ziy = (2%1) By B + (1% By B+ (1" By";

Zgs = (2%) B+ (2)1%) B* B2 + (21%) BY B + (1% By™,
and the relations B, = BB/,

By =I4B/+ R B,,

B, = B;+ BB+ 1,

B, = B+ D.

Cor'nparison of the coefficients (1) of B.*B;’, (2) of B;B,B; B, on the
sides of the resulting identity yiclds the reductions

(42)+3(2) = (2)(2),
(42) +2 (41%) +2 (3%) +2 (321) +6 (2%) +4 (2°1%) = (21)~
A similar process with regard to the term Ij; BBy yields
(41°%) + (321) 4+ 2 (211%) = (21%)(2).

Reductions of forms of lower degrees:are also given by the same
identity. It is not nccessary to give them, becaunse they can be
obtained more simply by formation of the identities for the data

. 6, 9) = 6, 3, 2),
(, 8, ¢) = (6,2, 1).
We thus obtain the reductions
(3) +(321) + (217 = @)1,

(321) +3 (2% + 2 (21%) = (2'1)(1),
(321) +3 (31%) +3 (2%) +4 (21%) + 6 (21) = (21*)(1%),
(321) +3 (31%) +2 (2°1%) + 4 (21%) = (21)(1¥),
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(31%) +2 (21) + 4 (21%) = (21 (1),
GBI +(21*) = (2)(19),
(2)+2(2'1") +6 (21%) +20 (1) = (1%},
(2°1%) +4 (21%) +15 (1% = (19 (1Y),
(1% +6 (1% = (15 (1).

The identity manifestly also involves a theorem for the multiplica-
tion of any two symmetric functions whatever.

I pass on to the discussion of the reduction of non-unitavinnts,
viz., those symmetric functions the parts of whose partitions ave all
glea.tex than unity.

If a non-unitaviant be reducible qun, non- umt'm'mts, it must
obviously bo reducible by mecans of products of pairs of non-
unitariauts; this fact follows from the circumstance that the product
of two non-unitarviants is itself a non-unitariant; the forms, in fact,
constitute a closed system. It should be observed that this would
not be the case with some other systems that might present them-
selves for consideration. ' _

If we had to discuss the functions which contain no part 2 in their
partitions, we have no closed system ; for two forms, such as (81) aud
(41), which arc included in the system, give rise to forms, containing
a pmb 2, which are extorior to the system. Suppose that the quanti-
tics 3 above considered are not all mdependcnt but ave connected

by a u,lntlon F(By By By, ... B) =
then the expression ‘ Lo
will not involve the complete system of'.symmetric functions of tho
quantitics a, ;‘;2, S

for certain of the products B} B, ...

can be climinated between the relations

f (B, By, B, ... B.) =0,
Do =3 (5 gl ) B L.

~and, uy o conséquencg, the number of symmetric functions

(rep...)
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in the expression of Z,, will suffer a reduction. We would then
have a particular system of symmetric functions under consideration,
whose nature we may take to be exactly defined by the conditional

 relation F(By Dy By, ... B =0.
For the theory of the reducibility of this system we are led to the
identity L+ B, + 1 Byt 2By 4 ..+ B,
= (L4pB+ 2Bt B+ .+ ptl3)
X (Y4 pDBy + 1By + 1By + ...+ w4 B,LL),
¢ being any integer equal or less than 6, with the thrce conditions
f(B, B, DBy, ... L)=0Q,
(@, B, B, ... B, 0,0, ...) =0,
FBe, B LY, L 32,,0,0,0,...) =0.
Hence there are 6—1 independent quantities B,
¢—1 " " n,
§—p—1 " wooL B
and, since (8= —(p—1) =(6—p—1) = I,
the satisfaction of the identity necessitates another relation between
By, Ly By, ... B,
say ¥, (B, By, By, ... B)=0.
Write this for brevity ¥, = 0.
This s the condition of reduction for a given value ofA tho integor ¢.

Considering mercly this particular mode of reduction, we find that
the condition
- Ys =0

cruses & further diminution in the number of symmetric functions
appearing in the expression of

Z,,.
These disappearing functions are those which cannot be reduced in
the particular manner we are considering.
If ¢y, ¢4 .. @, be s pacticnlar values of @, the condition

¢, ‘»L_w, by, =

YOL. XXVI.—No0. 017, »
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leads to the functions that cannot be reduced in any of the modes
defined by the integers

¢h ¢2) LR ¢n-

For complete irreducibility we have the condition

Uiy Y =0.

Non-unitariants constitute the simplest restricted system that it is
possible to devise. They are the solutions of the partial differential

equation

d a d
du={-— — — 4. )u=0
i (da,l ta da, ta, day + )u 0

It will subsequently appear that other restricted systems corre-
sponding to other differential equations may be usefully considered, -
but, for the present, non-unitariants are alone under view.

Hence ' f(B, By ... B) =D,
and therefore B, =B;=B=0,
Z,,, now only involves non-unitariants

Z,e = (2) By,
Ziy, = (3) By,

Zi,0 = (4) B+ (2) B;,
Za,o = (5) Bo+ (32) BuBlv
&e.
In order that S B 7Ly A ST A S

may be broken up into factors, involving non-unitariants only, we

must have
1+ p*B,+p*By+ ... +p4°B,

= Q1 +;12.B;+}43B;+ ... +p*By)
X (L4428 +p*B +...+ u** B,.,),
for some valne of ¢ < 30.

- Tt is easy to see that
. 4" = H (i81+ﬂz+ see +ﬁ¢)1

when on the right we have a symmetrical function.
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Hence the complete condition of reduction is

Z,

(0GB B} =0

The weight of this condition in the quantities By, B, ... is as
shown by Stroh and Cayley, and, as it is easy to verify,

2011 = w,

This condition causes one B product, containing a factor B,, of weight

w,, to disappear from p

and indicates the irreducibility of the corresponding non-unitariant.

The same procedure as was adopted for the unrestricted system
shows that every other form not thus shown to be irreducible is in
fact reducible. .

It is now easy to show that the number of perpetuants of
degree 6 and weight w is given by the coefficient of 2* in

#2011

A—a)(1—2)...(1—=2")"

Passing to the simplest particular cases, I put p = —.~1~-, and consider
the factorizations of the polynomial £

2+ Bt Bya L+ B,

which exhibit it as the product of two polynomials each wanting the
second term.

Degree 2, 6§ = 2.
We have =+ B,

and a factor, if it exist, must be simply z, which necessitates
BBy =B, = 0.

Hence, in the reducing identity above considered, the terms in B,
vanish, and no symmetric function which appears as a coefficient of
any power of B, can be exhibited in a reduced form; such functions
are comprised in the series

@, @) @) ..

which therefore are all irreducible.
T2



276 " Major P. A. MacMahon on the [March 14,

Henee (29

expresses all perpetuants of degree 2, and the generating function is

Degree 3, 6 = 3. ‘
We have 2+ Bz + By,
and one factor must be .
Thence ' B3B3 =—D;=0.
All terms of the form (3+'2") B:' B,
disappear from the reducing identity.
The series of perpetuants of degree 3 are included in
(2,
and the generating function is

2

(=A<’
Degree 4, 6 = 4.

We have '+ B,2* + B,a + B,.
The factors may have the forms
@, At D,

For the factor =, we have
BBByB= B =0,
while, for the factor 2’4+ P,
(3,46, =By =0,
or the whole condition is
BB L (B, 45,) = BB, = 0.
Hence all the terms of the form
(P2 B IR By

disappear from the redncing identity, and the whole series of per-
petuants of degree 4 are comprised in the expression '

(4.4»!3)\0!2»-)‘
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and the generating function is

a2

(I-2)(A—=2)(1-a")"

Degree 5, 0 = 5.

We have 2"+ Bya®+ Bya® + B,z + By,

and the required factors can assume the forms
z, o+ D.
For the factor z, . np,=-B,=0,
the éondition for the factor 2’ + P is clearly the eliminant of
&+ Bya* + Bya? + B+ By '

and a* 4+ Bya— Byat + B,x— By,
or of a4 Bya’+ B,
and Bya?+ I,
which is 11 (3,+8,) = B}—B,B,B,+B,B};.

hence the complete condition is
ng,u (I;x +ﬁs) = B:_B§B3B2+B5B4B§‘= 0.

On the left-hand side of the reducing identity, we have, with
others, the three terms

(5*) By+ (5%32) By B, B, + (543) B, B, B,
and each term separately would be reducible but for the condition
B,—BiByBy+ B, B 1% = 0,

which indicates that we can eliminate from the reducing identity
erther of the products

B, BiBB, DBBB;,
and thns obtain two instead of three reducible non-unitariants from
the three Y, (532), (543Y).
Eliminnti-ng B, we have, in the reducing identity

(3% + (382) Y BB, B+ { — (5% + (343 ) BB, T,
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indicating the reducibility of the non-unitariants
(5%) +(5%32),
—(5%) + (543%).
If, instead, we climinate 3 13, I3, and 13, B, B:, we obtain respectively
{(5°) + (5%82) } By + {(5'32) +(548%) } B, B B;,
and {(5)— (543} Ity + {(5'32) + (543*) } I3 By B,

If we agree to consider a non-unitariant reducible, if it can be ex-
pressed in terms of non-unitariants subscquent to it in dictionary
order and of compound forms of the same degree, we may regard

(5*) and (532)

as reducible, as being capable of redunction by the aid of the form
(543, which is subscquent to them in dictionary order. Hence we

‘regard (543%)

as the exemplar perpetuant of degrec 5 and weight 15.

The forms (5%, (5°32) may be said to be non-exemplar.
All cxemplar perpetuants of degree 5 are comprised in the

cxpression (514041300207,

For a given weight w we have a number of equations of condition
hetween the products of the quantities B, 1%, IB,, By equal to the
number of ways of composing the number w—15 with the parts
2, 3, 4, 5; these are formed by multiplying the left-hand side of the
cquation Bi~ByB,B,+ B, B,B. = 0

by cach prodnct of the quanfibies By, By, B,, B, of weight w—15.
There ave also preciscly the same number of exemplar perpetnant
forms of degree § and weight w.  From these equations of condition
and the equation of reducibility of weight w, we can eliminate all the
products which contain the factor

BB, T,

and thus exhibit the rednction of all non-exemplar non-unitariants
by the nid of the cxemplar forms.
Thus the gencrating function for degree 5 is

ml& .

=) A== A=)
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The.reducibility of forms of degree 5 by means of products of quadric
and cubic forms is, as we saw, governed by the relation

By—DB,B,B,+B,B; = 0,
which proves that of a weight lower than 10 all forms are so ex-
pressible; ez. gr.,
- (83) = (3)(2)—(3"2)(a),

where o’ has been introduced and in a covariant identity would
represent the square of the quantic itself.
For the weight 10, however, the relation shows that only the

combinations (5" — (43" q,
(532) + (43" a
are so expressible.

Moreover, the form (43*) is not expressible by means of products
of quadric and cubic forms (say by products 2. 3), and thus is not a
quintic syzygant. It immediately follows that the form (543°%) is a
perpetuant, for, had this form becn reducible, the operation of decapi-
tation (see 4. M. J., Vol. viL.), or in other words, the performance of

Ds = gl‘l (aa.+alau,+a'iaa.+ o)t

on the two sides of the equation exhibiting the reduction, would have
shown (43) as a quintic syzygant.

Algebraical results of this nature are not yielded by Stroh’s
untransformed theory.

Degree 6, 8 = 6.

This case has been worked out in detail by Professor Cayley (loc.
cit.), but T do not hesitate to give it here, as I wish to introduce some
new methods of arriving at the equations of condition.

The quantic is
a®+ B,a*+ Bya®+ B,a*+ DByz + By,
the required factor assuming either of the forms
z, a@+P, 2+Pz+Q.
For the factor z, If, = B, =0,

and, for the factor 28+ P, the condition is the vanishing of the

eliminant of
2*+ Byat + Bt + I,
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and By2*+ B,
s 1, B, B, B
This is n +8) = ( ’ 1 Uy e)
Gtbo=5 5 ")
= B,B;—B,+ B, B, B,—~B,B,B;
=0 i
" The notation - (1’ B, B, B.,)
B,, B,

for the eliminant in question will be found convenient in what
follows. ‘ ' ‘

The condition introduced by the third type of factor is obtainable
in a variety of simple ways, of which a few of the most interesting
will be given. o

The condition is, of course, equivalent to
(B +B;+h) =0.
First Method.
We have the identity
2+ B,z*+ Bya*+ B,a’ + Byz + B, = (2* + Pz + Q) (' + Rz+ S),
leading to the relations
'B;—P~R = By—Q—S8 = B,—PR = B,—PS—QR = B,— QS =0.

Multiplying the two zero determinants

P R 0}, R P Of,
Q S 0 S Q 0
1 1 0 1 1 0
we obtain 2PR PS+QR P+R|=0,

PS+QR 208  Q+S
P+Q Q+S8 2

or 2B, By B,| =0,
B, 2B, By|
B, B, 2
or (B;—4B) (B~ 4B,) — (B, By—2B,)* = 0,

the condition required (c¢f. Cayley, Lc.).
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Second Method.
The quantic a4+ B, + Bya* + B’ + Byz + By,

oquated to zero, dotermines the abscissw of the six points of inter-
gection of the conic

v+ (Byz+ By) y+ Ba*+ Byz+ By = 0
with the cubic curve y~a® = 0.
1f the conic break up into two right lines
(y+Pa+@Q)(y+Re+8) =0,
the quantic considered is replaceable by
’ (' + Pz + Q) (2 + Rz +8).

Hence the discriminant of the conic with regard to y must be a per-
fect square.

This discriminant i
' (Bi—4B,) 2 +2 (B, By—2B,) z+ B —4B,.
Henco (Bi—4B) (B —AB,)— (B, B,—2By)* = 0,
the same result as before. .
* This may be written
4B,B,—I; By— B3 + By B, B,— B, I} = 0.
The compleﬁe condition is thus
08,1 (B, +By) IL (3, + B, + )
= By, (B, R~ T+ B B, B,— B, B, %)
' X (4B, B,— B, Bi— B+ B, B, B,— B, B
=0,
or, as calculated by Professor Cayley,
4BD,B— BB B;— 4B. B} B; + By B} B, + 4B: B; B, B, B,
— BB B,— B B} B, By~4D; B, B, B+ B} B, BB B;
+ BB, B\ B,— BLB, B! 4 B, '— 2B, B\ B, B, + 2B, BB, I} |
+ B; B} By By—2B; B B, By B, + B, By B; By = 0.
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The last term, in dictionary order, being B,B,B:B:, we see that the
non-unitariant (654'3%)

is the exemplar perpetuant of degree 6 and weight 31. Eliminating:
the remaining terms in succession between the equation of condition
and the equation of reduction, we obtain the reduction of

6°43°—4 (654°3"),
(6°3%27) + (654°3%),
(6°5°4) + 4 (654%3),
&e.
Altogether of weight 31 there are 16 non-exemplar forms reducible
by the aid of (654'3").
All perpetuants of degree 6 are included in the expression
(6¢+15A+14p423-+¢.2t),
and the enumeration is given by the generating function.
IL"“
(A=a)(1=2)(1-a)(1-2)1—2")’

Degree 6.
At this point it will be convenient to determine the general
expression for all exemplar perpetuants of degree 6.

Expressed in terms of 8,, 3, ... 3, the equation of condition is

J, = TG, 1L (B,+ ;) TL (By+B8y+By) ... T (B 4Byt .. +Bu),

where m < 36.
When 8, =0,
=3, - T+ 8) T B+ B4 . T Byt ot 4B}
where Z §(6-1);
therefore J, = =-* J2,+ terms involving higher powers of B,.

-1

Let P, denote the B product which corresponds to the simplest
exemplar perpetuant of degree §. Then :

B,

P,=
B,

Pola
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ﬂnd, assuming P, , = B2 B, B:..Bf-, . B:’_og
we find - P,=B,B, B B\ 2B, ... B,

justifying the assumption and establishing that the exemplar per-
petuant of degree 6, and of weight 2°'—1 is, when 6> 2,

(6,0—1,0-2% 93¢, 3%,

where, commencing from the left, § —2 different symbols are written
down to make up the partition.

Also the general form of exemplar perpetuants is

(6%, B=1m%1, §—0Qe*3 g Gt 3Ko-2+'l°“’ gre-1y,

If we know the whole of the non-exemplar perpetuants of degree
6—1, we can derive the whole of those non-exemplar perpetuants of
degree 6 which involve in their partitions the number 6 unrepeated.

For J, = IIB * J? , +terms involving higher powers of B,, there-
0-1

fore, J, = %« (Bi—B:B,B,+B,B.B) + ...
8

= B, Bi—2B, B} B, B, + 2B, B. B,B’
+ B, B; B, B;—2B, By B Ii; B, + B, B; B, B,
+...,

which a refevence to the value of J;, already calculated, shows to be
correct.

A considerable portion of J, may be written down from the results
already obtained; for

J, = %-ff.r"‘ .es

(23 )

B,B,,B,B.,.. B

Jeads to J, = AN oA
‘Bzv-—p-l

— BGBO-]'B:—l.‘B:.a B:’-s
- _B:d-1

whence J, I,

when we know the complete value of J,.
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The simplest non-ezemplar perpetuant of degree 6 is easily found,

 for ‘ s g y e
Jy=...—2B, B, BB, B,+ B, B, B, B;,

and the term in J, which precedes the B product corresponding to
the exemplar form, in dictionary order, is

B,B, B! ,Bis... B
B ]
]

or B, B,_.Bf,zﬂt_s B, -8 20-7 8- e,,Bza u_,B;a-c-,B’

B,B;B,B.B,(B,B,B.B)" ",

for 6>6.

The simplest non-exemplar perpetuant thus has the partition

(060—16—-27—3¢ ..'. 7900 g2 gt g1 gt gy

for - . 0>6,
and this gives for
6=7 (765%42372),
6=8 (B76%5°473%2),
0=9 (987%6*5°4°3"2),
and so on.

The calculation of the complete value of J,is a very laborious
matter, as it contains several hundreds of terms. Morecover, special
methods ‘of elimination lead to extraneous factors which are very
troublesome.

In a similar manner it is possible to find the perpetuant solutions
of the partial differential equation

+..=0.

' d
+ld +a'3

Qyypy - Ay





