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VII. On Stresses in Rarified Gases arising from Inequalities of Temperature.

By J. Cuerg MaxwEeLL, F.R.S., Professor of Experimental Physics vn the
Unwversity of Cambridge.

Received March 19,—Read April 11, 1878,

1. Ix this paper I have followed the method given in my paper “ On the Dynamical
Theory of Gases” (Phil. Trans., 1867, p. 49). I have shown that when inequalities of
temperature exist in a gas, the pressure at a given point is not the same in all
directions, and that the difference between the maximum and the minimum pressure
at a point may be of considerable magnitude when the density of the gas is small
enough, and when the inequalities of temperature are produced by small* solid bodies
at a higher or lower temperature than the vessel containing the gas.

2. The nature of this stress may be thus defined:—Let the distance from a given
point, measured in a given direction, be denoted by A; then the space-variation of the

temperature for a point moving along this line will be denoted by %Z, and the space-

_ . . . a0
variation of this quantity along the same line by T

9 .
There will, in genera,l be a particular direction of the line 4 for which 3]2 a
maximum, another for which it is a minimum, and a third for which it is a maximum-
.minimum. These three directions are at right angles to each other, and are the

#* The dimensions of the bodies must be of the same order of magnitude as a certain length A, which
may be defined as the distance travelled by a molecule with its mean velocity during the time of
relaxation of the medium.

The time of relaxation is the time in which inequalities of stress would disappear if the rate at which
they diminish were to continue constant. Hence

r=2( 2P\ A 2(2>%
m) v \mpp

On the hypothesis that the encounters between the molecules resemble those between “ rigid elastic ”
spheres, the free path of a molecule between two successive encounters has a definite meaning, and if 7 is

its mean value,
1
s 5__4 =1-178\.
=2 (2 ) 178

So that the mean path of a molecule may be taken as representing what we mean by “small.”
If the force between the molecules is supposed to be a continuous function of the distance, the free path
of a molecule has no longer a definite meaning, and we must fall back on the quantity X, as defined above.
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axes of principal stress at the given point; and the part of the stress arising from
inequalities of temperature is, in each of these principal axes,
22 0
pl dn¥
where u is the coefficient of viscosity, p the density, and @ the absolute temperature.
3. Now for dry air at 15° C, pu=1'9X10™* in centimetre-gramme-second measure,

w1 . . .
and ﬁ=]—90 315, where p is the pressure, the unit of pressure being one dyne per

square centimetre, or nearly one millionth part of an atmosphere.

If a sphere of 2 centimetres in diameter is T degrees centigrade hotter than the air
at large distances from it, then, when there is a steady flow of heat, the temperature
at a distance of » centimetres from the centre will be

d*d 2Ta
0= 0-—[— ,c d;ﬁé—“ﬁ'

Hence, at a distance of » centimetres From the centre of the sphere, the pressure in

the direction of the radius arising from inequality of temperature will be ;%0'63
dynes per square centimetre.

4. In Mr. CrooKES’ experiments the pressure, p, was often so small that this
stress would be capable, if it existed alone, of producing rapid motion in a radiometer.

Indeed, if we were to consider only the normal part of the stress exerted on solid
bodies immersed in the gas, most of the phenomena observed by Mr. CrookEs could
be readily explained.

5. Let us take the case of two small bodies symmetrical with respect to the axis
joining their centres of figure. If both bodies are warmer than the air at a distance
from them, then, in any section perpendicular to the axis joining their centres, the’
point where 1t cuts this line will have the highest temperature, and there will be a
flow of heat outwards from this axis in all directions. '

)

a0
Hence T will be positive for the axis, and it will be a line of maximum pressure,

so that the bodies will repel each other.

If both bodies are colder than the air at a distance, everything will be reversed ;
the axis will be a line of minimum pressure, and the bodies will attract each other.

If one body is hotter and the other colder than the air at a distance, the effect will
be smaller, and it will depend on the relative sizes of the bodies, and on their exact
temperatures, whether the action is attractive or repulsive.

6. If the bodies are two parallel disks very near to each other, the central parts
will produce very little effect, because between the disks the temperature varies

uniformly, and E}E,:o Only near the edges will there be any stress arising from

inequality of temperature in the gas.
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7. If the bodies are encircled by a ring having its axis in the line joining the
bodies, then the repulsion between the two bodies, when they are warmer than the
air in general, may be converted into attraction by heating the ring so as to produce a
flow of heat inwards towards the axis.

8. If a body in the form of a cup or bowl is warmer than the air, the distribution
of temperature in the surrounding gas is similar to the distribution of electric potential
near a body of the same form, which has been investigated by Sir W. THomMsoN. Near

aig . .
the convex surface the value of T 18 nearly the same as if the body had been a
1 . .
complete sphere, namely ZTcﬁ’ where T is the excess of temperature, and a is the

radius of the sphere. Near the concave surface the variation of temperature is
exceedingly small.

Hence the normal pressure will be greater on the convex surface than on the con-
cave surface, and if we were to neglect the tangential presstres we might think this
an explanation of the motion of Mr. CROOKES’ cups.

Since the expressions for the stress are linear as regards the temperature, everything
will be reversed when the cup is colder than the surrounding air.

9. In a spherical vessel, if the two polar regions are made hotter than the equatorial
zone, the pressure in the direction of the axis will be greater than that parallel to the
equatorial plane, and the reverse will be the case if the polar regions are made colder
than the equatorial zone.

10. All such explanations of the observed phenomena must be subjected to careful
criticism. They have been obtained by considering the normal stresses alone, to the
exclusion of the tangential stresses, and it is much easier to give an elementary
exposition of the former than of the latter. If, however, we go on to calculate the
forces acting on any portion of the gas in virtue of the stresses on its surface, we find
that when the flow of heat is steady, these forces are in equilibrium. Mr. CROOKES
tells us that there is no molar current or wind in his radiometer vessels. It is not
easy to prove this by experiment, but it is satisfactory to find that the system of
stresses here described as arising from inequalities of temperature will not, when the
flow of heat is steady, generate currents.

11. - Consider, then, the case in which there are no currents of gas but a steady flow
of heat, the condition of which is

dre . d*0  d*0

(In the absence of external forces such as gravity, and if’ the gas in contact with solid

bodies does not slide over them, this is always a solution of the equations, and it is

the only permanent solution.) In this case the equations of motion show that every

particle of the gas is in equilibrium under the stresses acting on it. Hence, any finite

portion of the gas is also in equilibrium ; also, since the stresses are linear functions of
MDCCCLXXTX. 2 1
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the temperature, if we superpose one system of temperatures on another, we also
superpose the corresponding systems of forces.

Now the system of temperatures due to a solid sphere of uniform temperature
immersed in the gas, cannot of itself give rise to any force tending to move the sphere
in one direction rather than in another. Let the sphere be placed within the finite
portion of gas which, as we have said, is already in equilibrium. The equilibrium will
not be disturbed. We may introduce any number of spheres at different temperatures
into the portion of gas, so as to form a body of any shape, heated in any manner, and
when the flow of heat has become steady the whole system will be in equilibrium.

12. How, then, are we to account for the observed fact that forces act between solid
bodies immersed in rarified gases, and this, apparently, as long as inequalities of
temperature are maintained *

I think we must look for an explanation in the phenomenon discovered in the case
of liquids by Hermuowrrz and Prorrowskr,* and for gases by Kuxpr and Warsure,t
that the fluid in countact with the surface of a solid must slide over it with a finite
velocity in order to produce a finite tangential stress.

The theoretical treatment of the boundary conditions between a gas and a solid is
difficult, and it becomes more difficult if we consider that the gas close to the surface
is probably in an unknown state of condensation. We shall therefore accept the
results obtained by Kunpr and WARBURG on their experimental evidence.

They have found that the velocity of sliding of the gas over the surface due to a
given tangential stress varies inversely as the pressure.

The coeflicient of sliding for air on glass was found to be G:2_9 centimetres, where p

is the pressure in millionths of an atmosphere. Hence at ordinary pressures G is
insensible, but in the vessels exhausted by Mr. CROOKES it may be considerable.
Hence, if close to the surface of a solid there is a tangential stress S acting on a
surface parallel to that of the body in a direction 4 parallel to that surface, there will
also be a sliding of the gas in contact with the solid over its surface in the direction A

~

. . . S
with a finite velocity =

13. I have not attempted to enter on the calculation of the effect of this sliding
motion, but it is easy to see that if we begin with the case in which there is no
sliding, the instantaneous effect of permission being given to the gas to slide must be
to diminish the action of all tangential stresses on the surface, without affecting the
normal stresses, and in course of time to set up currents sweeping over the surfaces
of solid bodies, thus completely destroying the simplicity of our first solution of the
problem.

14. When external forces, such as gravity, act on the gas, and when the thermal
phenomena produce differences of density in different parts of the vessel, then the well-

* Wiener Sitzb., x1., 1860, p. 607. t Pose. Ann., clv., 1875, p. 337.
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known convection currents are set up. These also interfere with the simplicity of the
problem and introduce very complicated effects. All that we know is that the rarer
the gas and the smaller the vessel the less is the effect of the convection currents, so
that in Mr. CROOKES’ experiments they play a very small part.

‘We now proceed to the calculations :—

(1.) Encounter between two Molecules.

The motion of the two molecules after an encounter depends on their motion before
the encounter, and is capable of being determined by purely dynamical methods. If
the encounter of the molecules does not cause rotation or vibration in the individual
molecules, then the kinetic energy of the centres of mass of the two molecules must
be the same after the encounter as it was before.

This will be true on the average, even if the molecules are complex systems capable
of rotation and internal vibration, provided the temperature is constant. If, however,
the temperature is rising, the internal energy of the molecules is, on the whole,
increasing, and therefore the ehergy of translation of their centres of mass must be,
on an average, diminishing at every encounter. The reverse will be the case if the
temperature is falling.

But however important this consideration may be in the theory of specific heat and
that of the conduction of heat, it has only a secondary bearing on the question of the
stresses in the medium ; and as it would introduce great complexity and much guess-
work into our calculations, I shall suppose that the gas here considered is one the
molecules of which do not take up any sensible amount of energy in the form of
internal motion. Kunpr and WARBURG ¥ have shown that this is the case with
mercury gas.

Let the masses of the molecules be M, and M,, and their velocity-components
&, G, and &, my, & respectively.  Let V be the velocity of M, relative to M,.

Before the encounter let a straight line be drawn through M; parallel to V, and let
a perpendicular b be drawn from M, to this line. The magnitude and direction of
b and V will be constant as long as the motion is undisturbed.

During the encounter the two molecules act on each other. If the force acts in the
line joining their centres of mass, the product bV will remain constant, and if the
force is a function of the distance, V and therefore b will be of the same magnitude
after the encounter as before it, but their directions will be turned in the plane of
V and b through an angle 26, this angle being a function of b and V, which vanishes
for values of b greater than the limit of molecular action. Let the plane through V
and b make an angle ¢ with the plane through V parallel to «, then all values of ¢
are equally probable.

If & be the value of & after the encounter,

* PoaG. Ann., clvii.,, 1876, p. 353.
2 H 2
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, M . -
§'=8& 4y A (G—E8)2sin® O0+[(ny—m)*+ (L= &) Fsin 20 cos ¢) . . (1)
M, +M,
When the two molecules are of the same kind, M, =%, and in the present

investigation of a single gas we shall assume this to be the case.

If we use the symbol 8 to indicate the increment of any quantity due to an
encounter, and if we remember that all values of ¢ are equally probable, so that the
average value of cos ¢ and of cos® ¢ is zero, and that of cos® ¢ is &, we find

84+E) =0 . . . L L L L (9)
S(EP+E)=—[3(&—£)— V] sin Ocos0. . . . . . . . (3)
&P+ &) =—5(E+&)[8(6—E)°— V] sin® fcos* 0. . . . . (4)
From these by transformation of coordinates we find
S(Em+Em)=—3(&—E)(y—m) sin* feos® 0 . . . . . (5)
S(Erm*+&my?) = — 3 9(ém 4+ Em)7) — 3(51’7224‘527712)
—(&4E) 6nm+VH)]sin?cos®d . . . . . . . . (6)
0(Embi+Emaly)=—3[9(Embi+Emel) — 3(Em b+ Embi+Emabo+Emiy
+EmGFHEmL)]sin? Ocos*d . . . . . . . . (T)

[ Application of Spherical Harmonics to the Theory of Gases.

If we suppose the direction of the velocity of M, relative to M, to be indicated by
the position of a point P on a sphere, which we may call the sphere of reference, then
the direction of the relative velocity after the encounter will be indicated by a point
P, the angular distance PP’ being 26, so that the point P’ lies in a small circle, every
position in which is equally probable.

We have to calculate the effect of an encounter upon certain functions of the six
velocity-components of the two molecules. These six quantities may be expressed in
terms of the three velocity-components of the centre of mass of the two molecules (say
u, v, w), the relative velocity of M; with respect to M, which we call V, and the two
angular coordinates which indicate the direction of V. During the encounter, the
quantities w, v, w, and V remain the same, but the angular coordinates are altered
from those of P to those of P’ on the sphere of reference.

Whatever be the form of the function of &, %y, {;, &, 79 & We may consider it
expressed in the form of a series of spherical harmonics of the angular coordinates,
their coefficients being functions of w, v, w, V, and we have only to determine the effect
of the encounter upon the value of the spherical harmonics, for their coefficients are
not changed.
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Let Y™ be the value at P of the surface harmonic of order n in the series con-
sidered.

After the encounter, the corresponding term becomes what Y™ becomes at the point
P’, and since all positions of P’ in a circle whose centre is P are equally probable, the
mean value of the function after the encounter must depend on the mean value of the
spherical harmonic in this circle.

Now the mean value of a spherical harmonic of order n in a circle, the cosine of whose
radius is p, is equal to the value of the harmonic at the pole of the circle multiplied by
P®(u), the zonal harmonic of order n, and amplitude .

Hence, after the encounter, Y becomes Y®P®(u), and if F, is the corresponding
part of the function to be considered, and SF, the increment of F, arising from the
encounter, OF,=F,(P®(u)—1).

This is the mean increment of F, arising from an encounter in which cos 20=p.
The rate of increment is to be found from this by multiplying it by the number of
encounters of each molecule per second in which w lies between u and p-4du, and
integrating for all values of p from —1 to 4-1.

This operation requires, in general, a knowledge of the law of force between the
molecules, and also a knowledge of the distribution of velocity among the molecules.

When, as in the present investigation, we suppose both the molecules to be of the
same kind, and take both molecules into account in the final summation, the spherical
harmonics of odd orders will disappear, so that if we restrict our calculations to
functions of not more than three dimensions, the effect of the encounters will depend
on harmonics of the second order only, in which case P®(u)—1=%5(u?—1)=3 sin® 26.

—Note added May, 1879.]

(2.) Number of Encounters in unit of Time.

We now abandon the dynamical method and adopt the statistical method. Instead
of tracing the path of a single molecule and determining the effects of each encounter
on its velocity-components and their combinations, we fix our attention on a particular
element of volume, and trace the changes in the average values of such combinations
of components for all the molecules which at a given instant happen to be within it.
The problem which now presents itself may be stated thus: to determine the dis-
tribution of velocities among the molecules of any element of the medium, the current-
velocity and the temperature of the medium being given in terms of the coordinates
and the time. The only case in which this problem has been actually solved is that
in which the medium has attained to its ultimate state, in which the temperature is
uniform and there are no currents,

Denoting by

AN=/(& 0, {, =, y, 2, t)dédnd{dudydz
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the number of molecules of the kind M, which at a given instant are within the
element of volume dadydz, and whose velocity-components lie between the limits
EF5dE n4Ldy {+1d, Borrzmany has shown that the function f; must satisfy the
equation

dfy

Uy B xSyl

d&
+md§2dngdcgfbdbfd¢w Sifo=ff)=0 . . . . . (8)

e N +€1

where f,, 1, ;' denote what f becomes when in place of the velocity-components of M,
before the encounter we put those of M, before the encounter, and those of M, and
M, after the encounter, respectively, and the integration is extended to all values of ¢
and b and of &, 7,, {, the velocity-components of the second molecule M,.

It is impossible, in general, to perform this integration without a knowledge, not
only of the law of force between the molecules, but of the form of the functions f,, f,
J1s fo/, which have themselves to be found by means of the equation.

It is only for particular cases, therefore, that the equation has hitherto been solved.

If the medium is surrounded by a surface through which no communication of
energy can take place, then one solution of the equation is given by the conditions

Sifa=A =0,

and
d d d ad
L+ XAV 2=,
which give
=A@ttty oo (9)

where 1 is the potential of the force whose components are X, Y, Z;, and A, is a
constant which may be different for each kind of molecules in the medium, but 4 is
the same for all kinds of molecules.

This is the complete solution of this problem, and is independent of any hypothesis
as to the manner in which the molecules act on each other during an encounter. The
quantity - which occurs in this expression may be determined by finding the mean

value of €, which is % Now in the kinetic theory of gases,
p&=p=Rpd . . . . . . . . . . (10)

where p is the pressure, p the density, # the absolute temperature, and R a constant

for a given gas. Hence
1

27L=R0 . . . . . . . . . . . (]. 1)
We shall suppose, however, with BorTzMANN, that in a medium in which there are
inequalities of temperature and of velocity
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AN=N(1+F(¢n.0) fo(émOdédnds . . . . . . (12)

where I is a rational function of €, %, {, which we shall suppose not to contain terms
of more than three dimensions, and f; is the same function as in equation (9).

Now consider two groups of molecules, each defined by the velocity-components,
and let the two groups be distinguished by the suffixes (;) and (;). We have to
estimate the number of encounters of a given kind between these two groups in a
unit of volume in the time 8, those encounters only being considered for which the
limits of b and ¢ are b+-3db and -4-Ld¢.

Let us first suppose that both groups consist of mere geometrical peints which do
not interfere with each other’s motion. The group dNj is moving through the group
dN, with the relative velocity V, and we have to find how many molecules of the
first group approach a molecule of the second group in a manner which would, if the
molecules acted on each other, produce an encounter of the given kind. This will be
the case for every molecule of the first group which passes through the area bdbd¢ in
the time 8. The number of such molecules is dN,Vbdbdpdt for every molecule of
the second group, so that the whole number of pairs which pass each other within the
given limits is

VbdbdpdN,dN,st,

and if we take the time 8¢ small enough, this will be the number of encounters of the
real molecules in the time &¢.

(3.) Effect of the Encounters.

We have next to estimate the effect of these encounters on the average values of
different functions of the velocity-components. The effect of an individual encounter

on these functions for the pair of molecules concerned is given in equations (3), (4), (5),
(6), (7), each of which is of the form

SP=Qsin®fcos>d . . . . . . . . . (13)

where P and Q are functions of the velocity-components of the two molecules, and if

we write P for the average value of P for the N molecules in unit of volume, then
taking the sum of the effects of the encounters—

S8P=NSP. . . . . . . . . . . (14
We thus find

%lt“:N[ [ f [ f [ f [Q sin® 0 cos® OVbdbdgy, fodédmdldédn.dl, . . . (15)

Now, since 6 is a function of b and V, the definite integral

V[ ["bsin® 0 cos® 6abdp=B . . . . . . . (16)
0

0
will be a function of V only.
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If the molecules are ““rigid-elastic ” spheres of diameter s,
B=tms®V . . . . . . . . . .. (17

If they repel each other with a force inversely as the fifth power of the distance, so
that at a distance r the force is kr~?, then
2r\¥
B=<M>Az...........(18)
where A, is the numerical quantity 1:8682. In this case B is independent of V.

The experiments of O. E. Mever,* Kunpr and WarBURG,t Purus,i Von ‘OBER-
MAVER,§ EizHARD WIEDEMANY,| and HorMaN,T show that the viscosity of air varies
according to a lower power of the absolute temperature than the first, probably the
077 power. 1f the viscosity had varied as the first power of the absolute temperature,
B would have been independent of V. Though this is not the case, we shall assume,
for the sake of being able to effect the integrations, that B is independent of V.

We shall find it convenient to write for B,

P

where p is the hydrostatic pressure, N the number of molecules in unit of volume,
and p a new coefficient which we shall afterwards find to be the coefficient of viscosity.
Equation (15) may now be written

&P
o L R N S 1)
where the integrations are all between the limits —c and 4+, and f; and f; are of
the form A
JS=QHF(En, ) itm—temie ey 000 L (21)

F (& n, {) being small compared with unity.
We may write I in the form

F=(2h)}(aé+Bn+yl)+ 21(3*8+ 1> +4y*C+ Bynl+yelé+aBén)
+ (2D G + by O b BEN+hay L B
HIB by aleH B B FoByinl) . (22)

where each combination of the symbols a8y is to be taken as a single independent
symbol, and not as a product of the component symbols.

* Poca. Ann., 1873, Bd. 148, p. 222.

t Poca. Ann,, 1876, Bd. 159, p. 403,

1 Wiener Sitz., 1874 and 1876.

§ Wiener Sitz., 1875.

|| Arch. des Sci. Phys. et Nat., 1876, t. 56, p. 273.

§ American Academy of Arts and Sciences, June 14, 1876. Phil. Mag., s. 5, vol. 3, No. 16, Feb., 1877,
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(4.) Mean Values of Combinations of &, ), L.

To find the mean value of any function of &, %, { for all the molecules in the element,
we must multiply this function by f, and integrate with respect to &, », and £

If the non-exponential factor of any term contains an odd power of any of the vari-
ables, the corresponding part of the integral will vanish, but if it contains only even
powers, each even power, such as 2z, will introduce a factor

R0 (2n—1)(2n—38) . . 81

into the corresponding part of the integral.
First, let the function be 1, then

=([{raganac . . . ... @
or
T=1432 484 . . . . . . (24)
which gives the condition
4+ B4y'=0 . . . . . . . . . . (25)

Let us next find the mean value of €in the same way, denoting the result by the
symbol £,
E=RO [ a+5(+aff+ay?)]. . . . . L L. (26)

Since in what follows we shall denote the velocity-components of each molecule by
u4§& v+n, w4, where u, v, w are the velocity-components of the centre of mass of
all the molecules within the element, it follows that the mean values of &, %, { are each
of them zero. We thus obtain the equations

at§(0P B +ay’) =0
B4+1(2B+B2+By)=0 e e e e (2
+ 5Py 4By 4y =0 |

Remembering these conditions, we find that the mean values of combinations of two,
three, and four dimensions are of the forms

3 =RO(1+2) | )
& =RoaB

& =(Rf)%s

{":::( 0)}a3? e e s (29)
&l =(RO)'eBy

MDCCOLXXTX. 21
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& =3RW(1+42¢%) )
§3{7 ___33292%3 |
Enp =ROP(1+*+ )

l} (30)
Enl=R*By J

(5.) Rates of Decay of these Mean Values.

If any term of Q in equation (20) contains symbols belonging to one group alone
of the molecules, the corresponding term of the integral may be found from the above
table, but if it contains symbols belonging to both groups we must consider the
sextuple integral (20). But we shall not find it necessary to do this for terms of
not more than three dimensions, for in these, if both groups of symbols occur, the index
of one of them must be odd, and the integral vanishes.

We thus find from equations (3), (4), (5), (6), and (7)

gzag R (10
)7

o P :

StalB = ;LOL,B S (32)

L =1£(—2a3—|—(x82+a 2) (33)

Bt 2 “ ')/ . . . . . . . .

S 113 2 2

"S-gaﬁ =6 ;(OL —SOLB +OC‘)/ ) . . . . . . . . (34)

) 3p

'Btaﬁy= -3 ;oc,By T 1))

[Any rational homogeneous function of ¢ 7 { is either a solid harmonic, or a solid
harmonic multiplied by a positive integral power of (£-47?+{?), or may be expressed
as the sum of a number of terms of these forms, .

If we express any one of these terms as a function of w, v, w, V and the angular
coordinates of V, we can determine the rate of change of each of the spherical har-
monics of the angular coordinates.

If we then transform the expression back to its original form as a function of
&, M, Gy & My &, and if we add the corresponding functions for both molecules, we
shall obtain an expression for the rate of change of the original function.

Thus among the terms of two dimensions we have the five conjugate solid harmonics
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S2E—r—0),

&, &

=0 1l
The rate of increase of each of these arising from the encounters of the molecules is
found by multiplying it by --5. We may therefore call g the ‘modulus of the time

of relaxation” of this class of functions.

The function £249*+ ¢ is not changed by the encounters,

Homogeneous functions of three dimensions are either solid harmonics of the third
order or solid harmonics of the first order multiplied by &-%*4{% or combinations
of these.

The time modulus for solid harmonics of the third order is Z—;’-1?—.—-1\Tote added May,
1879.] g

That of & 9, or {, multiplied by &*+9*4-{? is A;

(6.) Effect of External Forces.

The only effect of external forces is expressed by equations of the form

g——x.......:....(ss)

The average values of & 7, { and their eombmatwns are not affected by external
forces.

(7.) Variation of Mean Values within an Element of Volume.

We have employed the symbol 8 to denote the variation of any quantity within an
element, arising either from encounters between molecules or from the action of
‘external forces.

There is a third way, however, in which a variation may occur, namely, by molecules
entering the element or leaving it, carrying their properties with them.

We shall use the symbol d to denote the actual variation within a specified element

If MQ is the average value of any quantity for each molecule within the element,
then the quantity in unit of volume is pQ. We have to trace the variation of pQ.

We begin with an element of volume moving with the veloclty—components U,V, W,
then by the ordinary investigation of the * equation of continuity”

2Qp 1+ QU= T+ Qe n— V) TR+~ W)]=p5Q - - (37)

If after performing the differentiations we make U=u, V=1, W=w, the equation

becomes for an element moving with the velocity (u, v, w)
212



244 PROFESSOR CLERK MAXWELL ON STRESSES IN RARIFIED

;(QP)""PQ(%"'%"‘%)+é(PQf)+%(an)—I—%(pQC):p%Q. .. (38)

(8.) Equation of Density.

Let us first make Q=1, then, since the mass of a molecule is invariable, the

equation becomes

op du  dv | dw\
gt—+p<dm+d-y+ﬁg>_o. L (39)

which is the ordinary “ equation of continuity.”

Eliminating by means of this equation the second term of the general equation
(38) we obtain the more convenient form—

Pa PO+ () + () =pyy - . - . . . (40)

dz

(9.) Equations of Motion.

Putting Q=u+¢, this equation becomes

Y L)+ Lo =X L )

where any combination of the symbols & 7, { is to be taken as the average value of
that combination.

Substituting their values as given in (28)
° d ! d d
P§+R;Z;0(p9)+R[§x(p9a2)+@(peaB)Jr-gz(peay)]:pX. S (49

which is one of the three ordinary equations of motion of a medium in which stresses
exist.

(10.) Terms of Two Dimensions.

Put Q=(u+£)* Since the resulting equation is true whatever be the values of
u, v, w, we may, after differentiation, put each of these quantities equal to zero. We
shall thus obtain the same result which we might have obtained by elimination between
this and the former equations. We find

o i du du  d d d S ‘
Py 208+ zpfngj +2pE0 5 (pE) -, (€ 5 (P8 ) =pge”. . (43)

or by substituting the mean values of these quantities from (29)
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A

ad i a
pbt +Pbt(0°‘2>+ 2p0——— +2P9<a2 “_'_aﬁdj—l— 7;:)

1 3. 3 3 R 202
+R] [ (p000) 45 (p003) + 7 (p00a%y) [= =TT L (a4)
with two other equations of similar form.
Similarly we obtain by putting Q=(u+£&)(v+7)
du
5 (0u8)-+p0( T+ J)
a
0o o+ B B B g
2, o L, Rp*¢?
R{;;;(pﬂ“a%)+d—y(p9mﬂz)+§;(p9mﬁy)]=— PCB . . . . (45)

with two other equations of like form for By and ye.

(11.)  Terms of Three Dimensions.

Putting Q=(u~+£)? and in the final equation making u=v=w=0 and eliminating
ou
o by (41) we find

du

Pa¢f3+3pf3dﬂ+3p§2 +3P52§

+%(P§4)+dfy(p§3n) +d_7(pf3é)

=3¢ L(o8) +1 o)+ L PED [=pgf - - . - - (40)
which gives
e o )

70 dé
+3R2p9@+3R2p0< . L +wy d>+3R 2 (o0)

—3R29ag[6%(p0042)+@(p3a,8)+dilz(p3ay) J:p(RB)%g(——Zﬁ-]-a,Bg—l-ay?) .4

Since the combinations of «By represent small numerical quantities, we may at this
stage of the calculation, when we are dealing with terms of the third order, neglect
terms involving them, except when they are multiplied by the large coefficient p/u.
The equation may then be written approximately :—
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a0 JAp .
SRgpﬁdgzp(Rﬁ)“é—;(—2&3—{—&,89*-[—&)/2) Coe oo (48)

Similarly, by putting Q=(u+§) (v-+7)?% we obtain the approximate equation

Rl p RO} Lo —safote) (49

and in the same way we find

Ripl ._p(Ra)”’(awraB%-Say) L (50)

(12.) Approximate Values of Terms of Three Dimensions.

From equations (48), (49), and (50), we find

9 p(/R\1dO 3 u/R\¥d0 )
3 M SR SN
*="3 p<6> dz’ i =ay’ = 2p<9>

From which by substitution we obtain

R L |

2p dy’ _529 dy
9 u/R\3d0 3 w/R\¥d0
s 0 K(ONAU e Q2 — 2 B[\
v= 2]0<€> w *Y By 2p<9> dz

The value of By is of a smaller order of magnitude, and we do not require it in
this investigation.

(51)

J

(13.) Equation of Temperature.

Adding the three equations of the form (44), and omitting terms containing small
quantities of two dimensions, and also products of differential coeflicients such as

20_5 (0 20 0\ 2 0% 52)
ot 2 p\da® T dy? T d?) " 3pet” T T

The first term of the second member represents the rate of increase of temperature
due to conduction of heat, as in Fourier’s Theory, and the second term represents the
increase of temperature due to increase of density. We must remember that the gas

here considered is one for which the ratio of the specific heats is 1'66,
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(14.) Stresses in the Glas.

Subtracting one-third of the sum of the three equations from (44), we obtain

(53)

Tw dv  dw 2 0 d*e  d*0  d*o
9 o, M
pr= Q’de_l_ < +dJ+d* >+ 00 dao~+‘? p€<dx2+ +d42>

This equation gives the excess of the normal pressure in « above the mean hydro-
static pressure p. The first two terms of the second member represent the effect of
viscosity in a moving fluid, and are identical with those given by Professor STokEs
(Cambridge Transactions, vol. viii., 1845, p. 297). The last two terms represent the
part of the stress which arises from inequality of temperature, which is the special
subject of this paper.

There are two other equations of similar form for the normal stresses in % and z

The tangential stress in the plane zy is given by the equation

Ry ) »
paﬁ_—M<CZy+dx>+3p€dxdy' R TS

There are two other equations of similar form for the tangential stresses in the
planes of yz and ze.

(15.) Final Equations of Motion.

We are now prepared to complete the equations of motion by inserting in (42) the
“values of the quantities a? «f3, ay, and we find for the equation in x

ou dp d*u | dPu | dPu du dw
Pot ™ an <d1’“ + o dz2> +‘ dx< +CZJ+ d4>
9 d/d*  d*¢ d*6
_ _pﬁ &m<d12+dJ2 + (l/2> Co e e (59)
If we write
1 /du  dv  dw d*0  d%0  d%0 .
]0+3M<dx+dg/+*f>+ﬂ2( ;@<dm2 dJ d}) (5b)

or, if' the pressure p is constant, so that pdf-6op=0

, 10 p 08
p:jo—s—-ggt-(58)

then the equation (55) may be written

ou  dp’ Pu AP dPu
Pb‘t+;,;,—n<g@§+@2+;lz—z>=f>x- R 1))
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If there are no external forces such as gravity, then one solution of the equations is
u=v=w=0, p’=constant,

and if the boundary conditions are such that this solution is consistent with them, it
will become the actual solution as soon as the initial motions, if any exist, have
subsided. This will be the case if no slipping is possible between the gas and solid
bodies in contact with it.

But if such slipping is possible, then wherever in the above solution there is a
tangential stress in the gas at the surface of a solid or liquid, there cannot be equi-
librium, but the gas will begin to slide over the surface till the velocity of sliding has
produced a frictional resistance equal and opposite to the tangential stress. When
this is the case the motion may become steady. I have not, however, attempted to
enter into the calculation of the state of steady motion.

[I have recently applied the method of spherical harmonics, as described in the
notes to sections (1) and (5), to carrying the approximations two orders higher, I
expected that this would have involved the calculation of two new quantities, namely,
the rates of decay of spherical barmonics of the fourth and sixth orders, but I found
that, to the order of approximation required, all harmonics of the fourth and sixth
orders may be neglected, so that the rate of decay of harmonics of the second order,
the time-modulus of which is u—p, determines the rate of decay of all functions of less
than 6 dimensions.

The equations of motion, as here given (equation 55) contain the second derivatives
of u, v, w, with respect to the coordinates, with the coefficient w. I find that in
the more approximate expression there is a term containing the fourth derivatives of
u, v, w, with the coeflicient u®-+ pp.

The equations of motion also contain the third derivatives of @ with the coefficient
pi=pb. Besides these terms, there is another set consisting of the fifth derivatives
of 6 with the coefficient u*-+p*p0.

It appears from the investigation that the condition of the successful use of this

. . . d d . .o
method of approximation is that Zg}; should be small, where 7 denotes differentiation

with respect to a line drawn in any direction. In other words, the properties of the
medium must not be sensibly different at points within a distance of each other, com-
parable with the “ mean free path” of a molecule.—Note added June, 1879.]
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APPENDIX.
(Added May, 1879.)

In the paper as sent in to the Royal Society, I made no attempt to express the
conditions which must be satisfied by a gas in contact with a solid body, for I thought
it very unlikely that any equations I could write down would be a satisfactory repre-
sentation of the actual conditions, especially as it is almost certain that the stratum of
gas nearest to a solid body is in a very different condition from the rest of the gas.

One of the referees, however, pointed out that it was desirable to make the attempt,
and indicated several hypothetical forms of surfaces which might be tried. I have
therefore added the following calculations, which are carried to the same degree of
approximation as those for the interior of the gas.

It will be seen that the equations I have arrived at express both the fact that
the gas may slide over the surface with a finite velocity, the previous investigations
of which have been already mentioned;* and the fact that this velocity and the corres-
ponding tangential stress are affected by inequalities of temperature at the surface of
the solid, which give rise to a force tending to make the gas slide along the surface
from colder to hotter places.

This phenomenon, to which Professor OsBorRNE REYNoLDS has given the name of
Thermal Transpiration, was discovered entirely by him. He was the first to point out
that a phenomenon of this kind was a necessary consequence of the Kinetic Theory of
Gases, and he also subjected certain actual phenomena, of a somewhat different kind,
indeed, to measurement, and reduced his measurements by a method admirably
adapted to throw light on the relations between gases and solids.

It was not till after I had read Professor REvNoLDS’ paper that I began to recon-
sider the surface conditions of a gas, so that what I have done is simply to extend to
the surface phenomena the method which I think most suitable for treating the interior
of the gas. I think that this method is, in some respects, better than that adopted
by Professor REYNoLDS, while I admit that his method is sufficient to establish the
existence of the phenomena, though not to afford an estimate of their amount.

The method which I have adopted throughout is a purely statistical one. It con-
siders the mean values of certain functions of the velocities within a given element of
the medium, but it never attempts to trace the motion of a molecule, not even so far
as to estimate the length of its mean path. Hence all the equations are expressed in
the forms of the differential calculus, in which the phenomena at a given place are
connected with the space variations of certain quantities at that place, but in which
no quantity appears which explicitly involves the condition of things at a finite
distance from that place.

The particular functions of the velocities which are here considered are those of one,
two, and three dimensions. These are sufficient to determine approximately the prin-

. * Sect. 12 of introduction.

MDCCCLXXI1X. 2 K
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cipal phenomena in a gas which is not very highly rarified, and in which the space-
variations within distances comparable to \ are not very great.

The same method, however, can be extended to functions of higher degrees, and by
a sufficient number of such functions any distribution of velocities, however abnormal,
may be expressed. The labour of such an approximation is considerably diminished
by the use of the method of spherical harmonics as indicated in the note to Section I.
of the paper.

On the Conditions to be Satisfied by a Gas at the Surface of a Solid Body.

As a first hypothesis, let us suppose the surface of the body to be a perfectly elastic:
smooth fixed surface, having the apparent shape of the solid, without any minute
asperities.

In this case, every molecule which strikes the surface will have the normal component
of its velocity reversed, while the other components will not be altered by impact.

The rebounding molecules will therefore move as if they had come from an imaginary
portion of gas occupying the space really filled by the solid, and such that the motion
of every molecule close to the surface is the optical reflection in that surface of the
motion of a molecule of the real gas.

In this case we may speak of the rebounding molecules close to the surface as con-
stituting the reflected gas. All directed properties of the incident gas are reflected,
or, as Professor LisTING might say, perverted in the reflected gas; that is to say, the
properties of the incident and the reflected gas are symmetrical with respect to the
tangent plane of the surface.

The incident and reflected gas together constitute the actual gas close to the sur-
face. The actual gas, therefore, cannot exert any stress on the surface, except in the
direction of the normal, for the oblique components of stress in the incident and
reflected gas will destroy one another.

Since gases can actually exert oblique stress against real surfaces, such surfaces
cannot be represented as perfectly reflecting surfaces.

If a molecule, whose velocity is given in direction and magnitude, but whose line of
motion is not given in position, strikes a fixed elastic sphere, its velocity after rebound
may with equal probability be in any direction. . .

Consider, therefore, a stratum in which fixed elastic spheres are placed so far apart
from one another that any one sphere is not to any sensible extent protected by any
other sphere from the impact of molecules, and let the stratum be so deep that no
‘molecule can pass through it without striking one or more of the spheres, and let this
stratum of fixed spheres be spread over the surface of the solid we have been con-
sidering, then every molecule which comes from the gas towards the surface must
strike one or more of the spheres, after which all directions of its velocity become
equally probable. .

When, at last, it leaves the stratum of spheres and returns into the gas, its velocity
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must of course be firom the surface, but the probability of any particular magnitude
and direction of the velocity will be the same as in a gas at rest with respect to the
surface.

The distribution of velocity among the molecules which are leaving the surface will
therefore be the same as if, instead of the solid, there were a portion of gas at rest,
having the temperature of the solid, and a density such that the number of molecules
which pass from it through the surface in a given time is equal to the number of mole-
cules of the real gas outside which strike the surface.

To distinguish the molecules, which, after being entangled in the stratum of spheres,
afterwards return into the surrounding gas, we shall call them, collectively, the
absorbed and evaporated gas.

If the spheres are so near together that a considerable part of the surface of each
sphere of the outer layer is shielded from the direct impact of the incident molecules
by the spheres which lie next to it, then if we call that point of each sphere which
lies furthest from the solid the pole of the sphere, a greater proportion of molecules
will strike any one of the outer layer of spheres near its pole than near its equator,
and the greater the obliquity of incidence of the molecule, the greater will be the
probability that it will strike a sphere near its pole.

The direction of the rebounding molecule will no longer be with equal probability in
all directions, but there will be a greater probability of the tangential part of its
velocity being in the direction of the motion before impact, and of its normal part
being opposite to the normal part before impact.

The condition of the molecules which leave the surface will therefore be intermediate
between that of evaporated gas and that of reflected gas, approaching most nearly to
evaporated gas at mormal incidence and most nearly to reflected gas at grazing
incidence.

If the spheres, instead of being hard elastic bodies, are supposed to act on the mole-
cules at finite, though small distances, and if they are so close together that their
spheres of action intersect, then the gas which leaves the surface will be still more like
reflected gas, and less like evaporated gas.

We might also consider a surface on which there are a great number of minute
asperities of any given form, but since in this case there is considerable difficulty
in calculating the effect when the direction of rebound from the first impact is such asg
to lead to a second or third impact, I have preferred to treat the surface as some-
thing intermediate between a perfectly reflecting and a perfectly absorbing surface,
and, in particular, to suppose that of every unit of area a portion f absorbs all the
incident molecules, and afterwards allows them to evaporate with velocities corres-
ponding to those in still gas at the temperature of the solid, while a portion 1—f
perfectly reflects all the molecules incident upon it.

We shall begin by supposing that the surface is the plane y 2z, and that the gas is
on that side of it for which « is positive. '

2 K 2
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The incident molecules are those which, close to the surface, have their normal com-
ponent of velocity negative. We shall distinguish these molecules by the suffix (;).
For these, and these only, & is negative.

The rebounding molecules are those which have & positive. We shall distinguish
them by the suffix (;). Those which are evaporated will be further distinguished by
an accent.

Symbols without any mark refer to the whole gas, incident, reflected, and evaporated,
close to the surface.

The quantity of gas which is incident on unit of surface in unit of time, is —p,§,.

Of this quantity the fraction 1—f is reflected, so that the sign of £ is reversed, and
the fraction fis evaporated, the mean value of £ in evaporated gas being ¢, where the
accent distinguishes symbols belonging to unpolarized gas at vest relative to the sur-
face, and having the temperature, ¢, of the solid.

Equating the quantity of gas which is incident on the absorbing part of the surface
to that which is evaporated from it, we have

Jpé i &=0 . . . ..o (60)

Equating the whole quantity of gas which leaves the surface to the reflected and
evaporated portions

p=(f=1) pbifp€l . . . .. .. (61)

If we next consider the momentum of the molecules in the direction of v, that of
the incident molecules is p,&x,. A fraction (1—f) of this is reflected and becomes
(1—=f)p.&my, and a fraction fof it is absorbed and then evaporated, the mean value
of n being now—v, namely, the velocity of the surface relatively to the gas in contact
with it.

The momentum of the evaporated portion in the direction of y is therefore —fp,'&,,
and this, together with the reflected portion, makes up the whole momentum which is
leaving the surface, or

pagme=(/—1) pém—/p &> . . . . . . (62)

Eliminating fp,'¢,” between equations (61) and (62)

(L= )pEm+pebmet+o [(1=F)péi+pe]=0 . . . . (63)

The values of functions of & y and £ for the incident molecules are to be found by
multiplying the expression in equation (22) by the given function, and integrating
with respect to ¢ between the limits —c and 0, and with respect to  and ¢ between
the limits 4o

The values of the same functions for the molecules which are leaving the surface are
to be found by integrating with respect to & from 0 to .

We must remember, however, that since there is an essential discontinuity in the
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conditions of the gas at the surface, the expression in equation (22) is a much less
accurate approximation to the actual distribution of velocities in the gas close to the
surface than it is in the interior of the gas. We must, therefore, consider the surface
conditions at which we arrive in this way as liable to important corrections when we
shall have discovered more powerful methods of attacking the problem.

For the present, however, we consider only terms of three dimensions or less, and
we find
pr61=—p(2m) (RO} (1 +3$a?) (64)
pabi= plem)(ROM(1+4e) [
p1§m1=%pRﬁaB—-é—p(%)""‘RﬂagB}

65
pobmy=bpROaB-+ bp(2m)RAcB (%)

Substituting these expressions in equation (63), and neglecting ® in comparison
with unity, we find

(2—f)pROaB+1(27) pRO6B+ 27 (27) (1 +1a?) (ROPpv=0 . . . (66)

If we write G:%M(ZW);(pP)—%<;_1> R (14

and substitute for 8 and o8 their values as given in equations (54) and (51), and
divide by 2(pp)?, equation (66) becomes

dv 3 pu 0N\ 3 pdo__
/U—G<dm_2p9dxdg/> zlpﬂdy_-o coee e (68)

If there is no inequality of temperature, this equation is reduced to

dv

If, therefore, the gas at a finite distance from the surface is moving parallel to the
surface, the gas in contact with the surface will be sliding over it with the finite
velocity v, and the motion of the gas will be very nearly the same as if the stratum of
depth G had been removed from the solid and filled with the gas, there being now
no slipping between the new surface of the solid and the gas in contact with it.

The coefficient G was introduced by HermuoLrz and Prorrowski under the name
of Gleitungs-coefficient, or coefficient of slipping. The dimensions of G are those of a
line, and its ratio to /, the mean free path of a molecule, is given by the equation

G_—_g@—ly P ()]

Kuxpr and WARBURG found that for air in contact with glass, G=2[, whence we
find /=4, or the surface acts as if it were half perfectly reflecting and half perfectly
absorbent. If it were wholly absorbent, G=%1.
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It is easy to write down the surface conditions for a surface of any form.,
Let the direction-cosines of the normal v be I, m, n, and let us write

d d d d
o for 1 (ja.c+mdg}+n2l—z'
We then find as the surface conditions

a d

w— G [( —B) u— Imv—Inw]+ ?3L <_ 14 ><9+4G@>

~
O\dx dv dv 0

(71)

Y

— Gﬁ[ (1 —m¥)v—mmnw —mln]+; 5<§/ mc?z)) <9+ 4G@> =0

WGl (L—) w— alu—rm] L —a (0446 ) =0

In each of these equations the first term is one of the velocity-components of the gas
in contact with the surface, which is supposed fixed ; the second term depends on
the slipping of the gas over the surface, and the third term indicates the effect of
inequalities of temperature of the gas close to the surface, and shows that in general
there will be a force urging the gas from colder to hotter parts of the surface.

Let us take as an illustration the case of a capillary tube of circular section, and for
the sake of easy calculation we shall suppose that the motion is so slow, and the
temperature varies so gradually along the tube that we may suppose the temperature
uniform throughout any one section of the tube.

Taking the axis of the tube for that of z, we have for the condition of steady motion

parallel to the axis
dp d*w | dPw'

Since everything is symmetrical about the axis, if we write 7 for a?43* we find as
the solution of this equation

1 dp,

wA+4#d7..........(73)

If Q denotes the quantity of gas which passes through a section of the tube in unit
of time

Q=2x[pwrdr
— of A 1dp ,
—7TpC(/ @“JZOL . . . e . R . (74)

At the inner surface of the tube we have r—a, and

1 dp o
7Tp662+8/L d7

(75)
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also

do__1dp
BTt (76)

The last of equations (71) may therefore be written
Q

T pa’

1, dp 3 udf
—(a? L=
+8M(CL —|—4(}a,)dz 1,0 =0 o (77)

Equation (77) gives the relation between the quantity of gas which passes through
any section of the tube, the rate of variation of pressure, and the rate of variation of
temperature in passing along the axis of the tube.

If the pressure is uniform there will be a flow of gas from the colder to the hotter
end of the tube, and if there is no flow of gas the pressure will increase from the colder
to the hotter end of the tube.

These effects of the variation of temperature in a tube have been pointed out
by Professor OsBorRNE REYNOLDS as a result of the Kinetic Theory of Gases, and
have received from him the name of Thermal Transpiration : a name in strict analogy
with the use of the word Transpiration by GRAEAM.

But the phenomenon actually observed by Professor REvNoLDs in his experiments
was the passage of gas through a porous plate, not through a capillary tube; and the
passage of gases through porous plates, as was shown by GrRAHAM, is of an entirely
different kind from the passage of gases through capillary tubes, and is more nearly
analogous to the flow of a gas through a small hole in a thin plate.

When the diameter of the hole and the thickness of the plate are both small com-
pared with the length of the free path of a molecule, then, as Sir WiLLiam THOMSON
has shown, any molecule which comes up to the hole on either side will be in very
little danger of encountering another molecule before it has got fairly through to the
other side.

Hence the flow of gas in either direction through the hole will take place very nearly
in the same manner as if there had been a vacuum on the other side of the hole, and
this whether the gas on the other side of the hole is of the same or of a different kind.

If the gas on the two sides of the plate is of the same kind but at different tempera-
tures, a phenomenon will take place which we may call thermal effusion.

The velocity of the molecules is proportional to the square root of the absolute
temperature, and the quantity which passes out through the hole is proportional to
this velocity and to the density. Hence, on whichever side the product of the
density into the square root of the temperature is greatest, more molecules will pass
from that side than from the other through the hole, and this will go on till this
product is equal on both sides of the hole. Hence the condition of equilibrium is that
the density must be inversely as the square root of the temperature, and since the
pressure is as the product of the density into the temperature, the pressure will be
directly proportional to the square root of the absolute temperature.
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The theory of thermal effusion through a small hole in a thin plate is therefore a
very simple one. It does not involve the theory of viscosity at all.

The finer the pores of a porous plate, and the rarer the gas which effuses through it,
the more nearly does the passage of gas through the plate correspond to what we have
called effusion, and the less does it depend on the viscosity of the gas.

The coarser the pores of the plate and the denser the gas, the further does the
phenomenon depart from simple effusion, and the more nearly does it approach to
transpiration through a capillary tube, which depends altogether on viscosity.

To return to the case of transpiration through a capillary tube. When the tempera-
ture is uniform . .

pa* dp :
Q—_—_{IZZ(H%) R (£)

By experiments on capillary tubes of glass, MM. Kunpr and WARrBURG found*®
for the value of G for air at different pressures and at from 17° C. to 27° (',

8 .
= centimetres . . . . . . . . . . (79)

where p is the pressure in dynes per square centimetre, which is nearly the same ag
in millionths of an atmosphere. For hydrogen on glass

~

1! .
G:fcen’olmetres N 10

When there is no flow of gas in a tube in which the temperature varies from end to
end, the pressure is greater at the hot end than at the cold end. Putting Q=0 we have

dp__ o 1
= - ()

The quantity 6 f’%; is just double of that calculated in section (3) of the introduction,

and is therefore in C.G.S measure 063 = p for dry air at 15° C, Let us suppose a=001
centimetre, and the pressure 40 millimetres of mercury, then G='00016 centimetre.
If one end of the tube is kept at 0° C. and the other at 100° C., the pressure at the
‘hot end will exceed that at the cold end by about 1'2 millionths of an atmosphere,
The difference of pressure might be increased by using a tube of smaller bore and
air of smaller density, but the effect is so small that though the theoretical proof of its
existence seems satisfactory, an experimental verification of it would be difficult.

* Poaa. Ann., July, 1876.



