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Abstract

We present a new approach for data-driven tuning of reg-
ularization parameters for total-variation denoising. The
proposed approach hinges on a specific proxy for the under-
lying bilevel problem, which admits a tractable monolevel
reformulation that can be efficiently solved with a new
conditional-gradient-type method. We show numerical ex-
periments, and open avenues for promising extensions.

1. Introduction

Tuning the regularization parameter in the classical total-
variation denoising model by Rudin, Osher and Fatemi, i.e.,

: 1 2
min llu—¢[" +aTV(u), (1)

where £ € R™ is noisy image and TV is the total-variation
seminorm [/1, Eq. (4.1)], is a delicate challenge. A standard
approach to do so [[1,3]] aims at solving the bilevel problem:

N
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where ") i the solution to (T) with parameter a/(¢;) and

data &, and F = {a: R” — R, } is a given model. For a
noisy image &, an optimal solution to () should provide a
regularization parameter «(£) such that the denoised image
is close to the corresponding ground-truth u.

2. Regularized Bregman Learning
We consider the following proxy for (2)):
N
min > L~ )24 Dy (uf, w2 ), 3)
acF N £ \2 i DT

where D, is the Bregman-divergence associated to o; TV,
with o := a(&;) forall i € [N] := {1,..., N}, ie.,

D,, (uj, uit) = a; TV(uj) —a; TV(ui) @
— (& —u uf — ).
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Figure 1. Denoising with predicted TV-parameters for each patch.
¢f. Experiment 1 in Sec. [
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Note that D, is always non-negative since TV is convex
and & — uf € a;0 TV (ui"), hence (3) is indeed an upper
bound for (2).

Monolevel reformulation. At first sight, problem (3] has
again a complex bilevel nature. However, applying the po-
larization identity to the inner product in the right hand-side
of @), and using standard duality theory (see, e.g., [2 Sec-
tion II1]), we get for all ¢ € [IN] that

U] — uf]? + Da, (u], uf)

= aiTV(uI) - (%Hu?’ — leQ —+ o TV(US“)) +C 5)
— T ; : 2
=a;TV(u])+ vilerg;? %H divw; + &2 + 7,

where C' and C’ are constants that do not depend on a,
[V]|s0,2 1= max;epy [|lv]l2 for all v € R™*2 and B
is the «v;-ball with respect to || - || 2. Plugging () into (3)
we get the following equivalent formulation of (3)):
1 (1
i v, &2 , t
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It only remains to fix the model F.



Model selection. We investigate the performance of
quadratic models, i.e.,

F={a:R" =Ry |a()=EA4 A0}, (D

where for every £ € R”, £ = (£,1) € R"™ and A = 0
stands for symmetric, positive semidefinite matrices. With
this choice, the monolevel problem @ turns into

N
. 1 1, .. sk F
i,y 2 (Glavecselt e ag TV ).
where C is the closed convex set of tuples (A,v) €
R(M+D*  Rn*2 ... x R"X2 guch that A = 0 and

|villooo < & A& foralli € [N]. )
3. Training procedure

Solving is challenging due to the complex and un-
bounded constraint set, making traditional methods such as
proximal- or conditional-gradient impractical. Instead, we
employ a more efficient hybrid approach introduced in [2].
For (A*, v*), and k € N, we first compute

N
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AMFL = Proj,_ (Ak - > ks ),
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(10)
where Proj. is the projection onto the set of symmetric,
positive semidefinite matrices, ¢ := TV(u!) — TV (a}),
A >0, and ﬂf = div vf + &;. Then, we update the current
iterate via

(1)

vk‘+1 — 'Uk + ek("v*k+1 _ vk)

9

{Ak“ = Ak 4 g, (AFT! — AF),

where 6y, is a step-size given by

(AT (Gt ob) - kg (A - AN
min {1, },
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where (; is the primal-dual gap associated to (I)) with data
&; and parameter «(&;), i.e., for all u € R™ and v € R"*?

Gi(u,v) =3 |lu— &> + (&) TV (u)
+ L dive; + &7 — L1412

According to [2]], employing (TI)) to solve (8), we can
expect that i) the objective function of (§) evaluated on
(A* v*) converges monotonically to the infimum value
with a o(k~'/3) worst-case rate, ii) the iterates remain
bounded with cluster points lying in the set of optimal so-
lutions, iii) A¥ — A* with (A*, v*) optimal for some v*.
The latter is particularly beneficial in our application.

(12)

Constant o« = 7 1074
n=139 n=2713 n=373
0.2917 0.1833 0.1777

Models Quadratic

MSE 0.1529

Table 1. Results of Experiment 2 in Sec.

4. Numerical experiments.

We use a training set of N = 101440 images with p =
16 and Gaussian noise of variance 0.05. We set A = 50 and
run (TT)) until a residual (¢f. D in [2]) reaches 104

Experiment 1. We use the trained model to denoise a
new test image split into 16 x 16 patches. Each patch’s
TV-parameter is computed using the trained model, show-
ing higher values for flatter regions (like backgrounds) and
lower values for complex image parts, as seen in Fig.[I]

Experiment 2. We assess our model performance against
8 constant parameters choices spaced evenly from 10~* to
10! on a test set of N; = 200 images. As performance
metrics, we consider

MSE = & S0 [lul — ug )2, (13)

or (T3) replacing a(&;) with the above constant values. The
three best results are contained in Tab. [Tl

Results and conclusions. As expected, flexible (non-
constant) models can improve performances (see Tab. [I).
These can be efficiently trained minimizing the loss func-
tion (3) via the hybrid method (TI). Future work includes
investigating stochastic variants of (TI)), exploring different
models such as Neural Networks, and extending the learn-
ing framework to diverse variational denoising models.
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