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Abstract

We present a new approach for data-driven tuning of reg-
ularization parameters for total-variation denoising. The
proposed approach hinges on a specific proxy for the under-
lying bilevel problem, which admits a tractable monolevel
reformulation that can be efficiently solved with a new
conditional-gradient-type method. We show numerical ex-
periments, and open avenues for promising extensions.

1. Introduction
Tuning the regularization parameter in the classical total-

variation denoising model by Rudin, Osher and Fatemi, i.e.,

min
u∈Rn

1
2∥u− ξ∥2 + αTV(u), (1)

where ξ ∈ Rn is noisy image and TV is the total-variation
seminorm [1, Eq. (4.1)], is a delicate challenge. A standard
approach to do so [1,3] aims at solving the bilevel problem:

min
α∈F

1

N

N∑
i=1

∥u†
i − u

α(ξi)
i ∥2, (2)

where uα(ξi)
i is the solution to (1) with parameter α(ξi) and

data ξi, and F = {α : Rn → R+} is a given model. For a
noisy image ξ, an optimal solution to (2) should provide a
regularization parameter α(ξ) such that the denoised image
is close to the corresponding ground-truth u†.

2. Regularized Bregman Learning
We consider the following proxy for (2):

min
α∈F

1

N

N∑
i=1

(
1

2
∥u†−u

α(ξi)
i ∥2+Dα(ξi)(u

†
i , u

α(ξi)
i )

)
, (3)

where Dαi
is the Bregman-divergence associated to αi TV,

with αi := α(ξi) for all i ∈ [N ] := {1, . . . , N}, i.e.,

Dαi(u
†
i , u

αi
i ) := αi TV(u†

i )− αi TV(uαi
i )

− ⟨ξi − uαi
i , u†

i − uαi
i ⟩.

(4)
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Figure 1. Denoising with predicted TV-parameters for each patch.
cf . Experiment 1 in Sec. 4.

Note that Dαi
is always non-negative since TV is convex

and ξi − uαi
i ∈ αi∂ TV(uαi

i ), hence (3) is indeed an upper
bound for (2).

Monolevel reformulation. At first sight, problem (3) has
again a complex bilevel nature. However, applying the po-
larization identity to the inner product in the right hand-side
of (4), and using standard duality theory (see, e.g., [2, Sec-
tion III]), we get for all i ∈ [N ] that

1
2∥u

†
i − uαi

i ∥2 +Dαi(u
†
i , u

αi
i )

= αiTV(u†
i )−

(
1
2∥u

αi
i − ξi∥2 + αi TV(uαi

i )
)
+ C

= αiTV(u†
i ) + inf

vi∈B∞
αi

1
2∥ div vi + ξi∥2 + C ′,

(5)

where C and C ′ are constants that do not depend on α,
∥v∥∞,2 := maxj∈[n] ∥vj∥2 for all v ∈ Rn×2, and B∞

αi

is the αi-ball with respect to ∥ · ∥∞,2. Plugging (5) into (3)
we get the following equivalent formulation of (3):

min
α∈F,

vi∈B∞
α(ξi)

1

N

N∑
i=1

(
1

2
∥ div vi+ξi∥2+α(ξi) TV(u†

i )

)
. (6)

It only remains to fix the model F .



Model selection. We investigate the performance of
quadratic models, i.e.,

F = {α : Rn → R+ | α(ξ) = ξ̄∗Aξ̄, A ≽ 0}, (7)

where for every ξ ∈ Rn, ξ̄ = (ξ, 1) ∈ Rn+1 and A ≽ 0
stands for symmetric, positive semidefinite matrices. With
this choice, the monolevel problem (6) turns into

min
(A,v)∈C

1

N

N∑
i=1

(
1

2
∥div vi+ξi∥2+ξ̄i

∗
Aξ̄i TV(u†

i )

)
, (8)

where C is the closed convex set of tuples (A,v) ∈
R(n+1)2 × Rn×2 × · · · × Rn×2 such that A ≽ 0 and

∥vi∥∞,2 ≤ ξ̄i
∗
Aξ̄i for all i ∈ [N ]. (9)

3. Training procedure
Solving (8) is challenging due to the complex and un-

bounded constraint set, making traditional methods such as
proximal- or conditional-gradient impractical. Instead, we
employ a more efficient hybrid approach introduced in [2].
For (Ak,vk), and k ∈ N, we first compute

Ãk+1 = Proj≽

(
Ak − 1

λN

N∑
i=1

cki ξ̄iξ̄i
∗
)
,

(ṽk+1
i )j =

(∇ũk
i )j

∥(∇ũk
i )j∥2

ξ̄i
∗
Ãk+1ξ̄i, i ∈ [N ], j ∈ [n],

(10)
where Proj≽ is the projection onto the set of symmetric,
positive semidefinite matrices, cki := TV(u†

i ) − TV(ũk
i ),

λ > 0, and ũk
i := div vk

i + ξi. Then, we update the current
iterate via {

Ak+1 = Ak + θk(Ã
k+1 −Ak),

vk+1 = vk + θk(ṽ
k+1 − vk),

(11)

where θk is a step-size given by

min

{
1,

1
N

∑N
i=1

(
Gi(ũ

k
i ,v

k
i )− cki ξ̄i

∗
(Ãk+1 −Ak)ξ̄i

)
4
N ∥Ãk+1 −Ak∥2 + ∥ṽk+1 − vk∥2

}
,

where Gi is the primal-dual gap associated to (1) with data
ξi and parameter α(ξi), i.e., for all u ∈ Rn and v ∈ Rn×2

Gi(u,v) :=
1
2∥u− ξi∥2 + α(ξi) TV(u)

+ 1
2∥ div vi + ξi∥2 − 1

2∥ξi∥
2.

(12)

According to [2], employing (11) to solve (8), we can
expect that i) the objective function of (8) evaluated on
(Ak,vk) converges monotonically to the infimum value
with a o(k−1/3) worst-case rate, ii) the iterates remain
bounded with cluster points lying in the set of optimal so-
lutions, iii) Ak → A∗ with (A∗,v∗) optimal for some v∗.
The latter is particularly beneficial in our application.

Models Quadratic Constant α = η 10−4

η = 13.9 η = 27.13 η = 37.3

MSE 0.1529 0.2917 0.1833 0.1777

Table 1. Results of Experiment 2 in Sec. 4.

4. Numerical experiments.
We use a training set of N = 101440 images with p =

16 and Gaussian noise of variance 0.05. We set λ = 50 and
run (11) until a residual (cf . D in [2]) reaches 10−4.

Experiment 1. We use the trained model to denoise a
new test image split into 16 × 16 patches. Each patch’s
TV-parameter is computed using the trained model, show-
ing higher values for flatter regions (like backgrounds) and
lower values for complex image parts, as seen in Fig. 1.

Experiment 2. We assess our model performance against
8 constant parameters choices spaced evenly from 10−4 to
10−1 on a test set of Nt = 200 images. As performance
metrics, we consider

MSE := 1
Nt

∑Nt

i=1 ∥u
†
i − u

α(ξi)
i ∥2, (13)

or (13) replacing α(ξi) with the above constant values. The
three best results are contained in Tab. 1.

Results and conclusions. As expected, flexible (non-
constant) models can improve performances (see Tab. 1).
These can be efficiently trained minimizing the loss func-
tion (3) via the hybrid method (11). Future work includes
investigating stochastic variants of (11), exploring different
models such as Neural Networks, and extending the learn-
ing framework to diverse variational denoising models.
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