On the Eapansion of some Infinite 1roolucts. By Prof. L. J:
Roaers. Recoivod June 5th, 1893. Read Jtmo 8th, 1893.

1. It is a woll-known theorom that, if $q<1$, then
$1 /(1-\lambda)(1-\lambda q)\left(1-\lambda q^{3}\right) \ldots=1+\frac{\lambda}{1-q}+\frac{\lambda^{2}}{(1-q)\left(1-q^{3}\right)}+\ldots$
It will bo fonad oonvonient to ase the symbol ( $\lambda$ ) for tho infinitu product $(1-\lambda)(1-\lambda q)\left(1-\lambda_{q}{ }^{2}\right) \ldots$, and to writo the above ergution in the form

$$
1 /(\lambda)=1+\Sigma_{\left(1-q^{r}\right)!}^{\lambda^{r}}
$$

whero $r$ is to receivo all positive integial valucs, and where ( $1-q^{\prime}$ )! donotes tho prodact $(1-y)\left(1-q^{2}\right) \ldots\left(1-q^{r}\right)$.

The following ablereviations will also be used in tho following pages:-

$$
\begin{align*}
& I I_{r}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right) \text { will denote the enoflicient of } .^{r} \text { in } \\
& 1 /\left(\lambda_{1}: i\right)\left(\lambda_{y}: z\right)\left(\lambda_{y}: i\right) \ldots \tag{2}
\end{align*}
$$

while $h_{r}\left(\lambda_{1}, \lambda_{y}, \ldots\right)$ will be used for $I I_{r}\left(\lambda_{1}, \dot{\lambda}_{y}, \ldots\right)\left(1-q^{\prime}\right)$ ! Moreover $1!,\left(\mu_{1}, \mu_{2}, \ldots / \lambda_{1}, \lambda_{2}, \ldots\right)$ will bo written for tho cocficient of $x^{\prime \prime}$ in

$$
\left(\mu_{1} x\right)\left(\mu_{4} x\right) \ldots \div\left(\lambda_{1} x\right)\left(\lambda_{2} x\right) \ldots
$$

whilo $l_{r}\left(\mu_{1}, \mu_{2} \ldots / \lambda_{1}, \lambda_{2}, \ldots\right)$ will $=\left(1-q^{r}\right)!\Gamma_{r}\left(\mu_{1}, \mu_{9}, \ldots / \lambda_{1}, \lambda_{3}, \ldots\right)$.
Thus $\quad 1+\Sigma x^{r} I I_{r}(\lambda, \mu)=1 /(\lambda i:)(\mu x)$
$=\left\{1+\frac{\lambda x}{1-q}+\frac{\lambda^{2} x^{2}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\}\left\{1+\frac{\mu x}{1-q}+\frac{\mu^{2} x^{2}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\}$,
whence

$$
\begin{equation*}
u_{r}(\lambda, \mu)=\lambda^{n}+\frac{1-q_{-}^{n}}{1-q} \lambda^{n-1} \mu+\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right)}{(1-q)\left(1-q^{n}\right)} \lambda^{n-2} \mu^{3}+\ldots \mu^{n} \tag{3}
\end{equation*}
$$

a sories having a certain resemblanco to tho ordinary binomial oxpansion.

The symbols of operation $\delta, \eta$ with respect to any quantity $\lambda$ will be defined by the efrations

$$
\begin{gather*}
\delta f(\lambda) \equiv \frac{f(\lambda)-f(\lambda q)}{\lambda}  \tag{f}\\
\eta f(\lambda) \equiv \int(\lambda!) .
\end{gather*}
$$

vin. xxiv.-No. 17 1.

Thus

$$
\begin{aligned}
\hat{\lambda} \lambda^{r} & =\lambda^{r-1}\left(1-q^{r}\right), \\
\varepsilon^{2} \lambda^{r} & =\lambda^{r-2}\left(1-q^{r}\right)\left(1-q^{r-1}\right), \text { \&o. }
\end{aligned}
$$

The symbols $\delta_{m}, \eta_{m}$ will bo used in the alove sense with reference to the quantity $\lambda_{m}$, so that

$$
\eta_{1} f\left(\lambda_{1}\right)=f\left(\lambda_{1} q\right), \& c
$$

It is casy to see then that the symbol $\frac{1}{\left(\lambda \delta_{1}\right)}$, i.e.

$$
1+\frac{\lambda \delta_{1}}{1-q}+\frac{\lambda^{2} \delta_{1}}{(1-q)\left(1-q^{2}\right)}+\ldots
$$

oporating on $\lambda_{1}^{r}$, gives

$$
\lambda_{1}^{r}+\frac{1-n^{r}}{1-q} \lambda \lambda_{1}^{r-1}+\frac{\left(1-q^{r}\right)\left(1-q^{r-1}\right)}{(1-q)\left(1-q^{2}\right)} \lambda^{n} \lambda_{1}^{r-2}+\ldots=l_{r}\left(\lambda, \lambda_{1}\right), \log (3)
$$

Hence $\quad \frac{1}{\left(\lambda \dot{\delta}_{1}\right)} \cdot{ }_{\left(\lambda_{1} \lambda_{2}\right)}^{l}=1+\Sigma \lambda_{1}^{r} I_{r}\left(\lambda, \lambda_{1}\right)=\frac{1}{\left(\lambda \lambda_{2}\right)\left(\lambda_{1} \lambda_{2}\right)} \ldots \ldots \ldots$ (5).
We may now cstablish certain lemmata which will be useful hereafter for refurence.
Lemimii I.-If $K_{0}, K_{1} \ldots$ are independent of $\lambda_{1}$, then

$$
\underset{\left(\lambda \dot{\delta}_{1}\right)}{1}\left(K_{0}^{r}+\Pi_{1} \lambda_{1}+K_{2} \lambda_{1}^{2}+\ldots\right)=K_{0}+K_{1} h_{1}\left(\lambda, \lambda_{1}\right)+K_{1} h_{2}\left(\lambda, \lambda_{1}\right)+\ldots
$$

This follows obvionsly from what has gone before.
Lamma IT.-The operation ( $\lambda \delta_{1}$ ) will be equivalent to

$$
\left(\frac{\lambda}{\lambda_{1}}\right) \frac{1}{\left(\frac{\lambda}{\lambda_{1}-\eta_{1}}\right)}
$$

i.c. $\quad\left(\frac{\lambda}{\lambda_{1}}\right)\left\{1-\frac{\lambda}{\lambda_{1}} \cdot \frac{1}{1-q} \eta_{1}+\frac{\lambda^{2}}{\lambda_{1}^{2}} \cdot \frac{1}{(1-q)\left(1-q^{2}\right)} \eta_{1}^{3}+\ldots\right\}$.

Hor

$$
\begin{aligned}
& \delta_{1}=1-\eta_{1}, \\
& \lambda_{1}^{\prime}, \\
& i_{1}^{3}=1-\eta_{1}-1-\eta_{1} \eta_{1}=\left(1-\eta_{1}\right)\left(q-\eta_{1}\right), \\
& \lambda_{1}^{3} q \\
& \lambda_{1}^{3} q \\
& i_{1}^{3}=\left(1-\eta_{1}\right)\left(\eta-\eta_{1}\right)\left(q^{2}-\eta_{1}\right), \\
& \lambda_{1}^{3} q_{1}^{1}
\end{aligned}
$$

nnd

$$
\delta_{1}^{r}=\frac{\left(1-\eta_{i}\right)\left(\eta-\eta_{1}\right) \ldots\left(\eta^{r-1}-\eta_{1}\right)}{\lambda_{i}^{r} \eta^{r r(r i j i}} .
$$

Now it is well known that

$$
(x)=1-\frac{x}{1-q}+\frac{x^{2} q}{(1-q)\left(1-q^{2}\right)}-\frac{x^{3} q^{3}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}+\ldots ;
$$

therefore

$$
\left(\lambda \delta_{1}\right)=1+\frac{\lambda}{\lambda_{1}} \cdot \frac{\eta_{1}-1}{1-q}+\frac{\lambda^{2}}{\lambda_{1}^{2}} \cdot \frac{\left(\eta_{1}-1\right)\left(\eta_{1}-q\right)}{(1-q)\left(1-q^{2}\right)}+\ldots
$$

Bati it is a known theorem that

$$
\begin{equation*}
\frac{(n r)}{(i!)}=1+\frac{1-a}{1-q} x+\frac{(1-a)(1-a q)}{(1-q)\left(1-q^{2}\right)} x^{2}+\ldots \tag{6}
\end{equation*}
$$

therofne

$$
\left(\lambda \delta_{1}\right)=\binom{\lambda}{\lambda_{1}} \frac{1}{\left(\frac{\lambda}{\lambda_{1}} \eta_{1}\right)},
$$

if we remomber that $\eta_{1}$ is not to operate on the coeflicients involsing $\frac{\lambda}{\lambda_{1}}$, i.e. $\left(\frac{\lambda}{\lambda_{1}}\right)$, and the prwers of $\binom{\lambda_{1}}{\lambda_{1}}$ always preende the operations $\eta_{1}, \eta_{1}^{2}, \ldots$ in the expansion.

$$
\text { Lemma III. } \frac{1}{\left(\lambda_{i_{1}}\right)}\left(\lambda_{1}-\lambda\right) \psi\left(\lambda_{1}\right) \text { will }=\lambda_{1} \frac{1}{\left(\lambda_{1} \delta_{1}\right)} \psi\left(\lambda_{1}\right)
$$

For

$$
\left(\lambda \delta_{1}\right) \lambda_{1} f\left(\lambda_{1}\right)
$$

$$
=\left(\frac{\lambda}{\lambda_{1}^{-}}\right)\left\{1+\frac{\lambda}{\lambda_{1}} \cdot \frac{\eta_{1}}{1-q}+\frac{\lambda^{2}}{\lambda_{1}^{2}} \cdot \frac{\eta_{1}^{2}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\} \lambda_{1} f\left(\lambda_{1}\right)
$$

(hy Jemma 1I.)

$$
\begin{aligned}
& =\lambda_{1}\binom{\lambda}{\lambda_{1}}\left\{1+\frac{\lambda}{\lambda_{1}} \cdot \frac{q \eta_{1}}{1-q}+\frac{\lambda^{2}}{\lambda_{1}^{2}} \cdot \frac{q^{2} \eta_{1}^{2}}{(1-q)\left(1-\eta^{2}\right)}+\ldots\right\} f\left(\lambda_{1}\right) \\
& =\lambda_{1}\binom{\lambda}{\lambda_{1}^{-}} \frac{1}{\left(\begin{array}{l}
\lambda_{\eta} \\
\lambda_{1} \\
\eta_{1}
\end{array}\right)} f\left(\lambda_{1}\right)
\end{aligned}
$$

$$
=\left(\lambda_{1}-\lambda\right)\left(\lambda_{q} \hat{\delta}_{1}\right) f\left(\lambda_{1}\right) \quad\left(\text { by } \mathrm{T}_{1} \mathrm{cmma} I \mathrm{I} .\right) .
$$

Let

$$
\psi\left(\lambda_{1}\right)=\left(\lambda q \delta_{1}\right) f\left(\lambda_{1}\right)
$$

so that

$$
f\left(\lambda_{1}\right)=\frac{1}{\left(\lambda q \delta_{1}\right)} \psi\left(\lambda_{1}\right)
$$

then

$$
\left(\lambda_{1}-\lambda\right) \psi\left(\lambda_{1}\right)=\left(\lambda \delta_{1}\right) \lambda_{1} f\left(\lambda_{1}\right)
$$

i.e.,

$$
\frac{1}{\left(\lambda \delta_{1}\right)}\left(\lambda_{1}-\lambda\right) \psi\left(\lambda_{1}\right)=\lambda_{1} \frac{1}{\left(\lambda_{1} \delta_{1}\right)} \psi\left(\lambda_{1}\right) .
$$

Similarly $\frac{1}{\left(\lambda \delta_{1}\right)}\left(\lambda_{1}-\lambda\right)\left(\lambda_{1}-\lambda q\right) \psi\left(\lambda_{1}\right)=\lambda_{1} \frac{1}{\left(\lambda q \delta_{1}\right)}\left(\lambda_{1}-\lambda q\right) \psi\left(\lambda_{1}\right)$

$$
=\lambda_{1}^{2} \frac{1}{\left(\lambda q^{2} \delta_{1}\right)} \psi\left(\lambda_{1}\right), \& c .
$$

I_mma IV. $\frac{1}{\left(\lambda_{1}\right)} \cdot \frac{\psi\left(\lambda_{1}\right)}{\left(\lambda_{1} \mu\right)}=\frac{1}{\left(\lambda_{1} \mu\right)} \cdot \frac{1}{\left(\lambda \mu \eta_{1}\right)} \cdot \frac{1}{\left(\lambda \delta_{1}\right)} \psi\left(\lambda_{1}\right)$,
where $\mu$ is indenendent of $\lambda_{1}$.
Sinco $\quad \frac{\left(\lambda_{\mu}\right)}{\left(\lambda_{1} \mu\right)}=1+\frac{\lambda_{1}-\lambda}{1-q} \mu+\frac{\left(\lambda_{1}-\lambda\right)\left(\lambda_{1}-\lambda q\right)}{(1-q)\left(1-q^{2}\right)} \mu^{2}+\ldots ;$
therofore

$$
\frac{1}{\left(\lambda \delta_{1}\right)} \cdot \stackrel{\psi\left(\lambda_{1}\right)}{\left(\lambda_{1} / \mu\right)}
$$

$$
=\frac{1}{(\lambda / 1)} \cdot \frac{1}{\left(\lambda \delta_{1}\right)}\left\{1+\frac{\lambda_{1}-\lambda}{1-\eta} \mu+\ldots\right\} \psi\left(\lambda_{1}\right)
$$

$$
=\frac{1}{(\lambda \mu)}\left\{\frac{1}{\left(\lambda \delta_{1}\right)}+\frac{\lambda_{1} \mu}{1-q} \cdot \frac{1}{\left(\lambda q \delta_{1}\right)}+\frac{\lambda_{1}^{2} \mu^{2}}{(1-q)\left(1-q^{2}\right)} \cdot \frac{1}{\left(\lambda q^{2} \delta_{1}\right)}+\ldots\right\} \psi
$$

(hy Lemma III.)
2. Let ns now find the value of

$$
\stackrel{1}{\left(\lambda_{i_{1}}\right)} \cdot \frac{1}{\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{1} \lambda_{3}\right)},
$$

$$
\begin{aligned}
& =\frac{1}{(\lambda, 1)}\left\{\begin{array}{c}
\left.1+\frac{\lambda_{1} \mu\left(1-\lambda \delta_{1}\right)}{1-\eta}+\begin{array}{c}
\lambda_{1}^{2} \mu^{2}\left(1-\lambda \delta_{1}\right)\left(1-\lambda \eta \delta_{1}\right) \\
(1-\eta)\left(1-\eta^{2}\right)
\end{array}+\ldots\right\}-\left(\lambda i_{1}\right)
\end{array}\right. \\
& =\stackrel{1}{\stackrel{1}{(\lambda \mu)}} \stackrel{1}{(\lambda, \mu)}\left(\lambda / \lambda_{1} \lambda_{1}\right) \stackrel{1}{\left(\lambda i_{1}\right)} \psi \\
& \left.=\begin{array}{c}
1 \\
\left(\lambda_{1} 1^{\prime}\right)
\end{array} \cdot \stackrel{1}{\left(\lambda_{1} \prime_{1}\right)} \cdot \stackrel{1}{\left(\lambda i_{1}\right)} \psi\left(\lambda_{1}\right), \quad \text { (hy Leminit II. }\right) .
\end{aligned}
$$

which, when expanded as a sorios, gives

$$
\begin{gathered}
\frac{1}{\left(\lambda \delta_{1}\right)}\left\{1+\mathbb{\Sigma} \lambda_{1}^{r} \Pi_{r}\left(\lambda_{2}, \lambda_{3}\right)\right\} \\
=1+\Sigma I_{r}\left(\lambda_{9}, \lambda_{3}\right) h_{r}\left(\lambda, \lambda_{1}\right), \quad(\text { by Lomma I. }) .
\end{gathered}
$$

Now, by Lemma I.V.,

$$
\frac{1}{\left(\lambda_{1}\right)} j \cdot \frac{1}{\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{1} \lambda_{3}\right)}
$$

$$
=\frac{1}{\left(\lambda_{1} \lambda_{2}\right)} \cdot \frac{1}{\left(\lambda \lambda_{2} \eta_{1}\right)} \cdot \frac{1}{\left(\lambda \delta_{1}\right)} \cdot \frac{1}{\left(\lambda_{1} \lambda_{3}\right)}
$$

$$
=\frac{1}{\left(\lambda_{1} \lambda_{2}\right)} \cdot \frac{1}{\left(\lambda \lambda_{3} \eta_{1}\right)} \cdot \frac{1}{\left(\lambda \lambda_{3}\right)\left(\lambda_{1} \lambda_{3}\right)} \quad[\text { by } \S 1,(5)]
$$

$$
={ }_{\left(\lambda \lambda_{3}\right)\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{1} \lambda_{3}\right)}^{1}\left\{1+\frac{1-\lambda_{1} \lambda_{3}}{\left.1-4 \lambda_{2}+\frac{\left(1-\lambda_{1} \lambda_{3}\right)\left(1-\lambda_{1} \lambda_{3}\right)^{2} l}{(1-\eta)(1-\eta)} \lambda^{2} \lambda_{2}^{2}+\ldots\right\}}\right.
$$

Hence

$$
\frac{\left(\lambda \lambda_{1} \lambda_{3} \lambda_{3}\right)}{\left(\lambda \lambda_{2}\right)\left(\lambda \lambda_{3}\right)\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{1} \lambda_{3}\right)}=1+1 I_{1}\left(\lambda_{2}, \lambda_{3}\right) h_{1}\left(\lambda, \lambda_{1}\right)+\mu_{2}\left(\lambda_{1}, \lambda_{13}\right) \mu_{3}\left(\lambda, \lambda_{1}\right)+\ldots
$$

If in this identity wo writo

$$
\lambda=r_{u^{\prime i}}, \quad \lambda_{1}=e^{-i,}, \quad \lambda_{2}=c^{4 i}, \quad \lambda_{3}=c^{-4 t},
$$

wo easily obtain $2(1)$, on p. 176 of this volume.
3. Let us consider now the result of evaluating

$$
\frac{1}{\left(\lambda \delta_{1}\right)} \cdot \frac{1}{\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{1} \lambda_{3}\right)\left(\lambda_{1} \lambda_{4}\right)},
$$

which, hy Lemma I.,

$$
=1+\Sigma I_{r}\left(\lambda_{2}, \lambda_{3}, \lambda_{4}\right) l_{r}\left(\lambda, \lambda_{1}\right), \text { see § } 1(2) .
$$

By Lemma IV., wo get

$$
\begin{aligned}
& \frac{1}{\left(\lambda_{1} \lambda_{2}\right)} \cdot \frac{1}{\left(\lambda \lambda_{2} \eta_{1}\right)} \cdot \frac{1}{\left(\lambda_{1} \lambda_{3}\right)} \cdot \frac{1}{\left(\overline{\left.\lambda_{3} \eta_{1}\right)} \cdot \frac{1}{\left(\lambda \delta_{1}\right)} \cdot \frac{1}{\left(\lambda_{1} \lambda_{4}\right)}\right.} \\
& =\frac{1}{\left(\lambda_{1} \lambda_{3}\right)} \cdot \frac{1}{\left(\lambda \lambda_{2} \eta_{1}\right)} \cdot \frac{\left(\lambda \lambda_{1} \lambda_{3} \lambda_{4}\right)}{\left(\lambda_{1} \lambda_{3}\right)\left(\lambda_{1} \lambda_{4}\right)\left(\lambda_{3}\right)}, \text { ns in the preceding section, } \\
& =\frac{1}{\left(\lambda \lambda_{3}\right)\left(\lambda_{1} \lambda_{2}\right)}\left\{1+\frac{\lambda \lambda_{2}}{1-q} \eta_{1}+\ldots\right\} \frac{\left(\lambda_{1} \lambda_{3} \lambda_{3}\right)}{\left(\lambda_{1} \lambda_{3}\right)\left(\lambda_{1} \lambda_{4}\right)} \\
& =\frac{\left(\lambda \lambda_{1} \lambda_{3} \lambda_{4}\right)}{\left(\lambda \lambda_{3}\right)\left(\lambda_{1} \lambda_{9}\right)\left(\lambda_{1} \lambda_{3}\right)\left(\lambda_{1} \lambda_{4}\right)}\left\{1+\begin{array}{l}
\left(1-\lambda_{1} \lambda_{3}\right)\left(1-\lambda_{1} \lambda_{4}\right) \\
(1-q)\left(1-\lambda \lambda_{1} \lambda_{3} \lambda_{4}\right)
\end{array} \lambda_{2}+\ldots\right\} .
\end{aligned}
$$

This last scrics is usually called a Heinean series, and has been very fully discussed in Heine's Kufelfunctionen, under the symbol

$$
\phi\left\{\lambda_{1} \lambda_{3}, \lambda_{1} \lambda_{4}, \lambda \lambda_{1} \lambda_{3} \lambda_{4}, q, \lambda \lambda_{2}\right\}
$$

Heino thero slows that

$$
\phi\{a, b, c, q, x\}=\underset{(x)(c)}{(a x)(b)} \phi\left\{\frac{c}{b}, x, a x, q, b\right\}
$$

and, by transforming the lattor sorics by continana application of the same formula, he obtains a large series of equivalent expressions.

- They may all be easily proved by considering the symmotry existing among $\lambda_{2}, \lambda_{3}, \lambda_{4}$ in the nbove expression, nid by the symmetry in $\lambda$ and $\lambda_{1}$, but ho docs not establish the connection between

$$
\phi\left\{\lambda_{1} \lambda_{3}, \lambda_{1} \lambda_{4}, \lambda \lambda_{1} \lambda_{2} \lambda_{4}, q, \lambda \lambda_{2}\right\}
$$

and

$$
1+\Sigma I_{r}\left(\lambda_{1}, \lambda_{3}, \lambda_{4}\right) h_{r}\left(\lambda, \lambda_{1}\right) .
$$

Jhy writing $\lambda=e^{n i}, \lambda_{1}=e^{-0 i}$, we may write the nbove relation in tho form

$$
\begin{gathered}
\phi\left\{\lambda_{3} e^{-\theta t}, \lambda_{4} a^{-\theta i}, \lambda_{3} \lambda_{4}, \eta, \lambda_{2} e^{a_{i}}\right\}\left(\lambda_{2} e^{a_{i}}\right)\left(\lambda_{3} \lambda_{4}\right) \\
=\frac{1}{I^{\prime}\left(\lambda_{3}\right) \cdot I^{\prime}\left(\lambda_{3}\right) I^{\prime}\left(\lambda_{4}\right)}\left\{1+\Lambda_{1}(0) I I_{1}\left(\lambda_{2}, \lambda_{3}, \lambda_{4}\right)+\Lambda_{2}(\theta) I I_{2}\left(\lambda_{2} \lambda_{3}, \lambda_{4}\right)+\ldots\right\},
\end{gathered}
$$

n rnsult first obtained on $p .175$ of this volume, where $\Omega$ definition of $\Lambda_{r}(\theta)$ is also given.

By putting $\lambda_{1}=0$, we, of course, return to the formulac in tho last section.
4. If in tho formuln § 2 (1), we put $\lambda_{2}=\mu, \lambda_{s}=1, \lambda=e^{4 i}$, $\lambda_{1}=e^{-0_{i}}$, we get

$$
\frac{(\mu \nu)}{P(\mu) P(\nu)}=1+I I_{1}(\mu, \nu) \Lambda_{1}(\theta)+\Lambda_{2}(\mu, \nu) \Lambda_{2}(\theta)+\ldots
$$

where

$$
1+\Sigma k^{r} I_{r}(\mu, \nu) \equiv \frac{1}{(k \mu)(k \nu)} .
$$

This leads to an equation connecting the product of any two of tho $\Lambda$ 's with a linenr function of the $\Lambda$ 's.

For we have, since

$$
\begin{gathered}
\frac{1}{1^{\prime}(\mu)}=1+\frac{\mu}{1-q} \Lambda_{1}(\theta)+\ldots \\
\left\{1+\Sigma \frac{\mu^{r}}{\left(1-q^{r}\right)!} \Lambda_{r}(\theta)+\ldots\right\}\left\{1+\Sigma \frac{v^{r}}{\left(1-q^{r}\right)!} \Lambda_{r}(\theta)\right\} \\
=\left\{1+\Sigma \frac{\mu^{r}, v^{r}}{\left(1-q^{r}\right)!}\right\}\left\{1+\Sigma I I_{r}(\mu, \nu) \Lambda_{r}(0)\right\}
\end{gathered}
$$

Elpuating cocflicionts of $\mu^{r} \nu^{\prime \prime}$, where, say, $s>r$, we see that

$$
\begin{aligned}
\frac{\Lambda_{r}(\theta) \Lambda_{n}(\theta)}{\left(1-q^{\prime}\right)!\left(1-q^{\prime}\right)!} & =A_{r+s}(\theta)\left\{\text { cocff. of } \mu^{r} \nu^{n} \text { in } I I_{r+1}(\mu, \nu)\right\} \\
& +\frac{1}{1-q} A_{r+0-2}(\theta)\left\{\text { cooff. of } \mu^{r-1} v^{\prime-1} \text { in } I I_{r+s-2}(\mu, \nu)\right\} \\
& +\ldots \\
& +\frac{1}{\left(1-q^{r}\right)!} A_{t-r}(\theta)\left\{\text { cooff. of } \nu^{r-r} \text { in } I I_{s-r}(\mu, \nu)\right\} .
\end{aligned}
$$

From this we see that no absolute term oceurs unless $r=s$, in which caso the nbsolute term in $\boldsymbol{A}_{r}(\theta)^{2}$ is $\left(1-q^{r}\right)$ !

Theso results lead to a very interesting formula oxpressing the quotiont of any scries $K_{0}+K_{1} A_{1}(\theta)+K_{2} A_{2}(\theta)+\ldots$ by the product $l^{\prime}(\lambda)$.

Let this quotient, i.e. the product of the $K$-series with

$$
1+\Sigma \frac{\lambda^{r} A_{r}(\theta)}{\left(1-q^{r}\right)!},
$$

bo denoted by

$$
L_{0}+I_{1} \Lambda_{1}(\theta)+\ldots
$$

In multiplying these sorics, we got a scrics of terms containing products of the form $A_{r}(0) A_{s}(0)$.

33y (1), howover, wo eisily sec that the nbsolute term

$$
\begin{equation*}
L_{0}=K_{0}+K_{1} \lambda+K_{2} \lambda^{2}+\ldots \tag{2}
\end{equation*}
$$

which may he called the generating function of the $K$ series, and it is obvious thati the generating function in $\lambda$ of the $K A$ serios for $1 / l^{\prime}\left(\lambda_{1}\right) l^{\prime}\left(\lambda_{2}\right) \ldots l^{\prime}\left(\lambda_{r}\right)$ is symmetrical in $\lambda, \lambda_{1}, \lambda_{2}, \ldots \lambda_{r}$, since it is the absolate term in the expansion of $1 / I^{\prime}(\lambda) l^{\prime}\left(\lambda_{1}\right) l^{\prime}\left(\lambda_{2}\right) \ldots l^{\prime}\left(\lambda_{r}\right)$.
The following coellicient mary bo expressed in a very simplo symbolical form involving the operation $\delta$.

Now, supposing the $\kappa$ 's not to contain $\lambda$, wo see that

$$
\begin{aligned}
\delta\left\{L_{0}+L_{1} A_{1}(\theta)+\ldots\right\} & =\left\{K_{0}+K_{1} \Lambda_{1}(\theta)+\ldots\right\} \frac{2 \cos \theta-\lambda}{I^{\prime}(\lambda)} \\
& =(2 \cos \theta-\lambda)\left\{L_{0}+I_{1} \Lambda_{1}(\theta)+\ldots\right\} .
\end{aligned}
$$

But

$$
A_{r+1}(\theta)+\left(1-q^{r}\right) A_{r-1}(\theta)=2 \cos \theta \cdot A_{r}(\theta)
$$

Equating coeflicients of $\Lambda_{r}$, we get

$$
\begin{equation*}
\left(1-q^{r+1}\right) L_{r+1}=\lambda L_{r}-L_{r-1}+\partial L_{r} \tag{3}
\end{equation*}
$$

'Thus

$$
(1-q) I_{1}=(\lambda+i) I_{0}
$$

$$
\begin{aligned}
& (1-q)\left(1-q^{2}\right) I_{2}=\lambda L_{1}-(1-q) L_{0}+(1-q) \delta L_{1} \\
& =\left(L_{0}-\eta \eta L_{0}\right)+\dot{i}^{2} L_{0} \\
& =\left(\lambda^{3}+\lambda \delta\right) \cdot I_{0}-(1-q) I_{0}+L_{0}-\eta \eta L_{0}+\delta^{2} L_{0} \\
& =\left(\lambda^{2}+\lambda \delta\right) I_{10}+q I_{0}-q\left(L_{0}-\lambda \delta L_{0}\right)+\delta^{2} L_{0} \\
& =\lambda^{2} \Gamma_{11}+(1+q) \lambda \delta I_{41}+\delta^{2} I_{n} \text {. }
\end{aligned}
$$

That is, $I_{1}, I_{2}$ are casily seen to he the $I_{1}(\lambda, \dot{\partial}) L_{0}$ and $I I_{2}(\lambda, j) J_{0}$, where IF has the meaning assigned to it at the beginning of this paper. It must bo noticen, however, that $\lambda$ and $\dot{\partial}$ are not inter-

$$
\begin{aligned}
& \text { * For } \quad 1 / l^{\prime}(\lambda)=1+\Sigma_{\left(1-q^{2}\right)!}^{\lambda^{n} A_{r}(n)} \text {; } \\
& \text { therefore } \quad 1 / l^{\prime}(\lambda l)=\left(1-2 \lambda \cos \theta+\lambda^{2}\right) / I^{\prime}(\lambda)=1+\Sigma^{\lambda^{2} q^{2} \Lambda^{2}\left(\frac{1}{1}-q^{2}\right)!} \text {. }
\end{aligned}
$$

Equatine codllivent of $\lambda^{2+1}$, we get the relation required.
changeable, sinco $\delta$ operatos on $\lambda$, but that $\lambda$ must precede $\delta$ in all the torms.

We may now establish the general term $L_{r}$ by induction. Assume

$$
I_{r}=H_{r}(\lambda, \delta) I_{0}, \text { for all values of } r \text { up to } r \ldots \ldots \text { (4). }
$$

Then $\quad\left(1-q^{r+1}\right) L_{r+1}=(\lambda+\delta) I_{r}(\lambda, \delta) I_{\mu_{0}}-1 I_{r-1}(\lambda, \delta) L_{0}$.
The coellicient of $\lambda^{\prime \prime \prime} \delta^{n}$ in $I_{r}(\lambda, i)$ is

$$
\left(i-q^{\prime \prime \prime}\right)!(i-u)^{1}{ }^{\prime}
$$

where

$$
m+n=r .
$$

Now $\quad \delta \lambda^{\prime \prime \prime} \hat{o}^{\prime \prime} f(\lambda)=\lambda^{m-1} \delta^{\prime \prime} f^{\prime}(\lambda)-\lambda^{m-1} q^{\prime \prime \prime} \eta \hat{o}^{\prime \prime} f(\lambda)$

$$
\begin{aligned}
& =\lambda^{m-1} \delta^{n} f(\lambda)-q^{m}\left\{\lambda^{m-1} \delta^{n} f(\lambda)-\lambda^{m} \delta^{n+1} f(\lambda)\right\} \\
& =\left(1-q^{m}\right) \lambda^{m-1} \delta^{n} f(\lambda)+q^{m} \lambda^{m{ }^{\prime \prime}} \hat{o}^{n+1} f(\lambda) .
\end{aligned}
$$

The first of these terms obviously cancels with the terms contaiuing $\lambda^{m-1} \delta^{n}$ in $I_{r-1}(\lambda, \delta)$, so that we get

$$
\begin{aligned}
\left(1-q^{r+1}\right) L_{r+1} & =\Sigma\left\{\left(1-q^{\prime \prime \prime}\right)!\left(1-q^{\prime \prime}\right)!^{-\frac{1}{2}}\left(1-q^{m+1}\right)!\left(1-q^{n+1}\right)!\right\} \lambda^{m \delta^{n+1} L_{0}} \\
& =\left(1-q^{r+1}\right) \dot{m}_{\left(1-q^{\prime \prime \prime}\right)!} \delta^{n+1}\left(1-I^{n+1}\right)! \\
& =\left(1-q^{r+1}\right) I I_{r+1}(\lambda, \delta) I_{0} .
\end{aligned}
$$

But we have established the truth of (4) for $r=1, r=2$. It is therefore trae miversilly.
We may conveniently state the result thus:-

$$
\begin{aligned}
\left\{K_{0}\right. & \left.+K_{1} A_{1}(\theta)+K_{2} \cdot A_{2}(\theta)+\ldots\right\} \div\left(1-2 \lambda \cos \theta+\lambda^{3}\right)\left(1-2 \lambda q \cos \theta+\lambda^{2} q^{2}\right) \ldots \\
& =I^{\prime}(\lambda) \overline{I^{\prime}}(j) \\
& =\left\{1+K_{1}(\lambda, \delta) K_{1}(\theta)+K_{1} \lambda+K_{2} \lambda^{2}+\ldots\right\}
\end{aligned}
$$

'The gencrating function of

$$
\pi_{n}+\pi_{1} \cdot A_{1}(1)+\ldots ? \|(\lambda)
$$

expressed in powers of $k$, is found by writing $k^{r}$ for $\Lambda_{r}(\theta)$ in tho right-hand side of (5).

This is $\quad\left\{1+k I I_{1}(\lambda, \delta)+k^{2} I_{2}(\lambda, \delta)+\ldots\right\}\left(K_{0}+K_{1} \lambda+\ldots\right)$

$$
\begin{equation*}
=\frac{1}{(k i \lambda)(k i \delta)}\left(K_{0}+K_{1} \lambda+\ldots\right) \tag{6}
\end{equation*}
$$

If, then, the generating function of a scrics in $A(\theta)$ be known, wo have $a$ convenient symbol for the generating function of the serics divided by $P^{\prime}(\lambda)$.
5. Now we have seen that $\frac{\left(\lambda_{2} \lambda_{3}\right)}{\overline{\mathcal{D}_{3}}\left(\lambda_{2}\right)}$ lina a gencrating function (say in ascending powers of $\lambda_{1}$ ),

$$
1+\Pi_{1}\left(\lambda_{2}, \lambda_{3}\right) \lambda_{1}+1 I_{y}\left(\lambda_{2}, \lambda_{3}\right) \lambda_{1}^{2}+\ldots=\frac{1}{\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{1} \lambda_{3}\right)}
$$

Hence the generating function in $\lambda_{\text {of }} 1 / P\left(\lambda_{1}\right) P\left(\lambda_{9}\right) P^{\prime}\left(\lambda_{3}\right)$

$$
=\frac{1}{\left(\lambda \lambda_{1}\right)} \cdot \frac{1}{\left(\lambda \delta_{1}\right)} \cdot \cdot \frac{1}{\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{1} \lambda_{3}\right)\left(\lambda_{2} \lambda_{3}\right)},
$$

which, by § 2 , reduces to

$$
\left(\lambda \lambda_{1} \lambda_{3} \lambda_{3}\right) /\left(\lambda \lambda_{2}\right)\left(\lambda \lambda_{2}\right)\left(\lambda \lambda_{3}\right)\left(\lambda_{1} \lambda_{8}\right)\left(\lambda_{1} \lambda_{3}\right)\left(\lambda_{2} \lambda_{3}\right),
$$

$\Omega$ symmotric function in $\lambda, \lambda_{1}, \lambda_{2}, \lambda_{3}$, as, by $\S 4$ (2), we should expect to have, since the generating function in $\lambda$ is the term independent of the $A^{\prime}$ s in $1 / P^{\prime}(\lambda) P\left(\lambda_{t}\right) P\left(\lambda_{g}\right) P^{\prime}\left(\lambda_{s}\right)$.

This result may be stated thus :-

$$
\frac{\left(\lambda_{1} \lambda_{3}\right)\left(\lambda_{1} \lambda_{3}\right)\left(\lambda_{2} \lambda_{3}\right)}{\bar{P}^{\prime}\left(\lambda_{1}\right) I^{\prime}\left(\lambda_{2}\right) D^{\prime}\left(\lambda_{3}\right)}=1+\Sigma I I_{r}\left(\lambda_{1} \lambda_{2} \lambda_{8} / \lambda_{1}, \lambda_{2}, \lambda_{3}\right) \lambda_{r}(\theta) .
$$

f. Similarly, we may find simple expressions in series for the gencrating functions in $\lambda$ of $1 / I^{\prime}\left(\lambda_{1}\right) I^{\prime}\left(\lambda_{2}\right) I^{\prime}\left(\lambda_{3}\right) P^{\prime}\left(\lambda_{4}\right)$ and of

$$
1 / P\left(\lambda_{1}\right) P^{\prime}\left(\lambda_{2}\right) P\left(\lambda_{3}\right) P\left(\lambda_{4}\right) P\left(\lambda_{5}\right) .
$$

Calling these functions $\phi_{\Delta}(\lambda)$ and $\phi_{s}(\lambda)$ respectively, wo get, by § $4(6)$,

$$
\begin{aligned}
& \phi_{4}(\lambda)\left(\lambda_{2} \lambda_{3}\right)\left(\lambda_{1} \lambda_{4}\right)\left(\lambda_{3} \lambda_{4}\right)=\frac{1}{\left(\lambda \lambda_{1}\right)} \cdot \frac{1}{\left(\lambda \delta_{1}\right)} \cdot \frac{\left(\lambda_{1} \lambda_{2} \lambda_{2} \lambda_{4}\right)}{\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{1} \lambda_{3} \lambda_{3}\right)\left(\lambda_{1} \lambda_{4}\right)} \\
& =\frac{1}{\left(\lambda \lambda_{t}\right)} \cdot \frac{1}{\left(\lambda_{1}\right)}\left\{1+\Sigma 1 I_{r}\left(\lambda_{2} \lambda_{3} \lambda_{4} / \lambda_{2}, \lambda_{8}, \lambda_{4}\right) \lambda_{1}^{r}\right\} \quad[\operatorname{sco} \S 1(2)] \\
& =\frac{1}{\left(\dot{\lambda} \lambda_{1}\right)}\left\{1+\Sigma U_{1}\left(\lambda_{2} \lambda_{\mathrm{s}^{2}} \lambda_{4} / \lambda_{1}, \lambda_{3}, \lambda_{4}\right) h_{r}\left(\lambda, \lambda_{1}\right)\right\} \text {, by lamma } I \text {. }
\end{aligned}
$$

We may, however, also write these expressions in the form

$$
\begin{aligned}
& \frac{1}{\left(\lambda \lambda_{1}\right)} \cdot \frac{1}{\left(\lambda_{1} \lambda_{2}\right)} \cdot \frac{1}{\left(\lambda \lambda_{2} \eta_{1}\right)} \cdot \frac{1}{\left(\lambda \delta_{1}\right)} \cdot \frac{\left(\lambda_{1} \lambda_{1} \lambda_{3} \lambda_{3}\right)}{\left(\lambda_{1} \lambda_{3}\right)\left(\lambda_{1} \lambda_{4}\right)} \quad \text { (by Lemma IV.) } \\
& =\frac{1}{\left(\lambda \lambda_{1}\right)} \cdot \frac{1}{\left(\lambda_{1} \lambda_{2}\right)} \cdot \frac{1}{\left(\lambda \lambda_{2} \eta_{1}\right)}\left\{1+\Sigma H_{r}\left(\lambda_{2} \lambda_{3} \lambda_{4} / \lambda_{3}, \lambda_{4}\right) h_{r}\left(\lambda, \lambda_{1}\right)\right\} .
\end{aligned}
$$

Now, the effect of operating with $\frac{1}{\left(\lambda_{2} \eta_{1}\right)}$ on $h_{r}\left(\lambda, \lambda_{1}\right)$ is casily obtained by consideration of the coeflicient of $x^{r}$ in

$$
\frac{1}{\left(\lambda \lambda_{2} \eta_{1}\right)} \cdot \frac{1}{(x \cdot \lambda)\left(x \cdot \lambda_{1}\right)}=\frac{\left(x \lambda \lambda_{1} \lambda_{2}\right)}{(x \cdot \lambda)\left(x \lambda_{1}\right)\left(\lambda \lambda_{2}\right)},
$$

which is

$$
\frac{1}{\left(\lambda \lambda_{1}\right)} h_{r}\left(\lambda \lambda_{1} \lambda_{3} / \lambda, \lambda_{1}\right) .
$$

Hence

$$
\begin{aligned}
& \phi_{6}(\lambda)=\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{2} \lambda\right) \cdot\left(\lambda_{2} \lambda_{\mathrm{y}}\right)\left(\lambda_{3} \lambda_{\mathrm{t}}\right)\left(\lambda_{4} \lambda_{2}\right)} \\
& \times\left\{1+\sum I_{r}\left(\lambda_{2} \lambda_{\mathrm{3}} \lambda_{4} / \lambda_{3}, \lambda_{4}\right) h_{r}\left(\lambda_{1} \lambda_{3} / \lambda_{1} \lambda_{1}\right)\right\} .
\end{aligned}
$$

By $4, \S 2$, we have seen that $\phi_{4}(\lambda)$ is symmetrical in $\lambda, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$, so that, by an interchange of suffixes, we get a rather more convenient form,

$$
\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda \lambda_{3}\right)\left(\lambda_{3}\right)\left(\lambda \lambda_{4}\right)\left(\lambda_{1} \lambda_{2}\right)\left(\lambda_{3} \lambda_{4}\right)}\left\{1+\sum I I_{r}\left(\lambda \lambda_{1} \lambda_{2} / \lambda_{t}, \lambda_{2}\right) h_{r}\left(\lambda \lambda_{3} \lambda_{4} / \lambda_{3}, \lambda_{4}\right)\right\},
$$

in which $\lambda$ is brought more into prominence.
Equating together these unsymmetrical expressions for the symmetrical $\varphi_{1}$, we get a series of identitios connectiug serics built up of pairs of expressions such as $l I_{r}\left(\lambda \lambda_{1} \lambda_{2} / \lambda_{1}, \lambda_{2}\right)$.

$$
\begin{aligned}
& \text { Again, } \quad \dot{\phi}_{5}(\lambda)\left(\lambda_{2} \lambda_{3}\right)\left(\lambda_{3} \lambda_{t}\right)\left(\lambda_{s} \lambda_{1}\right) \\
& =\frac{1}{\left(\lambda_{5} \lambda_{1}\right)} \cdot \frac{1}{\left(\lambda_{5} \delta_{1}\right)} \cdot \frac{1}{\left(\lambda \lambda_{1}\right)}\left\{1+\Sigma I I_{r}\left(\lambda_{2} \lambda_{\mathrm{j}} \lambda_{\mathrm{J}} / \lambda_{1}, \lambda_{\mathrm{J}}, \lambda_{\mathrm{t}}\right) h_{r}\left(\lambda, \lambda_{\mathrm{t}}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (by Lemma IV.) } \\
& =\frac{1}{\left(\lambda_{3} \lambda_{1}\right)\left(\lambda \lambda_{1}\right)} \cdot \frac{1}{\left(\lambda \lambda_{5} \eta_{1}\right)}\left\{1+\Sigma 1 I_{r}\left(\lambda_{4} \lambda_{3} \lambda_{4} / \lambda_{2}, \lambda_{3}, \lambda_{4}\right) h_{r}\left(\lambda, \lambda_{1}, \lambda_{5}\right)\right\}
\end{aligned}
$$

by the same principle as in the provions section,

$$
\begin{aligned}
& \phi_{5}(\lambda)=\frac{1}{\left(\lambda_{t} \lambda_{3}\right)\left(\lambda_{3} \lambda_{1}\right)\left(\lambda_{t} \lambda_{\mathrm{g}}\right) \cdot\left(\lambda_{\lambda_{1}}\right)\left(\lambda_{1} \lambda_{\mathrm{t}} \lambda^{2}\right)\left(\lambda_{0} \lambda\right)} \\
& \times\left\{1+\Sigma \mu_{r}\left(\lambda_{2} \lambda_{\mathrm{g}} \lambda_{\mathrm{t}} / \lambda_{3}, \lambda_{3}, \lambda_{\mathrm{t}}\right) h_{r}\left(\lambda_{1} \lambda_{\mathrm{g}} / \lambda_{\mathrm{g}} \lambda_{\mathrm{t}}, \lambda_{\mathrm{o}}\right)\right\} .
\end{aligned}
$$

Hero again wo got an only partially symmetric sorics for tho entiroly symmotrical function $\phi_{6}$; so that, by interchanging suflixes, we get it sot of transformation-formulao comecting such sories in general. 'I'hese transformations bear a kind of analogy to Heino's.
7. Difference equations for generating fanctions.

It has been shown that the generating function of $1 / P\left(\lambda_{1}\right) P\left(\lambda_{4}\right)$ and $1 / P\left(\lambda_{1}\right) P\left(\lambda_{3}\right) P\left(\lambda_{3}\right)$ maty be convoniently expressed as infinito products. It is not, however, possible so to express the generating functions of $1 / P^{P}\left(\lambda_{1}\right) P\left(\lambda_{3}\right) P\left(\lambda_{3}\right) P^{P}\left(\lambda_{4}\right)$, do., bat by a simplo process wo may obtain suecessivoly functional equations which such generating functions satisfy.

The generating function, $\phi_{y}(\lambda)$ say, in $\lambda$, for $1 / P\left(\lambda_{1}\right) P^{P}\left(\lambda_{9}\right) P\left(\lambda_{3}\right)$, found above, in §5, ovidently satisfies the functional equation

$$
\begin{equation*}
\phi_{s}(\lambda)\left(1-\lambda \lambda_{1}\right)\left(1-\lambda \lambda_{2}\right)\left(1-\lambda \lambda_{3}\right)=\phi_{s}\left(\lambda_{q}\right)\left(1-\lambda \lambda_{1} \lambda_{2} \lambda_{3}\right) \tag{1}
\end{equation*}
$$

Now, $\phi_{3}\left(\lambda_{I}\right)$ can be made to depend on $\delta \phi_{s}(\lambda)$, while the latter may lo mado to depend on the cocfficient of $k$ in the $k$-genorating function for $1 / P(\lambda) P^{\prime}\left(\lambda_{1}\right) P^{\prime}\left(\lambda_{2}\right) P\left(\lambda_{3}\right)$, by § 4 .

If we call this latter generating function

$$
K_{0}+\frac{k K_{1}}{1-q}+\ldots
$$

the relation (1) can be trausformed into an equation connecting $K_{0}$ and $K_{1}$, which will be symmetrical in $\lambda, \lambda_{1}, \lambda_{2}, \lambda_{3}$.

We get from ( 1 ),

$$
\begin{gathered}
\psi_{s}(\lambda)\left\{\lambda_{1}+\lambda_{2}+\lambda_{3}-\lambda\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{1} \lambda_{3}\right)+\lambda^{y} \lambda_{1} \lambda_{2} \lambda_{3}-\lambda_{1} \lambda_{2} \lambda_{3}\right\} \\
=\left(1-\lambda \lambda_{1} \lambda_{2} \lambda_{3}\right) \delta \phi_{3}(\lambda) .
\end{gathered}
$$

Now, by §4(3), $\phi_{3}(\lambda)=K_{0}$ and $(\lambda+\delta) \psi_{s}(\lambda)=K_{1} ;$
whenco

$$
\begin{equation*}
\left(p_{1}-p_{\mathrm{s}}\right) K_{0}=\left(1-p_{\mathrm{s}}\right) K_{1} \tag{2}
\end{equation*}
$$

where $p_{1}, p_{3}, p_{4}$ aro the cooflicients in the equation whoso roots aro $\lambda, \lambda_{1}, \lambda_{2}, \lambda_{3}$.

From (2) wo shall easily derive a connection between the first three coeflicients of the gencrating function for

$$
1 / P(\lambda) P\left(\lambda_{1}\right) P\left(\lambda_{3}\right) P\left(\lambda_{3}\right) P\left(\lambda_{4}\right)
$$

which may be reduced, by $\S 4(5)$, to a functional equation in $\phi_{t}(\lambda)$, $\delta \phi_{4} \lambda, \delta^{2} \phi_{4}(\lambda)$.

Now, hy § 4 (6), we have seen that, if

$$
K_{0}+\frac{K_{1}}{1-q} \lambda+\ldots
$$

bo the $\lambda$-generating function of $1 / P\left(\lambda_{1}\right) P\left(\lambda_{2}\right) P\left(\lambda_{4}\right)$, then the $k$ generating function of $1 / P(\lambda) P\left(\lambda_{1}\right) P\left(\lambda_{2}\right) P\left(\lambda_{3}\right)$ is

$$
\frac{1}{(k \cdot \lambda)(k \cdot \delta)}\left\{K_{0}+\frac{K_{L}}{1-q} \lambda+\ldots\right\}=L_{0}+\frac{I_{1}}{1-q} k+\ldots \text { say }
$$

and that

$$
\begin{equation*}
I_{0}=K_{0}+\frac{K_{1}}{1-q} \lambda+\ldots=\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)} K_{0} . . \tag{3}
\end{equation*}
$$

Now

$$
\begin{aligned}
\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)} K_{1} & =\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)}\left(\lambda_{1}+\delta_{1}\right) K_{0} \text {, by } \S 4(3), \\
& =\frac{\lambda_{1}}{\left(\lambda \lambda_{1}\right)\left(\lambda q \delta_{1}\right)} K_{0}+\frac{\lambda}{\left(\lambda \lambda_{1}\right)\left(\lambda q \delta_{!}\right)} K_{0}+\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)} \delta_{1} K_{0}
\end{aligned}
$$

(by Lemma III.)

$$
=\frac{\lambda_{1}}{\left(\lambda \lambda_{1}\right)\left(\lambda q \delta_{1}\right)} K_{0}+\lambda L_{0}-\frac{1}{\lambda} \cdot \frac{1-\lambda \delta_{1}}{\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)} K_{0}+\frac{1}{\lambda\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)} K_{0}
$$

$$
=\frac{\lambda_{1}}{\left(\lambda \lambda_{1}\right)\left(\lambda_{q} \delta_{1}\right)} K_{0}-\frac{1}{\lambda\left(\lambda \lambda_{1}\right)\left(\lambda_{q} \delta_{1}\right)} K_{0}+\frac{1}{\lambda} \lambda L_{0}+\frac{1}{\lambda} L_{0}
$$

$$
=-\ddot{\lambda\left(\lambda q \lambda_{1}\right)\left(\lambda q \delta_{1}\right)} K_{0}+\lambda I_{0}+\frac{1}{\lambda} I_{0}
$$

$$
=(\lambda+\delta) L_{0}=I_{1}
$$

Similarly, if we assume

$$
\begin{equation*}
\frac{1}{\left(\lambda \overline{\lambda_{1}}\right)\left(\lambda \hat{c}_{1}\right)} \Pi_{r}=L_{r} \tag{4}
\end{equation*}
$$

we can prove inductively by precisoly similar steps; aud, romembering that, by § 4 (3),

$$
\kappa_{r, 1}=\left(\lambda_{1}+\delta_{1}\right) K_{r}-\left(1-q^{r}\right) K_{r-1}
$$

since we have replaced $K_{r}$ by $K_{r} /\left(1-q^{r}\right)$ !, and that a similar equation in the $I$ 's holds grood, wo get

$$
\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)} K_{r+1}=I_{r+1} .
$$

Hence (4) holds good for all values of $r$.
Agnin, $\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)} \lambda_{1} K_{r}=\frac{\lambda_{1}}{\left(\lambda \lambda_{1}\right)\left(\lambda_{l} \delta_{1}\right)} K_{r}+\lambda L_{r} \quad$ (by Lemma III.)

$$
=\lambda L_{r}+\frac{\lambda_{1}}{1-\lambda \lambda_{1}} \eta L_{r}
$$

$$
=\frac{\left(\lambda+\lambda_{1}\right) L_{r_{r}}-\lambda \lambda_{1}(\lambda+\delta) L_{t}}{1-\lambda \grave{\lambda}_{1}}
$$

$$
\begin{equation*}
=\frac{\left(\lambda+\lambda_{1}\right) L_{r}-\lambda \lambda_{1}\left\{L_{r+1}+\left(1-q^{r}\right) L_{r-1}\right\}}{1-\lambda \lambda_{1}} \tag{5}
\end{equation*}
$$

W.o aro now in a position to derive an equation connecting $I_{0}, I_{1}, I_{1}$. Operating with $\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)}$ on the equation

$$
\left(p_{1}-p_{s}\right) K_{0}-\left(1-p_{4}\right) K_{1}=0
$$

where now $p_{1}, p_{3}, p_{4}, K_{0}, K_{1}$ refer to $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ instead of to $\lambda_{,} \lambda_{1}$, $\lambda_{2}, \lambda_{3}$, we see, by the help of (4) and (5) and § 4 (6), that

$$
\begin{aligned}
\left(1-\lambda_{1} \lambda_{\mathrm{j}}-\lambda_{2} \lambda_{4}\right. & \left.-\lambda_{\mathrm{s}} \lambda_{4}\right)\left\{\left(\lambda+\lambda_{1}\right) L_{0}-\lambda \lambda_{1} L_{1}\right\} \\
& +L_{0}\left(1-\lambda \lambda_{1}\right)\left(\lambda_{2}+\lambda_{3}+\lambda_{4}-\lambda_{3} \lambda_{3} \lambda_{4}\right)-\left(1-\lambda \lambda_{1}\right) I_{4} \\
& +\lambda_{4} \lambda_{3} \lambda_{4}\left\{\left(\lambda+\lambda_{1}\right) L_{1}-\lambda_{1} \lambda_{2} I_{2}-\lambda_{1} \lambda_{2}(1-q) L_{0}\right\}=0
\end{aligned}
$$

which easily reduces to

$$
\left(p_{1}-p_{\mathrm{s}}+p_{\mathrm{s}} q\right) I_{0}-\left(1-p_{\mathrm{s}}\right) L_{1}-p_{\mathrm{s}} L_{3}=0
$$

$\qquad$
where now $p_{1}, p_{3}, p_{3}, p_{5}$ are coefficients in the equation whose roots are $\lambda, \lambda_{1}, \lambda_{3}, \lambda_{3}, \lambda_{4}$, so that $p_{1}=\lambda+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}, \& c$.

Replacing $L_{0}$ by $\phi_{4}(\lambda), L_{1}$ by $(\lambda+\delta) \phi_{1}(\lambda), \& c$. , by $\S 4(5)$, we get

$$
\begin{aligned}
& \left(1-\lambda \lambda_{1}\right)\left(1-\lambda \lambda_{1}\right)\left(1-\lambda \lambda_{3}\right)\left(1-\lambda \lambda_{4}\right) \phi_{4}(\lambda) \\
& \quad-\left\{1+\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} 9^{-1}-\lambda\left(\lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{1} \lambda_{3} \lambda_{4}+\lambda_{2} \lambda_{\mathrm{i}} \lambda_{4}\right)\right. \\
& \\
& \\
& \left.\quad+\lambda^{2}(1+q) \lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right\} \phi_{4}\left(\lambda_{q}\right)
\end{aligned}
$$

$$
\begin{equation*}
+\lambda_{1} \lambda_{i} \lambda_{3} \lambda_{1} q^{-1} \phi_{1}\left(\lambda_{l} l^{z}\right)=0 . \tag{7}
\end{equation*}
$$

$\Omega$ functionnl equation detormining the genorating function of $1 / P\left(\lambda_{1}\right) P\left(\lambda_{2}\right) P\left(\lambda_{3}\right) P\left(\lambda_{4}\right)$, and identical with the expression given in § 6.

Again, if wo increase by unity all the sullixes of tho $\lambda$ 's involved in ( $(6)$, and operato on tho equation with $\frac{1}{\left(\lambda \lambda_{1}\right)\left(\lambda \delta_{1}\right)}$, wo shall grot it relation connecting $M_{0}, M M_{1}, M_{2}, M_{3}$, whero

$$
M r_{11}+\frac{M M_{1} \ldots}{1-u} u_{2}+\ldots
$$

is the genorating function of

$$
1 / P^{\prime}(\lambda) P^{\prime}\left(\lambda_{\mathrm{t}}\right) \cdot P^{\prime}\left(\lambda_{\mathrm{z}}\right) l^{\prime}\left(\lambda_{\mathrm{t}}\right) P^{\prime}\left(\lambda_{4}\right) P^{\prime}\left(\lambda_{\mathrm{t}}\right) .
$$

This is found to be

$$
\left(p_{1}-p_{3}+p_{5} q\right) M_{0}-\left\{1-p_{4}+q(1+q) p_{0}\right\} M L_{1}-M M_{2} p_{5}+M L_{\mathrm{j}} p_{0}=0 \ldots(8),
$$

where

$$
p_{1}=\lambda+\lambda_{1}+\lambda_{3}+\lambda_{3}+\lambda_{4}+\lambda_{3}, \& c
$$

This can be roduced to a functional equation connecting $\psi_{0}(\lambda), \phi_{5}\left(\lambda_{I}\right)$, $\phi_{5}\left(\lambda_{q}{ }^{2}\right)$, and $\phi_{5}\left(\lambda_{q}{ }^{3}\right)$.
It will be easily seen, moreover, that, sinco the $p$ 's only contain $\lambda_{1}$ to the first degree, we can always derive new equations of the type of (6) and (8) by help of (4) and (5), and will obtain linear relations between a finite number of coefficients of the generating functions, there being $r-1$ coefficients in the case of $1 / P(\lambda) P\left(\lambda_{1}\right) \ldots P\left(\lambda_{r}\right)$. Theso will bo multiplied by linear functions of the symmetrical functions of $\lambda_{,} \lambda_{1}, \ldots \lambda_{r}$.
[8. By cmploying an operative symbol $\delta$ defined by the equation

$$
\delta f(\lambda)=\frac{f(\lambda / q)-f(\lambda)}{\lambda}
$$

so that

$$
\delta \lambda^{r} q^{i r(r+1)}=\lambda^{r-1} q^{\operatorname{dr}(r-1)}\left(1-q^{r}\right),
$$

and

$$
\begin{aligned}
\left(-\lambda q_{1} \delta_{1}\right) \frac{\lambda_{1}^{r} q^{t r}(r+1)}{\left(1-q^{r}\right)!} & =\left\{1+\frac{q}{1-q} \lambda \delta_{1}+\frac{q^{8}}{(1-q)\left(1-q^{2}\right)} \lambda^{2} \tilde{\delta}_{1}^{2}+\ldots\right\} \frac{\lambda_{1}^{r} q^{d r(r+1)}}{\left(1-q^{r}\right)!} \\
& =\text { cocf. of } x^{r} \text { in }(-\lambda q x)\left(-\lambda_{1} q^{x}\right)
\end{aligned}
$$

we see that

$$
\begin{equation*}
\left(-\lambda_{q} \hat{\sigma}_{1}\right)\left(-\lambda_{1} \lambda_{a^{\prime}} \|\right)=\left(-\lambda \lambda_{2} q\right)\left(-\lambda_{1} \lambda_{1} q\right) . \tag{1}
\end{equation*}
$$

Moreover, corresponding to Lemmata II., III, and IV., in § 1, wo get

$$
\begin{equation*}
-\frac{1}{\left(\lambda \delta_{1}\right)}=\frac{1}{\left(-\frac{\lambda}{\lambda_{1}}\right)}\left(-\frac{\lambda}{\lambda_{1} \eta_{1}}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(-1 \eta \delta_{1}\right)\left(\lambda_{1}-\lambda\right) \psi\left(\lambda_{1}\right)=\lambda_{1}\left(-\lambda \delta_{1}\right) \psi\left(\lambda_{1}\right) \tag{3}
\end{equation*}
$$

and $\left(-\lambda q \delta_{1}\right)\left(-\lambda_{1} \mu q\right) \psi\left(\lambda_{1}\right)=\left(-\lambda_{1} \mu q\right)\left(-\frac{\lambda_{\mu} q}{\eta_{1}}\right)\left(-\lambda_{q} \delta_{1}\right) \psi\left(\lambda_{1}\right) \ldots$ (4) .
By the help of theso results we deduce that, if $B_{r}(0)$ be defined by the equation

$$
I^{\prime}\left(-\lambda_{q}\right) \equiv 1+\frac{n_{1}(0)}{1-q} \lambda+\frac{n_{2}(\theta)}{(1-q)\left(1-q^{3}\right)} \lambda^{2}+\ldots
$$

then $P(-x q, \theta+\phi) P(-a q, \theta-\psi) /\left(x^{2} q\right)$

$$
=1+\frac{B_{1}(\theta) B_{1}(\phi)}{1-q} q^{-1}+\frac{B_{1}(\theta) B_{1}(\phi)}{(1-q)\left(1-q^{2}\right)} q^{-3}+\ldots
$$

and that $\frac{P\left(-\lambda_{1} q\right)}{\left(\lambda_{2} \lambda_{3} q\right)} \frac{P\left(-\lambda_{1} q\right) P\left(-\lambda_{3} q\right)}{\left(\lambda_{3} \lambda_{1} q\right)\left(\lambda_{1} \lambda_{2} q\right)}$

$$
=1+\Sigma I_{r}\left(\lambda_{1} q, \lambda_{2} q, \lambda_{\mathrm{s}} q / \lambda_{1} \lambda_{\mathrm{a}} \lambda_{\mathrm{s}} q\right) q^{-\operatorname{rr}(r+1)} F_{r}(\theta)
$$

corresponding to §5.]

Note on some Properties of Gauche Oubics. By T. R. Lee. Received Juno 1st, 1893. Read Juno 8th, 1893. Received in revised form October 7th, 1803.

1. If a systom of quadrics pass through seven points taken arbitrarily in spaco, they havo also ono other point common (Salmon's Geometry of I'loree Dimel:sions, p. 91, first edition, pp. 97, 98, third clition).

This eighth point might be called the eighth point homologrons to the seven given points, whilo tho system of eight points might be called cight homolngrous points.

