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INTRODUCTION.

“ How charming is divine philosophy!
Not harsh and crabbed as dull fools suppose,
But musical as is Apollo’s lute,
And a perpetual feast of nectar’d sweets,
Where no crude surfeit reigns 1”-—-COMUS.

IN the first section of the ensuing memoir, Which is divided into five sections, I eon—

sider the nature and properties of the residues Which result from the ordinary process
of suct'essive division (such as is employed for the purpose of finding the greateSt
eommon measure) applied toflx) and a(m), two perfectly independent rational integral

functions of m. Every such residue, as Will be evident from considering the mode in
Which it arises, is a syzygetic function of the two given functions; that is to say, each

of the given functions being multiplied by an appropriate other function of a given

degree in w, the sum of the two products Will express a corresponding residue. These
multipliers, in fact, are the numerators and denominators to the successive convergents

to 3.; expressed under the form of a continued fraction. If now we proceed& priorz' by

means of the given‘ conditions as to the degree in (x) of the multipliers and (if any
residue,‘to determine such reSidue, We find, as shown in art. (2.), that ”there are as
many homogeneous equations to be solved as there are constants to. bedet’ermined;

accordingly, With the exception of one arbitrary factor'which enters into the solution,
the problem is definite; and if it be further agreed that the quantities entering into
the solution shall be of the lowest possible dimensions in respect of the coefficients of

fand go, and also of the lowest numerical denomination,thenthe problem (save as to

the'algebraical sign of plus or minus) becomes absolutely determinate,'and we can
assign the numbers of the dimensions for the respective residues and syzygetic mul-

tipliers. The residues given by the method of successive division are easily seen not

i * Conjugate would imply something very difi'erent from Syzygetz'c, viz. a theory of the Invariantive properties

of asystem of two algebraical functions.
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408 MR. SYLVESTER ON A THEORY OF THE CONJUGA’I‘E

to be of these lowest dimensions; accordingly there must enter into each of them a
certain unnecessary factor, Which, however, as it cannot be properly called irrelevant,

I distinguish by the name of the Allotrious Factor. The successive residues, when
divested of these allotrious factors, I term the Simplified Residues, and in article (3.)

and (4.) I express the allotrious factors of each residue in terms ofy the leading coeffi-
cients ofthe preceding simplified residues off and go. In article (5.) I proceed to
determine by a direct method these simplified residues in terms of the coefficients of

f and go. ' Beginning With the case wheref and q: are of the same dimensions (112) in .17,

I observe that we may deduce from f and go m linearly independent functions of a:

each of the degree (m—-— 1) in :12, all ofthem syzygetic functions off and go (vanishing
when these two simultaneously vanish), and with coefficients which are made up of

terms, each of which is the product of one coefficient off and one coefficient of gb.
These, in fact, are the very same (m) functions as are employed in the method which

goes by the name of BEZOUT’s abridged method to obtain the-resultant to (i. e. the
result of the elimination of 3: performed upon)f and go. As these derived functions are

of frequent occurrence, I find it necessary to give them a name, and I term them the (m)
BeZOutics or Bezoutian Primaries ; from these (m) primaries m Bezoutian secondaries

may be deduced by eliminating linearly between them in the order in which they are

generated,——-—first, the highest power of 39 between two, then the two highest powers of
x'between three, and finally, all the powers of .19 between them all: along with the

system thus formed it is necessary to include the first Bezoutianprimary, and to con;

sider it accordingly as being also the first Bezoutian secondary; the last Bezoutian' '
seCondary is a constant identical with the Resultant off and qb. When the m.times m

coefficients of the Bezoutian primaries are conceived as separated from the powers of x
and arranged in a square, I term such square the Bezoutic square. This square,

35 shownin art. (7.), is symmetrical above one of its diagonals, and corresponds)
therefore (as every symmetrical matrix must do) to ahomogeneous quadratic function
of (m) Variables of which it expresses the determinant. This quadratic function,

which plays a great part in the last section and in the theory of real roOts, I term the
Bezoutiant; it may be regarded as a species of generating function. Returning to

theBezoutic system, I prove that the Bezoutian secondaries are identical in, form

with thesuccessive "simplified residues. In art. (6.) Iextend these results to the case

off and go being of different dimensions in .r. In art. (7.) I give a mechanical rule

for the construction of the Bezoutic square. In art. (8.) I show how the. theory of

f(m) and c(ay), where the latter (is of an inferior degree to f, may be brought under
the operation of the rule applicable to two functions of the same degree at the

expense of the introduction of a known and very simple factor, which in fact will be
a constant power of the leading coefficient in f(m). In art. (9.) Igive another method

of obtaining directly the simplified residues in all cases. In art. (10.) I present the

process of successive division under its most general aspect. In arts. (11.) and (12.)

I demonstrate the identity of the algebraical sign of the Bezoutian secondaries with
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that, of the simplified residues, generatedby a process corresponding to the develop..

:ment of 3-0:" under the form of an impmper continued fraction (where the negative

sign takes theplace of the positive sign which connects the several terms of an ordi-f
nary continual function). As the simplified residue is obtained by drivingout an

allotrious factor, the signs of the former Will of course be governed by the signs

accorded by previous convention to the latter; the convention made is, that the
allotrious factors shall. be taken With a sign Which renders themvalways essentially

positive when the cOeflicients of the given functions are real. I close the section

with remarking the relation of the syzygetic factors and the residues to the con-

vergents of the continued fraction Which expresses 37g, and of the continued fraction

which is formed by reversing the order of the quotients in the first named fraction.

In the second 'section I proceed to express the residues and syzygetic multipliers
in terms of the roots and factors of the given functions-; the method becoming aswit
may be said endoscopic instead of being exosc0pic*, as in the first section. I beginin

' arts.(14.) and (15.) With obtaining1n this way, under the form of a sum 01' double:
sum of terms involving factors and roots of f and g0, and certain arbitrary functions

of the roots in each term, a general representatiVe, or to speak more precisely, a
group of general representatives for a conjunctive of any given degree in a: tofand go,

i. e. a rational integral functiOn of x, Which is the sum of the'products of 1 f and go
multiplied respectively by rational integral functions of w, so as to vanish 0f neceSsity
when f and go simultaneously vanish. This variety of representatives refers not

merely to the appearance of arbitrary functions, but to an essential and precedent

difference of representation quite irrespective of such a1'bit1'a1iness.

In articles (16.), (17.), (18.), (19.) (20.), (21.), I show how the arbitra1y form of

function entering into the seve1al terms of any one (at pleasme) of the formulae that

represent a conjunctive of any given degree may be assigned, so as to make such

conjunctive identical1n form With a Simplified residue of the same degree. The £01m

of arbitrary function so assigned, it may be noticed, is a f1actiona1 function of the
roots, so that the expression becomes a sum or double sum of f1act1ons Ifi1st p1ove

in arts. (16.), (17.) that such sum is essentiallyintegral, and I determine the weight of
its leading coefficient in respect of the 1'oOts off and go (this weight being measured

* These words admit of an extensive and important application in analysis. Thus the methods for resolving

an. equation (or to speak more accurately, for making one equation depend upon another 'of a simpler form)

furnished by TSCHIRNHAUSEN and Mr. JERRARD (although not so presented by the 'latter) are essentially

exoscopic; on the other hand, the methods of LAGRANGE and ABEL for effecting similar objects are endoscopic.

So again, the memoir of JACOBI, “De Eliminatione,” hereinafter referred to, takes the exoscopic, and the

valuable “ Nota ad Eliminationem pertinens ” of Professor RICHELOT in CRELLE’S Journal, the endoscopic view

of the subject. In the present memoir (in which the two trains of thought arising out of these distinct

views are brought into mutuai relation) the subject is treated (chiefly but n01: exclusively) under its endoscopic

aspect in the second, third and fourth sections, and exoscopically in the first and last sections. L '
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by the number of roots off and go conjointly, Which appear infany term 0f such
coefficient). Now in the succeeding articles I revert. to the Bezoutic system of the
first section, and, beginning With the supposition of m and'n being equal, I demon—.

strate that the most general form of a conjunctive of any degree in .2: Will be a

linear function of the-Bezoutics, from Which it is easy, to deduce that the simplified
residues of anygiven degree in .217 are the conjunctives Whose weight in respect of the

roots is a minimum ;' so that all conjunctives having’that weight must be identical (to

a numerical factor prés), and any integral form of less weight apparently representing 1
a conjunctive must‘be nugatory, every term vanishing identically. These results are
then extended to the case of two functions of unlike degrees. The conclusion is, that

the weight of the forms assumed in (16.) and (17.) being equal to the minimum weight,

they must (unless theywere to vanish, Which is easily diSproved) represent the
simplified residues, or Which is the same thing, the Bezoutian seCOndaries. ‘
We thus obtain for each simplified residue a number of essentially distinct forms

of representation, but all of Which must be identical to a numerical factor pres, a
result which leads to remarkable algebraieal theorems. .
The number of these different formulae depends upon the degree of the residue;

there being only one for the last or constant residue, two for the last but one, three
for the last but two, and so on. The formulae continue to have a meaning When their
degree in 112' exceeds that off or go; but then,’ as although always representing con—
junctives, they no longer representfiresidues, this identity no longer continues to sub-

sist. In articles (22.), (23.), (24.), (25.), I enter into some developments connected
With the general formulae in question: these,‘ it may be observed, are all expressed
by means of fractions containing in the numerator and denominator products of

differences; the differences in the numerator products being taken between groups
ofroots of f and groups of roots of go; and in the denominator between roots off
inter se and roots of go inter se. A great enlargement is thus opened out to the

ordinary theory of partial fractiOns. , i i
In art._(26.) I find the numerical ratios betWeen the different formulae Which

represent (to a numerical factor prés) the same simplified residue, and in arts. (27.)

and (28.) I determine the relations of algebraical sign of these formulae to the sim—
plified residnes or Bezoutian secondaries. In art.(29.) I determine the'syzygetic
multipliers corresponding to any given residue in terms of the factors and roots of
the given fanctions; but the expressions for these, Which are closely analogous to
those for the residues, cease to be polymorphic. They are obtained sepa1ately flow
the syzygetic equation, and it is worthy of notice, that to obtain the one we use the
first of the polymo1phic expressions for the tesidue, and to obtain the other the
opposite extremity of the polymorphic Scale. In the subsequent a1ticles of this
section, by aid of certain general properties of continued fractions, I establiSh
a theo1em of reeipmcity between the series of 1esidues and either series of syzygetic
multipliers.
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'SectionIII. is devoted to a determination of the values of the preceding formulae
for the residues and multipliers in the case applicable to M. STURM’s theorem, Where

Mar) becomes the differential derivative offa: It becomes of importance to express
the formulae for this case in terms of their roots and factors offx alone, Without

the use of "the reots and factors off’w, Which will of course be functions of the

former. ' I ,

By selecting a proper form out of the polymorphic scale, the fractional terms of the
series for each reSidue inthis case become separately integral, and We obtain my well-

.known fermulae‘for the simplified residues (STURM’s reduced auxiliary functions) in
temrs of the factors and the squared difl‘erences of partial groups of roots. This is shown

in art. (35.). In art. (36.) the multiplier off’a: in the syzygetic equation is expressed

by formulae of equal simplicity, and in a certain sense Complementary to the former.
This method, however, does not apply to obtaining expressions for the multiplier of

fa: in the same equation in terms of the roots and factors ot'fx; for the separate

fractions Whose sum represents any one of these factors it Will be found do not
admit of being expressed as integral functions .of the roots and factors. To obviate

ithis'difliculty. I look to the syzygetie equation itself, Which contains five quantities,

Viz. the given function, its first differential derivative, the residue of a given degree,
and the two multipliers, all of which, except the multiplier of fit, are known,

‘or have been previously determined as rational integral functions of the roots and
factors of fx: ,1 use this equation itself for determining the fifth quantity, the multi—

plier in question. To perform the general operations by a direct method required
for this would be impossible; the diflieultyis got over by finding, by means of the

syzygetic equation, the particular form that the result must assume When certain

”relations of equality spring up between the roots ofrfm; and then, by aid of these

particular determinations, the general form is demonstratively inferred.

- This investigation extends over arts. (38".), (39.), (40.), (41.), (42.), (43.). It turns

out that the expressions for the multipliers offa: are of much greater complexity than
for the multipliers off’x or for the residues. Any such multiplier consistsof a Sum of

parts, each of Which, as in the case of the residues and of the factors off’sc, is affected

With a factor consisting of the squared differences of a group of roots ; but the other

factor, instead of being simply (as for the residues and factors before mentioned) a

product of certain factors of fit, consists of the sum of a series of products ofsums

:oif'powers by products of combinations of‘ factors of fin, each. of which series is
affected with the curious anomaly of its last term, becoming augmented in a certain

numerical ratiobeyondkiwhat it should be, in order to be conformable t0 the regular
flow of the preceding terms in the seriesi“.

. The fourth seetion opens with the establishment of two propositions concerning

* The syzygetic multipliers are identical with the numerators and denominators (expressed in their simplest
. r

O C C C xform) of the successwe convergents to the continued fraction Wthh expresses E;
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quadratic functions which are made use of in, the sequel. . Art. (28.); contains the proof
of a law which, although of extreme simplicity, I do not rememberto have seen, and with

which I have not found that analysts are familiar :V. I mean the law of the constancy of

signs (as regards the number of positive and negative signs) in any sum of positive and

negative squares into which a given quadratic function admits of being transformed
by substituting for the variables linear functions of the variables with real coeflia

,cients. This constant number of positive signs which attaches to a quadratic func-

tion under all its transformations, and which is a transcendental function of the.

coefficients invariable for real substitutions, may be termed conveniently its inertia,

until a better word he found. This inertia it is shown in art. (26.), by aid of a
theorem identical with one formerly given by M. CAUCHY, is measured by the

number of combinations of sign .in the series of determinants of which the first

is the complete determinant of the function; the second, the determinant when

one variable is made zero; the next, the determinant when another variable as,

well as the first is made zero, and so .on, until, all the variables are exhaUsted,

and the determinant becomes positive unity. In art. (46.) I givesome curious and
interesting expressions for the residues and syzygetic multipliers, under the form
of determinants communicated to me by MIHERMITE ; and in art. (47.) I showjhow,

by aid of the generating function which M. HERMITE'employs, and of the law of

inertia stated at the Opening of the section, an instantaneous demonstration may be
given of the applicability of my formulae for M. STURM’S. functions for discovering

the number of real roots offa), without any reference tothe rule of common measure;

and moreover,- that these formulae may be indefinitely'varied, and give the generating

function, out of which they may be evolved in its most general form. Had the law

of inertia been familiar to mathematicians, this constructive and instantaneous method

of finding formulae for determining the number of real roots Within prescribed limits
would, in all probability, have been discovered long ago, as an obvious consequence

of such law. I then proceed in arts. (48.) and (49.), to inquire as to the. nature of the

indications afforded by the successive simplified. residues to two general functions

f and e; and I find that the succession of signs of these residues serves to determine
the number of roots off or go, comprised between given limits after all pairs of roots of
either function, contained within the given limits, not separated by roots of the other
function, have been removed, and the operation, if necessary, repeated toties quoties
until no two roots of either function areleft unseparated by roots of the other; or in
other words, until every root finally retained in one function is followed by a roOt of the
other, or else by one of the assigned limits. The system of roots comprised between
given limits thus reduced I call the effective scale-of intercalations; such a scale

may begin With a root of the numerator or of the denominator of fig; and uponthis

land the relative magnitudes of the greatest root of or and fr it will depend whether
in the series of residues, (among which fa: and gm: are for this purpose to be counted)
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changes Will be loSt or gained as .2:- passes f1'0m positive infinity to negative infinity. In

art. (50.) I observe that the theory of real roots of a single f11ncti0ngivenby M. STURM’S
"theorem is a corollary to this theory of the intercalatiOns 0f realroots of two functions,

depending upon the wel'l-known law, that odd groups" of the, limiting function f’x lie
between every two conSecutive real roots of fay. In‘art. (51.) I verify thelaW' of 1'eci—‘

procity, already stated to 'eXist between the residues of far: and gbm, by an a posteriori

method founded on the theory of intercalations. In a1'ts.(5‘2.), (53.), (54.), I obtaina
remarkable 1'ule,f0unded upon the process of common measu1'e,f01' finding a superi01

and inferior limit1n an infinite variety of ways to the roots of any given function.
This methOd stands in a singular relation of contrast to those previously known. All

previous methods (including those derived through NEWTON’S Rule) proceed upon

the idea of treating the function Whose roots are to. be limited as made 11p of the

sum of parts, each of Which retains a constant sign for all values of the variable

External to the quantities which are to be shown to limit the roots. My method, on

the other hand, proceeds upon the idea of treating the function as the product of

factOrs retaining a constant sign for such values of the variable. In art. (55.), the
concluding article of the fourth section, I point out a conceivable mode in Which the

theory of intercalations may beextended to systems of three 01' more functions _

In Section V. a1.ts (56), (57. ), I show how the total number of effective inter-

calations between the roots of two functions of the same degree is given by the

inertia of that quadratic form Which We agreed to term the Bezoutiant to f and (p;
and in the following article (58.) the result is extended to. embrace the case contem-

plated in M. STURM’S theorem ; that is to say, I show, that on replacing the function

of '1' by a homogeneous function of .519 and y, the Bezoutiant to the two functions,
Which are respectively the-difl'erential derivatives of f with respect to .1: and With

1 reSpect to y, Will serve t0~ determine by its form or inertia the total number of real

roots and of equal roots inf (.z'). The subject is pursued in the following arts. (59.),

(60“) The concluding portion of this section is devoted to a consideration of the

properties of the Bezoutiant under a purely morphological point of view; for this

,purposef and go are t1eated as homogeneOus functions of two va1iablesw, y, instead of
being regarded as functiOns of .9: alone. In arts. (61.), (62.), (63.), it is proved that the

Bezoutiant is an invariantive fUnction 0f the functions from which it is derived; and
in art. (64) the important remar'k15 added, that it is an inva1iant of that particula1

Class to Which I have given the name of Combinants, Which have the property of

remaining unaltered, not only for linear transformations of the variables, but also fo1

linear combinations of the functions containing the variables, possessing thus a

character of double invariability. In arts. (65.), (66.), I consider the relation of the

Bezoutiant to the differential determinant, so called by JACOBI, but Which. for greater

_ brevity I call the Jacobian. On proper substitutions being made in the Bezoutiant

of the (m) variables Which it contains (771 being the degree in x, y of f and go), the

Bezoutiant becomes identical With the Jacobian to f and gb; but as it is afterwards
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shown, this is not a property peculiar to the Bezoutiant; in fact there exists a whole
family of quadratic forms of‘m variables, Iineo-(linear- (like the Bezoutiant) in respect
of the coefficients inf and g0, all of which enjoy the same property. The meber of

individuals of such family must evidently be infinite, because any linear combination
of any two of them must possess a similar property; I have discovered, however, that
the number of independent forms of this kind is limited, being equal to the number

of odd integers not greater than the degree of the two functions f and go. In arts.
(67.) and (68.), I give the means of constructing the scale of forms, which I term the

constituent or fundamental scale, of which all others of the kind are merely numerica-

linear combinations. This scale does not directly include the Bezoutiant within it;
and it becomes an object of interest to determine the numbers Which connect the

Bezoutiant with the fundamental forms; this calculation I have carried on (in arts.

(69.), (70.), (71.)) from m=1 to m=6 inclusive, and added an easy method of con-

tinuing indefinitely. In this method the numbers in the linear equation corresponding
to any value of m are determined successively, and each made subject to a verification
before the next is determined, there being always pairs of equations which onght to?
bring out the same result for each coefficient. . .

In the next and concluding art. (72.), I remark upon the different directions in
which a generalization may be sought 0f the subject-matter 0f the ideas involved in
M. STURM’S; theorem, and of which the most promising is, in my opinion, that which
leads through the theory of intercalations. Some of the theorems. given by me in
this paper have been enunciated by me many years ago, but the demonstrations have
not been published, nor have they ever before been put together and embodied in that
compact and organic order in which they are arranged in this memoir,—-———the fruit of
much thought and patient toil, which I have now the honour of presenting to the

Royal Society.

sze 16, 1853.
 

In a supplemental part to the third section I have givenexpressions in terms of the

‘ roots qf ex and fx for the quotients which drise in developing}:— under the form qf a;

continued fraction, and some remarkable properties eonceming these quotients.» * In a
supplemental part to the fourth section I have given an extended theory qf my new
method qffinding limits to the real roots qf' any algebraical equation. This method, so
extended, possesses a markedfeature qf distinc’tionfrom all preceding methods used for-
the same purpose, inasmuch as it admits in every case if the limits being brought up
into actual coincidence with the etetreme roots, whereas in other methods a wide and
arbitrary interval is in general necessarily left between the roots and the limits.
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SECTION I.

On the Complete and simplfied residues generated in the process of developing under

thefbrm of a continuedfractz’on, an ordinary rational algebraicalfraction.;

Art. ( 1.). Let P and Q be two rational integral functions of m, and suppose that the
process of continued successive division leads to the equations

P ~M0Q +R1=0"'

Q —M1R‘1+R2:0

Rl—M2R2+R3=O > . . . . . . . . . . (1.)

 
sothat t

o 1 1 1 ’
P“Mo~—M1—-M2_&c° - - . - - ‘- ° - (2-) 

which is what I propose to call an improper continued fraction, differing from a
proper only in the circumstance of the successive terms being connected by negative

instead of positive signs.
M0,, M1, M2, &c., R1, R2, R3, &c. are, of course, functions of an: the latter we may

agree to call the lst, 2nd, 3rd, &c. residues (in order to avoid the use of the longer

term “ residues with the signs changed”) ; and by way'of distinction fromwhat they

become When certain factors are rejected, we may call R1, R2, R3, 8w. the complete

residues. Each such complete iesidue Will1n general be of the for——-—-—-mN‘g”,N and D
I

being integral functions of the coefficients only of P and Q, but g, an integral

function of these coefficients, and of :12: p, may then be termed the 1th simplified

lesidue, and DI the 1th allotrious factor. Suppose P to be of m and Qof 72 dimensions
1

in x, and m-F-nze, the. process of continued divisiOn may be so conducted, that all

the residues may contain only integer powers of x; and we may upon this supposition
make M0 of 3 dimensions, and M1, Mg, M3, &c. each of one dimension only in .29; so

that R1, R2, R3, . . . . will be respectively of (n— l), (n—-2), (72—3), 8m. dimensions

in w.

P and Q are supposed to be perfectly unrelated,~and each the most general function

that can be formed of the same degree. From (1.) we obtain

R1=M0.Q-—P . fl

R2=M1R1-Q

=(MMM—l)Q—MP L . . . . .. . (3)

R3..--:-(M0MM2+M0+M2)Q-(M1M2—— 1)P

8L0. ==&c.  
MDCCCLIII. 3 I'
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and in generalwe shall have

R,==Q‘.Q+P‘.P,. . . . . . . . . . . . (4.)

Where it is evident that Q, will be of e+(:-—l), and P‘ of (1-4-1) dimensions in 1:.

Art. (2.) Hence it follows that the ratios PI : Q‘ : R‘ may be ascertained by the direct
application of the method of indeterminate coeflicients, for Q, will contain 6+1, and

P1 will contain 1 disposable constants, making 3+2: disposable constants in all.

Again, Q‘.Q and RP Will each rise to the degree n+e+2-l in x; but their sum R‘

is to be only of 72—: dimensions in x. Hence we have to-'makei(n+e+z~—1)——-(n-—:),

i. e. e+2:-—1 quantities (Which are linear in respect to the given coefficients in
P and Q, as well as in respect to the new disposable constants in P, and Q) all
vanish, that is to say, there Will be e+2:é-l linear homogeneous equations to be

satisfied by means of 6+2: disposable quantities ; the ratios of these latter are, there-
fore, determinate, so that We may write

P‘=?\,.(P‘)

QJ=A‘(Q‘) ; . . . . . . . . . . . . . (5.)

R‘2A‘(RI)

and when (P‘), (Q), (R‘) are taken prime to one another, it is obvious that (R‘) will
be in all of 8+2! dimensions in the given coefficients, 2'. e. of : in respect of the
coefficients of P, and of 8+! in respect of those of Q: A) Will correspond to what I

have previously called the allotrious factor; being in fact foreign to the value of R:
as determined by means of the equation (4.), and arising only from the particular

method employed to obtain it through the medium of the system (1.) : it becomes a
matter of some interest and importance to determine the values of this allotrious

factor for different values of 1*.

* These are identical with What I ter‘med quotients of succession in the London and Edinburgh Philosophical

Magazine (December, 1839) ; but by an easily explicable error of inadvertence, the quantities “ Q‘,” " Q2,” &c.

therein set out are not as they are therein stated to be, the quotients of succession or allotrious factors them-

selves, but the ratios of each such to the one preceding, if in the series ; so that-—-

“ 1” is Al

,, . A
is A

A1

H

n Q3” is bi

A2

&c...

This error is corrected by my distinguished friend M. STURM (LIOUVILLE’S Journal, tom. viii. 1842. Sur un

théoréme d’Algéhre de M. SYLVESTEB), who appears, however, to have overlooked that I was obviously

well acquainted with the existence and nature of these factors, and their essential character, of being perfect

squares in the case contemplated in his memoir and my own. MM. BOROHARDT, TERQUEM, and other writers,

in quoting my formulae for M. STURM’S auxiliary functions, have thus been led into the error of ailuding to them

as completed by M. STURM.
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Art. (3) This may be done by the following method, which is extremely simple,
and would admit of a considerable extension in its applications,-were it not beside ‘
my immediate purpose to digress from the objects set out in the title to the memoir,
by entering upon an investigation of the special or singular cases which may arise in
the process of forming. the continued fraction, when one or more of the leading

coefficients in any of the residues vanish; such an inquiry would require a more

general character to be imparted to the values of the quotients and residues than I
shall for my present purposes care to suppose.

Let us begin with supposing 6:1, and write

f:amn+ 1733”“+ cm”"2+ 81c. }
¢=awn~l+fixn—2+7xn—~3+ &C. (6')

Let xix be the first residue of g and w of 53;, and therefore of £3, so that w is the second

residue of %

Let w=7\(w), 0) being entirely integer, and A a function of the coefficients infand go.

If we make Az—g, N and D being integer functions, D will evidently be L2; where L

denotes the first coe’tficient in the simplified residue “2% and is evidently of two
dimensions in a, 3, &c., and of one in a, b, &c.; Dw is therefore of 2x2+1, i. 6. five

dimensions in a, [3, &c., and of two dimensions in a, b, &c.; but 0) (by virtue of what

has been observed of the equations in system (5.)) is of three dimensions in as, ,8, &c.,

and of tWO in a, b, &c. Hence N is of two dimensions in w, ,8, &c., and of none in

a, b, &c. This enables us at once to perceive that N=a2,

for 4.12 is of the formf— (pa:+q)g0, 1

and w is of the form go—(p’x+q')¢ j ' ' (7')

But N=0 makes 0) vanish, and therefore, upon this supposition,f and go would appear

to have a common algebraical factor 4.12, that is to say, N vanishing, would appear to

imply that the resultant of f and g0 must vanish; so that N would appear to be con—
tained as a factor in this general resultant, which latter is, however, clearly inde-
composable into faetors—a seeming paradox———thefl solution of which must be sought
for in the fact, that the equation N=O is incompatible with the existence of the usual
equations (7.) connecting f, g0, 42 and 02: but this failure of the existence of the

equations (7.) (bearing in mind that N has been shown to be a function only‘of the

set of coeflicients a, {3, &c.), can only happen by reason ofa vanishing whenever N

vanishes; a must therefore be a root of N, or which is the same thing, N a power of
(ac) and hence N=w2.

The same result may he obtained (‘1 posteriori by actually performing the successive

divisions; if the coefficients of any dividend be a, b, c, d, &c., and of the divisor

3 I 2
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a, [3, 9/, B, &c., the first remainder forming the second diVisor Will be easily seen to
have for its coeflicients~ “

  

1 a b c 1 a b d 1 a b 6
35.0053, agluomfi, ?.OafiSw'.

' a ‘8 9/ 0: 3 Be 05 [3 s i

a ‘b 0

Hence the coeflicients in the next remainder (making 0 a fi ==m) willbe-

w B 9'
each of the form of the compound determinant,—

‘ a 13 7 “
a b c a b d

0 0 o; B 0 as 9/
7%. < 05 {3 7 on B 51> .

a b c a b d a b e

0 oz [3 0 w 9/ 0 a 5'

L05 B 'y a [3 B 05 {3 54

The compound determinant above written will be the first coefficient in the

remainder under consideration; the subsequent coefficients Will be represented by
writingf, 90; g, 9/, &c., respectively in lieu of e, 2. Omitting the common multiplier

l . . . . ‘
”jg, the determinant above wrltten 18 equal to

_ a b e a b e a b d ' a b d i
121 0 a ['3 X 0 a d -- O w 7 X 0 a: 9/

or. ,8 y 05 [3 e a B 5 . a: E 5 J

a b c { a b d a 6 Ci

+ O a {3 X B 0' a 'y —-vy.0 a {’3

03' fl 9/ ‘ 1 a {3 3 oz ,8 7 J

The last written pair‘of terms are together equal to

a b C J

O as {8 X ~df3a2+cyw2+aa(BB——y2) },

a [3 '7 1

which is of theform ng—a2fi2(B3—72)oa, and the sum of the first Written pair isof the
form w2B+ (c432. aBBualyfi hymns. Hence the entire determinant is of the form a2(‘A+B),
showing that 052- Will enter as a factor into this and every-subsequent coeflicient in the
second remainder, as previously demonstrated above. *

It may,.moreover, be noticed, that this remainder, When oa" has been expelled, Will.
for general values of the coefficients be numerically as well as literally in its lowest
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terms, as evinced by the fact that there exist terms (emgr. wa2'ye) having _-l_-_l for their
numerical part. The same explicit method might be applied to show, that if the first

divisor were 6 degrees instead of being only one degree in .12 lower than the first

dividend, of“ would be contained in every term of the secOnd residue; the difficulty,
however, of the proof by this method augments with the value ofe; but the same

result springs as an immediate consequence from the method first given, which
remains good mutatis mutandz's for the general case, as ‘may easily be verified by the

reader. Applying now this result to, the functions P and Q, Supposed to be of the

respective degrees 72 and 72—3 in x, and calling the coefficients of the leading terms

in the successive simplified residues 051, 052, 063: &c., and the leading coefficient in Q 05,

y and before denoting the successive allotrious factors by A1, K2, 81.0., it will readily be

seen that

 

1 l 1 1
7x =---- 7x .A =~- K .K =-- ' . =- 8m.1 ae+1 2 1 a2 3 2 a2 A4 7‘3 a2, a

1 2 3

Z. 6. Klzz-jfi A2:—-—§- ?\3zaj—ln 42%,

and 1n general

7t ..... 1 .af.a§....a§m_l
2m“ 6+1 a§.ai....a§

’" (8)
l a2 a2 a2 .

A ___we+1 ' 2' 4'” 2912-2
2m— ' 2 2 2 2al.a3.a5...a2m_1J

Art“ (4.). Strictly speaking, we have not yet fully demonstrated that the complete
allotrious factors are represented by the values above given for A, but only that these
latter are contained as factors in the allotrious factors; we must further prove that

there exist no other such factors. This may be shown as follows: it is obvious from

the nature of the process that the complete residues will always remain of one dimen—

sion in respect of the given coeflicients,‘i. 6. first of one dimension in the set a, b, c,

&c., and of zero dimensions in 05, {3,7, &c.’; then conversely, of one dimension in

a, B, 9/, &c., and of zero dimensions in a, b, c, &c., and so on, the residues being

evidently required to conform in their dimensions to those of the first dividend and
the first divisoralternately. I These coefficients then are always of unit dimensions
in respeot to the given coefficients; whereas it has been shown (art. 2.) that the

simplified residues in reSpect to these Coefficients are successively 0f the dimensions

2+6, 4+6, 6+6, &0. i

Let the complete residue corresponding to am be M.A2m.w2m, .
2
2

0—3.3

“3 a5 0!

“6+1 a a:

' 2

9‘1

  

2'. e.

or say M.L; in passing from agq to 052‘!“ the dimensions rise 2 units for all values of

q except zero, and when 920 the dimensions increase per saltum from .1 to 2+6;

hence the total dimensions of L in the joint coefficients will be

((e+ 1) — (2e+2))-—(m-— l)4+4m+e= 1,
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and therefore M is of zero dimensions, and 7% is the complete allotrious factor; In

like manner if the complete residue corresponding t0 2%“ be M.7\2m+1.oa2m+1,

\2 2 2
Z. 6 1 “1.“3 “2722—1 06

. . ”0— "T‘oo-oomo _Til “8+1 “2 0c: “12“" 2m+l)

01' say M.L, the dimensions of L will be

—(e+1)——m.4+(6+2.(2m+1)),i.e. 1.,

and hence, as in the preceding case, M is of zero dimensions, and 7%“ is the com—

.plete allotrious factor.
Art. (5.). I proceed to show how the simplified residues may be most conveniently

obtained by a direct process, identical with that which comes into operation in

applying to the two given functions of .70 the method familiarly known under the

name of BEZOUT’S abridged method of elimination. Let us call the two given func—

tions U and V, and commence with the case where U and V are of equalydi—mensions
(72) in x. The simplified 1th residue will then be a function of 92—} dimensions in x,

and of 1 dimensions in respect of each given set of coefficients, and may be taken

equal to V,.U+U,.V, where V, and U, are each of (z— 1) dimensions in .17.

Let
U=a0.x”+a1.m”‘l+a2.m"‘2+ ..... +an,

V=bO.m”+6l.x”‘l+b2.m"‘2+ ..... +17”, ,

we may write in general {772 being taken any positive integer not exceeding 72},

U: (aomm+alaym‘1+ +am)m”‘m+ (am+1x'"“m‘l+am+2x"“m“2+ .. .. +an)

V: (bomm+ 61mm“1+ . + bm)m"“m+ ([7,,H_1:c”’*”“1 + bm+2x"‘m’2 + .... + [9”).

Hence

(bomm+blr.xm"l+ . . . . +bm)U—— (aomm—kalxm‘l-i— +am)V

=mKlmn‘l +mK2 .mn‘2+mK3x”‘3—l— ..... +me ‘

where if we use (7-, s) to denote ar.bs—-as.6,, for all values of r and s, we have

mK1=(0,m+1) mK2=(0,m+2)+(1,m+1) mK3=(0,m+3)+<1,m+2>+(2,m+1),
and in general m'Kz-zflr, s), the values of r and s admissible within the sign of

summation being subject to the two conditions, one the equality r+s=m+i, the

other the inequality 7- less than i. By giving to m all the different values from 0
t0 m—l in succession, and calling boxm+blxm‘l+....+6m, aowm+al...rm“1+'..+am

reSpectively Qm and Pm,'we have

Q0 .U—-P0 .V: K1 w’H+ K2tvn‘2+ ..... + Kn "

Ql .U-—-Pl .V=1K1.w”"1+ lK2.r”"2+ .....+ 1K”

Q2 .U——F’2 .V=2K1 m “1+ 2K2Jv”‘2—|— ..... + 2Kn > . . . . (10.)

(9-)

 Qn—l-U‘-Pn-1-V:n—1K1 mn_l+n—1K2xn—2+ ----- +n~lKn J
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The right-hand members of these (72) equations 1 shall henceforth term the Bezou~

tians to U and V. .
[The determinant formed by arranging in a square the 92 sets of coefficients of the

n Bezoutians, and. which I shall term the Bezoutian matrix, gives, as is well known,

the Resultant (meaning thereby the Result in its simplest form of eliminating the

variables out) of U and V.) . a
Eliminating dialytically, first fl" between the first and second, then M” and m”*2

between the first, second and third, and so on, and finally, all the powers of .29 between

the lst, 2nd, 3rd, nth of these Bezoutians, and repeating the first of them, we obtain a

derived set of (n) equations, the right—hand members of which I shall term the secondary

' Bezoutians to U and V, this secondary system of equations being

Q0.U—P0.V=K1m”‘l+K2x““2+ngn—3+ +19 ,

(lKlQo—K1Q1)U—(1K1.P0~ K1.P1)V=L1.w"“2+L2m”“3+...+ L ”1

((IKI .2K2—2K1.11{2)Q0+(2K1.Kg—K1.2K2)Ql+(Kl .1K2—1K1 .1K2).Q2)U

——((1K1 .2K2—2K1.1K2)P0+(2K1.K2—K1.2K2) P1+(K1.1K2——1K1.1K2)P2)V

=M1tz*"‘3+M2.x"-»'4+ ....+M,n.__2

&c.=&c. , I .1

And we can now already without difficulty establish the important proposition," that

> (11.)

 
. . . . U , g .

the successwe Slmpllfied res1dues to T7" expanded under the form of an 1mproper con-

tinued fraction, abstracting from the algebraical sign (the correctness of which also

will be established subsequently), will be represented by the n successive Secondzmy

Bezoutz'ans t0 the system U, V.
For if we write the system of equations (11.) under the general form

3,. U -- H,.V=A, .x”"‘+B,w”""+ &c.,

the degree of St and H, in at will be that of Q,“1 and P_l, i. 6. 1—1 ; and the dimen—

sions of A,, B,, &c., in respect of each set of coefficients is evidently (z) ; consequently,

by virtue of art. (2.), 'A,m”“‘1+B,a3 ‘2+ &c., which‘is the ith Bezoutian, will (saving at

least a numerical factor of a magnitude and algebraical sign to be determined, but

which'(when proper conventions are made) will be subsequently proved to be +1)

represent the 1th s1mpllfied res1due to 7*” as was to be shown.

Art. (6.). More generally, suppose U and V to be respectively of ”+6 and n dime‘né

sions in ac.

* V is supposed to be taken as the first divisor, and the term residue is used, as hithertotin this paper,

throughout in the sense appertaining to the expansion conducted, so as to lead to an improper continued

fraction, in that sense, in fact, in which it would, more strictly speaking, he entitled to the appellation of emcess

rather than that of‘resz'due.
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Let U=a0.x”+e+ao.m“+e‘1+a0.w”+°’*2+ 8m.

. V=bo.a:”+blx "1+ &0.

Making A

U=(aow“+m+a1.we+m“+&c. +ae+m)w””’”+ (a.+m+1x”""“+&c. +0....)

V=(b.am+b.wm-1+ .. . +bm)x"*m+<b...mn-m-1+&c.+b.).
weobtain the equation

Qm.U—a-Pe+m.V=mK1.m”+e‘1+mK2.x“+e‘2+&c.+me, . . . . . . (12.)

where

Qm=(bomm+ ° ° ' +bm)Pe+m: (a0.me+m+ ' ' ' +ae+m)

mK1=a0'bm+l 5 mK2:ao-bm+2+a1-bm+1§ ' ° - mKezaO‘bm+e»+al'bm+e—l+&c' +ae'bm

mK.+1=ao.bm+.+,-|—&c. +451,“.I),,,—-a.+,,,+l._b0 &c.=:.&c.

By giving to m every integer value from 0 to (22—1) inclusive, we thus obtain 7:
equations of the form of (12.), each of the degree n+e—1 in w, and of one dimension _

*in regard to each setof coefficients.
In addition to these equations we have the (6) equations of the form

1‘”.V=bo.w”+"+bl.m”+"“+8w.+bna3", . . . . . . . (13.)

in Which (.0 may be made to assume every value from 0 to (e— 1) inclusive, and the

left right-hand side of the equation for all such values of (A will remain of a degree
in a: not exceeding n+e-—- 1, the degree of the equations of the system above described.

There will thus be (8) equations in which only the (1)) set of coefficients appear, and

(22) equations containing in every term one coefficient out of each of the two sets.

The total number of equations is of course n+6. Between the (3) equations of the
second system (13.) and the (-r) occurring first in order of the first system (12.), we

may eliminate dialytically the e+r—-—l highest powers of x, and there will thus arise

an equation of the form

0r;1U—we+r;uV=L«T ""+L’x”“"“+ 8L0. +L (14.),

where 92—1 and we+‘,_1 are respectively of the degrees 71—1 and e+fr—-1 in .23, and
, L,L’, (L) are of (7-) dimensions in the (a) set, and 0f (6+1) dimensions in the ([2)

set of coefficients, and consequently Lx “+L’m?“""‘+...+(L) must satisfy the con-

ditions necessary and sufficient to prove its being (to a numerical factor pres) a,

simplified residue to (U, V).
Thus suppose U:ao..t"‘*+arl..t'3-+0:2..5102-1—a..,..2:+a4

’V= box2 +5155 +122.

Thén.‘corresp0nding t0 the system of which equation (13.) is the type, we have

Vzbo.x2+bl.w~+bz

xV=bo..-x3+bl.m2+b2.x.
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Again, to form the system of which equation (12.) is the type, we write

60 ,U —(a0a22+a112+a2)V= bo(a3a:+a4) — (aoz’2+a,a:+a2) (b,a:+b2)

= —- c1106,.x3---((150792+(2111705122+(boat3 — a, 19,— a2 . b,)w‘+ (boa4—a2172)

(box+b,) .U—— (aotr3+a,.r2+a2m+a3)V= (5,127+ b,)a4-— (a0w3+ alm3+a2az+ a3) 1),

z: - ao.b2x3—alb2w2+(60.a4—a2.b2)a:+ ([7(14—62 .a,).

Combining the two equations of the first system with the filSt 0f the second system,

we obtain the fi1st simplified 1esidue Lx+L’, Whele

0 b, b,

--L:: (70 ‘ 5, b2

a0.6, ’ a0.b2+a,.b, a,.b2+a2.b,—bo.a3i
and ,

0 [20 b,

L’: [)0 [)1 0

(10.6, aob2+a,b, a2.b,—- 60 .114.

By again combining the two equations of the first system With both of the second

system, we have the determinant

  

o b, b, 1 b,

11-— b, ' t b, " b, 0

a017, a0.b,+a,.b, a,.b,+a,.b,--—b,a3 a,.b,-—-bo.ax4

(10.5, a,. b, a,.b,—bo.a4 'a,.b,—.a,.b,

which is the last simplified residue, or in other terms, the resultant t0 the system U, V,

Art. (7.). It is most important to observe that the Bezoutian matrix to two func—

tions of the same degree (n) is a symmetrical matrix, the terms similarly disposed.

in respect to one of thediagonals being equal.

Thus retaining the notation of art. (5.), so that

(0,1):aB—boc (l, 2):!)7—005 (2, 3)=03-—-dy

(O, 2)::a7—ca (1, 3)::53—d‘3 &c.

(0, 3)=aB—doa 8L0.

' &c.

&c. 810., when 72:1 the Bezoutian matrix consists of a single term (0, 1) ;

'when 12:2, it becomes

(0, 1) (0, 2)
(0:1 2) (1: 2) ;

when 12:3, it becomes

(0, 1) (o, 2) (.0, 3)
(0, 3)

(0,2) ( + ) (1,3)
(1, 2)

(03 3) (l: 3) (2: 3);

MDCCCLIII. 3 K
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When 72:24, it becomes ’

(0, 1) (0, 2) (0, 3) (0, 4)

(0, 3) (0, 4)
(0,2) (+) (+) (1,4)

(1, 2) 1, 3

(0, 4) (1» 4)(03) m M (2,4)
(1, 3) (2, 3)

(0, 4) (1, 4) (2, 4) (3, 4) s
when 72:5, it becomes '

(O) l) (O: 2) (O) 3) (0: 4) (02 5)"

”(0, 3) (0, 4) (0, 5) ,M M M
(1, 2) <1, 3) <1, 4)

(0, 5)
’(0; 4) + (l, 5)

(0, 3) ( + ) (‘3: 4) , + ) (2: 5)
(1, 3) (2, 4) '

' (2, 3)

(0: 5) (1: 5) (29 5)m (+) M (3,5)
(l, 4) (2, 4) (3, 4)

(0, 5) (l, 5) (2, 5) (3, 5) (4, 5),.
and so forth. Every such square it is apparent may be conceived as a sort of sloped
pyramid, formed by ‘the successive superposition of square layers, Which layers pos—
sess not merely a simple Symmetry about a diagonal (such as is proper to a multipli—

cation table), ih‘a’tthehigher symmetry (such as exists in an addition table), evinced in
all the terms in any line of terms parallel to the diagonal transverse to the axis of
symmetry being alike*. Thus for 72:5, the three layers 01' stages in question Will

be seen to be, the first—u

(0» 1) (0, 2) (0) 3) (0, 4) (0, 5)
(0, 2) (0, 3) (0, 4) (0, 5) (1, 5)
(0) 3) (0, 4) (0, 5) (1, 5) (2, 5)
(05 4) (0: 5) (19 5) (29 5) (3: 5)

(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) ;
the seeond-w— .

(1; 2) (1, 3) (l, 4)
(1, 3) (1, 4) (2, 4)

1 _ .

and the third— ( 9 4) (2’ 4) (3’ 4) ,

(2, 3).

In general, When (n) is odd, say 2p+1, the pyramid Will end With a single term

* A square arrangement having this kind of symmetry, viz. such as obtains in the somcalled Pythagorean

addition table as distinguished from that which obtains in the multiplication table, may be universally called

Persymmetric. '
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(p, (19+ 1)), and when even, as 2p,'with a square of 4 terms,

((20—2), (12—1)); ((22—2), p)

(<p——2), p), (<p—1>,p).
Each stage may be considered as consisting of three parts, a diagonal set of equal

terms transverse to the axis of symmetry, and two triangular wings, one to the left,

and the other to the right of this diagonal; the terms in each such diagonal for the

respective stages will be

(0, n); (1,n—-1); (2, (72—2)); ... ;\ (p, (p+1)),
p being gw-l when n is even, and 73%} when n is odd.

I f we change the order of the coefficients in each of the two given functions, it will

be seen that the only effect will be to make the left and right triangular wings to

change places, the diagonals in each stage remaining unaltered. The mode of

forming these triangles is an operation of the most simple and mechanical nature,

too obvious to need to be further insisted on here. I

Art. (8.). When we are dealing with two functions of unequal degrees, 92 and n+8,
we can still form a square matrix with the coefficients of the two systems of (e) and

(n) equations respectively, but this will no longer be symmetrical about a diagonal" ;
it is obvious, however, that if we treat the function of the lOwer degree, as if it were of

the same degree as the other function, which we may do by filling up the vacant

places with terms affected with zero coefficients, the symmetry will be recovered;

and it is somewhat important (as will appear hereafter) to compare the values of the

'Bezoutian secondaries as obtained, first in their simplest form by treating each of i the
two functions as complete in itself, and secondly, as they come out, when that of the

functions, which is of the lower degree, is looked upon as a defiective form of a

function of the same degree as the other. A single example Will suflice to make the

nature of the relation between the two sets of results apparent.

Take fmza x4+b x3+cm2+dx+e

¢x=0w4+0w3+7m2+8x+a

The general method of art. (7.) then gives for the Bezoutian matrix

0 a7 a5 ’ as

a5 7 as
0.7 <+> (4—) 56

by [)5

’ae be
(15 (4—) (+ > ceme'y

63 cB—dvy

as be cs —-g- 69/ d2 -- 65.

We shall not affect the value either of the complete determinant, or of any of the
minor ,._determinants appertaining to the above matrix, by subtracting the second line

of terms, each increased in the ratio of b : a from the first line of terms respectively;

3 K 2 ‘
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the matrix s0 modified becomes

0; ay; a3; a2

a7; ‘a8; a2; 0'

be
a3; a2+bB; (+ ; ce—ey

c3—dry

as; be; ce—ey; dee—eh.

Again, adopting the method of art. (6.), we should obtain the matrix

0; 7; ‘ 3; _ 2

7; B; 6; 0

be

3; “5‘53; + ; ce—e'y
cB—dry

as; be; ce—ery; (12—63.

Hence it is apparent that the secondary Bezoutians obtained by the symmetrizing
method Will differ from those obtained by the unsymmetrical method by a constant

factor a2; and so in general it may readily be shown that the secondary Bezoutians,

by the use of the symmetrizing method, Will each become affected With a constant

irrelevant factor a‘”, Where (w) is the difference of the degrees of the two functions, and

(a) the leading coefficient of the higher one of the two. When (a) is taken unity, the
Bezoutian secondaries, as obtained by either method, will of course be identical.

Art. (9.). There is another method* of obtaining the simplified residues to anytwo
functions U and V of the degrees 72 and n+6 respectively, which, although less elegant,

ought not to be passed over in silence. This method consists in forming the identical

equations (of Which for greater brevity the right-hand members are suppressed).

V=&c.

xV=&c.

xe‘l .V=&c.

U=&C.

meLVZSLC.

x.U==-&c.

me“ .V=&c.

m2.Um&c.

me+2.V==&c.

&c.=&c.

mn‘l.U=&C.

me+”‘l.V=&C.

4* Originally given by myself in the London and Edinburgh Philosophical Magazine, as long ago as 1839 or

1840; and some years subsequently in unconsciousness of that fact, reproduced by my friend Mr. CAYLEY, to

whom the method is sometimes erroneously ascribed, and Who arrived at the same equations by an entirely

different circle of reasoning.
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If we equate the right-hand members of (6+2!) of the above equations to zero,

and then eliminate dialytically the several powers of m from xn+e+"“ to 512““ (both
inclusive), the result of this process will evidently be of (e+:) dimensions in respect
of the coefficients in V, and of 1 dimensions in respect of the coefficients in U; and of

the degree am“ in a: it will also be of the form

(A+Bm+...Lm"—1)U+(F+Gm+...+Qa:"’+““1),

and by Virtue of art. (2.) must consequently he the 1th simplified residue to the
system U, V.

Art. (10.). The most general view of the subject of expansion by the method of
continued division, consists in treating the process as having reference solely to the

two systems of coefficients in Uand V, which themselves are to be regarded in the
light of generating functions. To carry out this conception, we ought to write

U=rzo+a1.y+a2.y2+a3y3+&c. ad inf.

Vsbo+bl.y+b2.y2+193y3+&c. ad WI,

and might then suppose the process of successive division applied to U and V, so as
toobtain the successive equations

U *MIV +R1=0

V — M2R1+R2=0

Rl—M3R2+R3=O

&C. &c.,

M1, M2, M3, &c. being each severally of any degree whatever in y, and in general

thedegree ofy in M, being any given arbitrary function go (1) of x. The values of the

coefficients of the residues R1, R2, Ra . . ., or of these forms simplified by the rejection

of detachable factors, becomes then the distinct object of the inquiry, and will, of ‘

course, depend only upon the coefficients «in P and Q and the nature: of the arbitrary

continuous or discontinuous} function goo), which regulates the A number of steps

through which each successive process of division is to ' be pursued. Following out

this idea in a partiCular case, it" we again reduce to our two initial functions the forms
previously employed, and write i

U:a0.m“+a1.m””_’+&c.

V=bO.m”—|—bl .zv”“‘+&c.;

and if, instead of making, according to the more usual course of proceeding, the

divisions proceed first through one step and ever after through two steps at’a time

which is tantamount to making @1221 ¢(l+w)=2, we push each division thmugh one
step only at a time, and no more (so that in fact g)(z') is always 1), we shall have

U --ml'. V +R1=O

V -—m2:v. R1+R2=0

RI-mB. R2+R3=0

Rg—m4.m.Rg‘—l—R4:=O

82.0. &c.,
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m,, 7122, m3, &c. being functions of the coefficients only Of 'U andV; and it is not

Without interest to observe (which is capable of an easy demonstration) that the

simplified residues contained in R1, R2, &c., found according to this mode of deveIOp—

ment,will be the successive dialytic resultants obtained by eliminating the (a-—-1)t.h
highest powers of a: between the z first of the system of the annexed equations (sup—

posed to be expressed in terms of a2)

U=0

V20

$1.120

x.V=O

a32U=0

x2 V20

&0. &c.

xflf1.U=O

x""1.V::O.

If we combine t0gether25+1 0f the above equations, the highest power of .517 entering

0n the left-hand side Will be mm, and we shall be able to eliminate 22' of these factors,

leaving 33““ the highest power remaining uneliminated. If we take 22', i. e. 2' pairs of
the equations, the highest power of as appearing in any of them Will be 32"“"1, and we ,

shall be able to eliminate between them so as still to leave xn+i‘1“(2i“”, i. e. x”"‘ as before,

the highest power ofwremaining uneliminated ; and it Will be readily seenthat such

of the simplified residues corresponding to this mode of development as occupy the
odd places in the series of such residues, Will be identical With the successive simplified

. . . a . U
reSIdues resulting from the ordinary mode of developlng V under the form of a con-

tinued fraction.

Art. (11.). It has been shown that the simplified residues of fit? and gm resulting

from the process of continued division are identical in point of form With the
secondary Bezoutians of these functions, but it remains to assign the numerical

relations between any such residue and the corresponding secondary. .

To determine this numerical relation, it Will of course be suflicient to compare the

magnitude of the coeflicient of any one power of x in the one, With that of the same

power in the other ; and for this purpose I shall make choice of the leading coefficients

in each. In What follows, and throughout this paper, it will always be understood that

in calculating the determinant corresponding to any square the product of the terms

situated in the diagonal descending from left to right Will always be taken With

the positive sign, Which convention Will serve to determine the sign of all the other
products entering into such determinant. NOW adopting the umbral notation for

determ1inants*, we have, by virtue of a much mere general theorem for compound

* See London and Edinburgh Philosophical Magazine, April 1851.
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determinants, the following identical equation :---

aa3a3..ctm__1 X a,a3a3...am+3

41a2a3...05m_1 a1w2wgooowm+l

061062063-- 06 0’ 3 061052...06m~1 “m m~lam+l

(01(12513": amm—la >X(a1a2:::m:1am+1)

“3053053.. 2323.wm—l“m+l am 166m

and consequently

ala2a3o - .am_1X ala2a3 0 on am_l am.am+l

alw2a3-oowm“l ala2w3000a7n_1 uamoam+l

__ 3/ 0102653” 'am-«1am>>< (al102- ::m:lam+l)

\-661062063...0$__.m~106m061062..05”m 105mm

(aa3...am_.1 am )2

“10‘2"“m~1-05m+1

and consequently when

{01(153...ttm_l am }--0

“1052.".C6m_1.am+1 3

ala2H-am—1 a ala2' a'm—-l'0'mam+1
nd

661662...'06m_,1 a053.. 0533-1..61mam+1

will have different algebraical‘signs, it being of course understood that all the quantities
entering into the determinants thus umbrally represented above are supposed to be

real quantities. This theorem, translated into the ordinary language of determinants,

may be stated as follows :mBegin' with any square of terms whether symmetrical or

otherwise, say of r lines and 7‘ columns; let this square be bordered laterally and

longitudinally by the same 1- new quantities symmetrically disposed in respect to one
'of the diagonals, the term common to the superadded line and column being filled up

With any quantity whatever; we thus obtain a square of (r+l) lines and columns;
let this be again bordered laterally and longitudinally by (r+1) quantities symme—

trically disposed above the same diagonal as that last selected, the place in which
this new line and column meet being also filled up with any arbitrary quantity; and

prooeeding in this manner, let the determinants correspdhding to the square matrices

thus formed be called D3,...” D3, D333, D333, this series of quantities Will possess

the property, that no term in it can vanish without the terms on either side of that

so vanishing having cOntrary signs. Thus if we begin with a square consisting of
one single term, we maysuppose that by aceretions formed after the above rule it

has been developed into the square (M) below written, and which of course may be
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fa?

indefinitely extended :---—-
a l m p s

l b n q t

m n c r u; (M.)

p q 7° d v

.S' t . u v e

r here begins With the value ( 1), and D0, D1, D2, D3, D4, D5 Will represent the pro—

gression, ‘ ‘ l
a l m p s

z a z 2’ 2 :f p z b n q t
1; a;a;lbn, q;mncru (IL)

l b . m n c r , '
m n c r d p g r d 7)

P129 8' t u v 8
so if we use the matrix V >

' a l m .p s

l’ b n q t

m n c 7" u

p _ q r d v

S t u v e

the determinants D1, D2, D3, D4, D5 representing

‘ a l m p
a l m ,

a; a l; l" b 7’1»; l b n q;&c.
l’ b m n c r1 a

, m n c
p q r d

will possess the property in question; the line and column 1, b; l’, b not being identical:

the first determinant D0 representing (1) must not be included in the progression.
We shall have occasion to use this theorem aeapplicable to the case of a matrix

symmetrical throughout, and we may term the progression (II) above. written a pro-

gression of the successive principal determinants about the axis of symmetry of the
square matrix (M), and so in general. Now it is obvious that the leading coefficients

of the successive Bezoutian‘secondaries are the successive principal determinants

about the axis of symmetry of the Bezoutian squares ;‘ they Will therefore have the

' property Which has been demonstrated of Such progressions; to wit, if the first of

them vanishes, the second will have a sign contrary to that of +1; if the second
vanishes, the third Will have a sign contrary to that of the first, and so on. '

Art. (12.). Now letfm and m be any two algebraical functions of a: With the leading

coefficients in each, for greater simplicityeupposed positive: and in the course of

developing 5}; under the form of an improper continued fraction by the common pro-

cess of successive division, let. any two consecutive residues (the word residue being;
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used in the same conventional sense as employed throughout) be

' Aw +Btz""+Cx‘“2+&c.

Ba»: +C’x‘”2+D’w"‘3+ &c.

The residue next following, obtained by aetually performing the division and duly
changing the sign of the remainder will be

%3{_c)-— (ABLE)%}x‘”’+ 810.,

B,~:3{B'M——Ac'2}.z.z‘“2+ 810.

Thus the leading coefficients in the complete unreduced residues will be

Which is of the form

, A- 13', 13—7-3{B’M—AC’2},

and when reduced by the expulsion of the allotrious factor will become A; B’;

B'.M—A C2, and consequently, when B’ the leading coefficient of one of the simpli—
fied residues vanishes, the leading coefficients of the residues immediately preceding
and following that one will have cont1a1y signs

Fi1',st let
fxzzax”+bm””‘+&c., ¢x=ax"+fir “‘+&c.

As regards the nume1ica1 1atio of each Bezoutian seconda1y to the corresponding
simplified residue, it has been aheady observed that there we alwaysunit coeflicients
in the latte1 of these, and the same is obviously true of the f01me1-; hence if we call

the progression of the leading coefficients of the simplified residues

R1; R2; R33 R4) &C., i

and that of the leading coefficients of the Bezoutian secondaries

B13 B23 B33 B49 850-9
we have . . ‘ 3

Bl=iRl B2zliR2 B3=iR3 B4=iR4, 8L0.

It may be proved by actual trial that B1211, and B3=R31 Moreover, since the

signs are invariable, anddo not depend upon the values of the coeflicients, we may
Suppose B3220 (Which may always be satisfied by real values of the quantities, of
which B2 isa function) ; we shall also, therefore, have R320, and consequently B3~

has the opposite sign to that of B1, and R3 the opposite sign to that of R1, which18

equal to B1, hence when B2:0, B3 and R3 are equal, and consequently me always

equal; in like manner we can prove that R and B have the same sign when

R3 and B3 vanish, and consequently are always equal, and so on ad libitum, which
proves that the series B,, B3, . . . B33 is identical With the series R3, R3, . . .3 R33, and

consequently that the Bezcutian secondaries are identical in form, magnitude and
algebraical sign with the, simplified residues; Secondly, when fa: and gm: are not of

the same degree, it has been shown that the secondaries formed from the non-
MDCCCLIII. 3 L
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symmetrical mat1jix corresponding to this case will be the'same as those formed from

the symmetrical matrix corresponding to fan and CD(x) (where CD93 is o(x) treated by
aid of evanescent terms, as of the same degree as fr), with the exception merely of a-

constant multiplie1 (a power of the leading coeflicient of fm) being int1oduced into

each seconda1y By aid of this observation, the ploposition established fo1 the case
of two functions of the same degree may be 1eadily seen to be capable of being

extended, from the case of f and g0 being of the equal dimensions in m, to the

general case of their dimensions being any whatever.

Art. (13.). Before closing this section, it may be well to call attention to'the nature

of the relation which connects the successive residues of fog and gm: With these

functions themselves, and with the improper continued fractional form into which

973
far is supposed to be deveIOped in the prooess of obtaining these residues.

If gm: be of 72 degrees, and fa: of n+8 degrees in (n), we shall have

' ¢_x___ 1 ___L______1 _ 1 ‘
f$—Q1” 92"“ 93“ (In 1

where Q may be supposed to be a function of a: of the degree (6), and 92, ([3, . '_ ., q“,

are all linear functions of x; the total number of the quotients Q1, 92, . . . qn being of

course (72) when the process of continued division is supposed to be carried out until

the last residue is zero. Upon this supposition the last but one residue is a‘ constant,

the preceding one a function of :19 of the first degree, the one preceding that a function
of :v of the second degree, and so on.

Let us call the residue of the degree a in w, 35; it will readily be seen that the
successive complete residues arranged in an ascending order will be

8.0) 30-971: 30(911—1'971— 1)) So(9n—2'qn—1-qn—qn_.2— q”) ; &C.,

being in the ratios of the quantities

“—9

8w.1' q ' q __._1.- q .11.;
" v 12" 12-1 9%, 12—2 173g

1
Q
i
l
i
r
—

Again, we shall have in general

A,f—.-L,§D=S,,. . . . . . . . . . . (15.)

A, being an integral function of x of the degree 72—1—1, and L, an integral; function
of .z’ of the degree (n+e)-+1-.—l ; and it is easy to see that the successive convergents

to the continued fraction—
1 1

Q1_ 92" 93—

have their respective numerators and denominators identical with those of the

fractions

   

An—l An—2 An—3
L 2 L 3 L &6.

72—1 n—2 n-3

 

Adopting the language which I have fiequently employed elsewhere, I call 3 a
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syzygetic function, or more briefly, a conjunctiveof f and go, and A,’ and L4 may be

termed the syzygetic factors‘to 3, so considered. If we {divide each term of the

equation (15.) by the allotrious factor (M), we have

where R1. is the 1th simplified residue to (f, ¢) ; a and if we call %=7,, and Ifii=tn so

as to obtain the equation _ .
7,.f—t,.§D=R,, . . . '. . . . . . . (16.)

we see that {1, the fraction formed by the compenent ”factors to any simplified residue
l

of (f, go), will be identical in value (although no longer in its separate terms) with

one of the correSponding convergents to 3;, exhibited under the form of an improper

continued fraction. I shall in the next section show how, not only the successive

simplified residues, but also the component syzygetic factors of each of them, and

consequently the successive convergents, may be expressed in terms of the roots of

the two given functions. _

Since the preceding section was composed the valuable memoir of the lamented

JACOBI, entitled “De Eliminatione Variabilis e duabus Equationibus Algebraicis,”

CRELLE, vol. xvi., has fallen under my notice. That memoir is restricted to‘the con-

sideration of two equations of the same degree, and the principal results in this

section as regards the Bezoutic square and the allotrious factors applicable to that

case will be found contained therein. The mode of treatment however is sufficiently
dissimilar to justify this section being preserved unaltered under its original form.

SECTION II.

On the general solution in terms of the roots of any two given algebraical functions
qf X of the syzygetic equation, which connects them with a. third function, whose
degree in (X) ZS given, but whoseform2.9 to he determmed. '

Art. (14.). Letf and (p be tWo given functions1n w of the degrees mandn lespect-

ively1n m, andfor the sake of greater simplicity let the coefficients of the highest

power of w in f and go be each taken unity, and let it be proposed to solve the

syzygetic equation
¢f_t¢+3,,::0 ..........(..l7)

where S is given onlyIn the number of its dimensions1n x, which I suppose tobe (1);

but the forms of 7,, t,, S, are all to be dete1mined111 terms of h, h2 . . . hm the roots of

fand m, 272, . . .27” the roots of 90. ,

I shall begin with finding 3,; and before giving a more general representation of

3,, I propose now to demonstrate that we may make ' -

S,=2{quq2mq‘xQr—hql)(x—hq2)...(x-hq,)}a . . . . . . (18.)

3L2
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Where thqgmh is used to denote

(h9,“ H1771“qm—772) - - - (hq,+2—’72) l

X(hq,+2— ’71)(h2,+2— ’72)‘ - - - (hq,+2"’7n)

< x(lzq+3 -—772)(h2:+3——772) . . . (hq‘H—nn) >R.(hql hqe...hq),

  2x012”:-21)(h2 -22) - .20222-211)
R(hqlh22. ..h2) denoting any rational symmetlical fo1m of function whatever Of the

quantities preceded by the symbol R, and 92 92.. .92 (1m9m being any permutation

of the m indices 1, 2, m

Supposef=0 and @20, then a: is equal to one of the series of mots

kl I12...hm,
and also to one of the series of roots

#1 172...?)22.

Suppose then that $=ha=2m

and conside1 any term of S.

If1nany such te1m (a) is found1n the se1ies g1 92. .92, then

(w-/lq1)(2‘—'422).. -(2"—/Iq)=0 2
But if not, then (a) must be fonnd1n the complementaIy se1ies kg“2,121”: ..., hgm,

and Consequently qu2”2 Will contain a faetm h—m, and PM“,:0; in every case

therefore ~-

quqgu-q,x(wmthX‘m—hqg'°'(m"'hq2)=oa

and therefme 3 as expressed in equation (18.) Visa‘asyzygetic function off and <p;
acco1dingly We have found a function of the 1th degree1n w, and of course expless-
ible by calculating the symmetric functions as a function only of a? and of the coeffi-
cients of!f and go, Which will satisfy the equation

, 2‘2.f—t2.§0+3,=0.

[It Will be remembered that by Virtue of art. (2) we know 81 priofz' that all the
values of 3, satisfying this equation are identical, save as to an allotrious factor,
which is a function only of the coefficients in f and g] It is clear that we ‘ may
interchange the h and 77, m and n, and thus another representation of a value of 3,
satisfying the equation ( 17.).Will be

r(77q+1_ [21) (”g+2_ hz) - 2° (”q+1“hm) 1

(”2+2— h1)(772+2_ h“) ‘m(”q+2—'h) 4

. 3', = 2R(77q177q2. . .772) X < (an— I21) (nq+3— hz)” .(nq+3— hm) > (w"" ”91) (w‘ 7792) ' ° ' (w ”9.)“

  ‘ (Iq,,2""'.1.h) (7722,2— 2)“ (”222" km) J

Art; (15.). If we employm'1n general the condensed notation

l, m, n, p

71., p0, y
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to denote the product of the differences resulting from the snbtraction of. each‘of the

quantities A, (1., v in the lower ‘line from all of those in the upper line I, m, n, ".91,

the twovalues above given for 3, may be written under the respective forms

2R(hqlh,2...hq‘).[ “2 lqm](x-—hql)(m—hq2)...(:c-—-hq‘)
1 772 ”-7772

and

77, 171, gm”, ~2R<77qlnq2ouflq‘).l:}:+ h:+ .HZm‘JX(m_”€1)(w—fl22)uo(x-nz‘)

in each of which equations disjunctively and in some order of relation each With each

91: 92) 93 "'3 Q7112]: 2) 3: "-9 m9

and

£1, £2, E, ..., 571:], 2, 3, ..., 72.

These two forms are only the two extremities of a scale of forms all equallywell

adapted to express 3,, for let '0 and v be anytwo integels so taken as to satisfy the

equation
v—I—vzt,

and let R(...... 1 ......W), Where the dOts denote any quantities whatever, he used to

denote a rational form of function which remains unalteled1n value when any two

of the quantities under each and eithei (the same one) of the two bars ale mutually

interchanged, then we may Write

” a r‘ h, h, ...h, , ii
n+1 0+2 ‘ m

x («T_ hqi) (113'— th> ’ ' ' (x _— kg”) X («’13— 7751) (IT -- 7752) . . . (w —77£v)

 

 

39=2< 775V+1272V+2o.-775n > . . (19.)

  
Fer if, as above, we suppose w=h,=9w, any term of S, in which 91, 9,, 9,, comprise

among them ha, or in which 51%,...5, comprise among them 771,, will vanish by Virtue of

the factors (x—hql) (m—hqg)...(m—hqv) x ($“775,)(m—’7§,)m(w“’7gv) ; but if neither 11,, nor

:7, is so comprised, then h, must be one of the terms in the c0111plementarySe1'ies

9,“, 9,1,2, "9.21; and 27,, one of the terms in the complementary series 53,“, EH2, g”,

and the1efore one of the quantities liq, +1, hq+2, . ..th will equal one of the quantities

"27,, and consequently the term of S inmqnestion will vanish by vi1tue of

[2
”5+1, n£v+2w.

qv+l qv+2'" qm

the factor [ j} vanishing. In either‘case therefOre every term included
IEV'l-l 77Ev+2 “#7572,

Within the sign of summation vanishes When $=ha=77w 2'. e. wheneve1'f(ar)=0 and

=(sv)=0. Hence 3,, as given by equation (19.), will satisfy the syzygetic equation
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va—tb.¢+SL-_:O for all values of v and U which make v+v=1, and ,for all symme—

trical forms of the function denoted by the symbol R(TTT‘TT‘I; ...).

Art. (16.). I shall now proceed toshow how to assign the arbitrary function whose
form is denoted by this symbol in such a manner as to make 3 become identical

  

  

With a simplified residue to f and <p. To this end I take for R(hqh gkg152k. ..kz)

the value ‘

[hh h

l 77 77 ...77 ' - ‘
= £1 £2 E __J 2

R hql hqz ...hqv‘i rkzl kgz .“kg 3 o . . . . - ( 0-)

hqv+lhqv+2.../z X 1 11 z: qu .... Eu+1 Eu+2"' in

we shall then have ' '

[7172:7792h h0] [kg 4 2 kg]
X n+1 11+ 771

7752 ”1’77; ”5114-1 775114-2. . . 77%

3:2 {(x~hq1)(x——IZ"QB)(w-hqu)}{(m“‘“g)(m—ng)’-,,('Z’_77g)} (21)liq 12.1.2...th x 7751 77%....1275

Izq hq ...hq 77 77 ...77
L n+1 n+2 m £u+1 Zu+2 En

Ishall first show this sum of fractions is in substancean integral function of the

quantities klhz...hm; lilk2...km. For greater conciseness write in general m—hzzE,

x+n=H, We have then, since Iz—zyzfl—E, l‘qé_hqs:Ea._Eqa 7752—” =H£S_Hz ’
. . ES

" [Hngg2...Hgv—] X [H.g:+ngv+2...Hgn

ququ...Eq" Eq+lEqv+2..Eqm] ElEz...Eqm. . . . (22.)
“EquEqumEqmX Hg+1.Hgv+2 ..Hm - q 9

L qu EQ72 ”E9,” H31 Hg2 ...H.; E

On reducing the fractions contained Within the sign of summation to a common

a=2< 

 
. . N . ...

denominator, Sr, W111 take the form m, where D W111 be the product of the 722.7335}

differences of E1. E2, ...Em subtracted each from each, and A the correSponding

product of the difi'erences inter se of H1, H2, ....Hn - .

Hence, unless the sum in question-is an integral function of the ES and H’s, it Will
become infinite when any two of the E series, or any two of the H series of quantities

are made equal. Suppose now E1=E2; the terms in.(22.) Which contain El—EE,‘ in

the denominator Will evidently group themselves into pairs of the respective forms,

‘ E1 E ...E ‘7 E2 E qu
(E1.E.3...E.”)x(Hnggg...Hgv)X{ 93 4., ><{2m1

_ . A _ LHnggz...Hgv HgHg .HZJ
§ 9+2

ElEq3 ..qu F Hg1 ng . . . H5”!—

1313th .Eqm XLH; Hg ~32.-
v+1 v+2

"+1
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and
. 2 E2 E ..E E2 E. ...E

(E2.E23...E2)x(H21H22...H2)x 43 q" ‘ q”? q'"
_ H2H22...H2XH2+1 2mm

”E2Eqa "-E’qv 4 y, *H’éi H52 ”-H’év

VLElEqv+l.'.Eqm X LHgV+1 I g9+2“.I_Ign  
the sum of this pair of terms will be of the form

r El IE2

1 112112.211; X H2211)”. 3112”]
 

 

p I

EiEl—E2 E.
Eqv—i-l qv+2.”E

{’ E2 E

P 12 Haflén'Hg, XHgH-lmj+2. .

+5“ _ - ' .

qv+l qv+2 H

where Q, 1t may be observed, does not contam H2-—H2, so that 6 remams finite

When H2=H2. ,

The above pai1 0f te1ms together make up a sum of the f01m

E 1 ?(En EM—N’E @032: E”WE
Q‘El—E2' qu X41132

Which (as the numerator 0f the third factor vanishes When E1=E2) remains finite 011

that supposition. Hence the Whole sum of terms in (22.) Which is made up of such

pairs of terms, and of Other terms in Which El—E2 does not enter, remains finite

When El—E2=0,and therefore generally When D20, and similarly When Hl—H2=0, ,

and therefore also When A=O; hence the expression for 3 in (22,.) is an integral
function of the E and H se1ies of quantities, as was to be proved. 2 '

A1t. (17. ). Let us now p1oceed t0 dete1mi11e the dimensions of the coefficient of .22‘,

the highest p0we1 of a: in this value of 3,, When supposed to be expressed unde1 the

form of an integral function (as it has been proved to be capable of being expressed)

ofk h2...h22; 271272.. .2722; m. i

This coefficient18 the sum of f1acti0ns the nume1ators of each of Which consist of

two fact01s, Which are 1eSpectively of mo and 0f (m—v)x(n—-V) dimensions in

respect of the two sets of roots taken conjointly, and the denominators of tyv’o factors
respectively of v.(m—v) and 12x (n—v) dimensions in respect of the same.

Consequently, the exponent of the total dimensions of the coefficient in question

:2; x 12+ (m—v)(n-—v)—v(m-—v) -- (p. (71—11))

=(m—v—v) X (n—v—v)

 

=(m—t).(n-t),
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and thus is seen to depend only on the degree I in x of 3,, and not upon the mode of’

partitioning: into two parts 72 and v, for the purpose of representing 3,, by means of

formula (19.) '

Art. (18.). I shall now demonstrate that every form in this scale (to a numerical

factor pres) is identical With a simplified residue to f, (a of the same degree I in 3:.
Any such simplified residue is like 3., a syzygetic function, or to use a briefer form

of speech, a conjunctive of f, (0 ; and if we agree to Understand by the “ weight” of any
function of the coefficients off and (0 its joint dimensions in respect of the roots of

fand go combined, I shall prove,—-—lst, that any simplified residue off and go of a given

degree in m is that conjunctiVe, whose weight in respect of the roots off and (D is less
than the weight of any other such conjunctive ; and 2nd, that 3,, as determined above

(in equation 24.), is of the same weight as the simplified residue, and can therefore only

differ from it by some numerical factor. For the purpose of comparison of weights,

it Will of course be sufficient to confine our attention to the coefficients of the

highest (01' any other, the same power, for each) in x of the forms Whose weights are to

be compared. 1

Supposef to be ofm dimensions, and go to be of n dimensions in .17; and let m=n+e.
Suppose ,

A.f+L.go=Axi+B.-ri‘l+&c. +K . . ' . . . ., . . . (23.)

A=A0.mq+7tl.mq"‘+&c. +Aq

L=loxq+e+ll.xq+3"‘+&c. +lq+e,

the number'of homogeneous equations to be satisfied by the q+1 quantities Kohniq,

and the g+8+1 quantities p0, p01,...‘wqire Will be m+q—z', and therefore 9+1 and
q+e+1 taken together must be not less than m+q—i+l, i. e. 2q+e+2 must be not

less thanq+m—z’+l, z'. e. 9 not less than m—i—e—l; and if this inequality be

satisfied 2g+e+2-(q+m—-i—l)+l, z'.e. q+i+e~m+2 Will be the number of

arbitrary constants entering into the solution of equation (23.).

If g be greater than (72—— 1), let q=(n-—l)+t;

and let (A)=(7\0).w “+(A1).r ~2+ +(An_1)

' (L)=lo.x”+”“+ll.x”+e‘2+ +l(we+n_l) ;

and let (A), (L) be so taken as to satisfy the equation

(A)f+(L).§D:=A.I"+B.Z‘ "1+...+K;

and make E=(A)+(f+g.r+...+h.z"“).¢

X=(L) — (f+g.7c+ . .. +hx"‘)f,

f, g,...lz being arbitrary constants;

then Ef+X.g/>:(A)f+(L)¢>=A.r"—l—B.v“1+...+K.

Now the total number of arbitrary constants in the system (A) and (L) will be
.n—l+-z'+e-—m+2, z'. e. i+l ; hence the total number of arbitrary constants in E and
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X will he i+l+t, z'. e. g—n+i+2, which is equal to q+i+e~m+2, the number of

arbitrary constants in the most general values of A and L.~ Hence {A:E; L=X} is
the general solution of A.f+L.go=Axi+Bwi‘l+ +K; and consequently the most
general form of Awi+Bm“1+...+K, which is evidently independent of the (t) arbi-

trary quantitiesf, g...h, will contain the same number of arbitrary constants as enter

into the system (A) and (L), i. e’. i+1.

Art. (19.). Let us now begin With the case of greater simplicity when mzn,

z'. 8. 8:0; and let us revert to the system of equations. marked (10.) in Section 1., in

which U and V are to be replaced byf and go.
lst. Let i=n—1, and therefore 5+1, the number of arbitrary quantities in the

conjunctive is n. i
From the system of equations (10.), we have for all values of 31, g2, 33. ”gm

(€1Q0+E2Q1+ - ' ' +En- Qn—1)f

—- (€1Po+E2-P1+ m+en-Pn_1)¢
=(g1 .K1+32.1K1+ . .. +gn.,z_1Kl)x”‘l+&c.,

and consequently the most general value of Sn_1 in the equation

7n“1.f—tn_l.¢+3 -1220,

where ‘ 3n_1=Aa? ‘1+Bm"‘2+ . .. +L

Will be obtained by making .

7n_1:gl.Q0+§2.Ql+ +gn.Qn

tu_lz~§I.P0-_—g2.Pl...—-gn.Pm

which solution contains 22, z'. e. the proper number of arbitrary contants.
Again, if i=n—2 :i-l-lzn—l, which will therefore be the number of arbitrary

constants in the most general value of SW2 0f the equation

7nc2f—tn_2.§o+3n_2=0.

This most general value of SW2 is therefore found by, making

7n_2:g’1Q0+e'2.Q1-I~...+3321)“

tn... 1: ~g’1P0—g’2. P1 . .. —-g’n. Pm

where» g’ 1, 3'2,..,.g’n are noilonger entirely independent, but subject to the equation

g’l.Kl+g'2.1K1+ +g’n.n..1K1=O,

so as to leave (72—- 1) constants arbitrary.

We thus obtain S,,,__2=(g’1K2+g’2.1K2+ ...+g’n.n_1K2)x""2+&c. In like manner, and

for the same reasons, the most general values of 3,24 in the equation

7n_3.f—tn_3.¢+3 ”3:0

Will be found by making

7n_3=g'{-Qo+g§§.Q1+.--‘+QZ.Qn..1

tn_3=——gll’.PO-—g’2'.Q1...—-§;;;Pn_],

MDCCCLIII. 3 M
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where 51', gig, mg; are subject to satisfying the two equations

EioK1+EgolK1+ - .. +QZ2'n—1K1=O

EiI-Kz-l-E; 1K2+ ° ° ° +EiIz°n~1K2=09

so as to leave (72—2) constants arbitrary; and we thus obtain

Sn—3=(Ei-K3+EI2I°4K3+--°+E;°n—1K3)xn#3+&C-a

and so on, the number ofindependent arbitrary constants in S decreasing (as it ought)

each time by one unit as the degree of S descends, until finally, if ro.f— to.¢+30=0;

30 being a constant, the general value for 30 is found by making

ro=<gl>.Qo+<e2>Q1+...+(gn).Qn_1
to: —(31)P0-—(g2)P1 " -°-"‘ (En) '1) —1,

where g1, g2, mg” are subject to satisfy the (72—1) equations

(31).K1+&c.=0

(El) .K2+&C.=0

(31).I{n_1+&c.=0, ‘

Which gives 30:: Kn(g)1—|—2Kn(g)n+ . . . +n_1Kn(g)n.

NOW evidently the lowest weight in respect to the roots of U and V that can be

given to (glKl-l—g2 1K1+...+gn n_1K1)m"—1+&c., when the multipliers 31, 52, mg” are

absolutely independent, is found by taking gl=l g2=0 ggzO...gn=O, which makes the.
weight of the leading coefficient in 3 _1, the same as that of K1, 2'. e. 1.

Again, when one equation,

61 K1+§'2 1K1+ m+e; n-1K1=0,
exists between the (g)’s, the lowest weight will be found by making

€1=1K1 5'2=—K1 55:0 §;=0m€;=0,
which makes the weight of the leading coefficient in Sn__2 depend on

1Kl K2—K1 1K2,

which is of the weight 1+3, 2'. e. 4 in respect of the roots off and gb.

Similarly», 3,,_3 willhaveits lowest weight when its leading Coefficient isthe determinant

K1 K2 K3

lK1 1K2 lK3

2K1 2K2 2K3,

the weight of which is 1+3 +5=9; and finally, the lowest weighted'valueof So is

the determinant represented by the complete Bezoutian square; the weight in
general of Sn“. being 1+3+ +(21—1), z'. 6. 2'2, or which is the same thing otherwise

expressed, the weight of the leading coeflicient 0f the lowest—weighted conjunctive off
and (p of the degree I in x is (n—:)(m—:) 3“. It will of course have been seen in the fore-

* n and m are supposed equal and t=n—i.
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going demonstration, that the weight 0f TK’S [which means 2(a,..bs—as.b,,) a.“ as being
the coefficients of W"; xn‘s in f; and 127., [98 0f the same in 9‘0] has been correctly taken

to be r-l-s in respect of the t'oots off and 40 conjoined.
Art. (20.). If new We proceed in like manner With the general case of m=n+e, it

may be shown, in precisely the same way as in the preceding article, that the most

general value of any conjunctive ofj and g0 Will be a linear function of (6) functions,

as". +al..1? "1 +052 mn‘2—l— ..§.+a.n

512”“ —|—a1.m” +a2.m”“+_... +awx

am” +a1.w”+‘+a2.w” + +an :02

mm” +a1.mm"2+&c. +aflwe",

and 0f the (n) functions,

0K1.x”'1+ 0K2.a: ‘2+ ...+ 0K”

lIi].t'z;"”'“1+ 1K2.x”‘2+... + 1K”

&c. &c.

n-1K1.m "1+,HK2 wn‘2+ +nfllKn,

and that consequently, if the degree of such conjunctive in a: be (n—z’), it Will be of
the lowest weight When it is-a linear function of the entire (6) upper set of functions,

and (I) of the lower set; and consequently, the coefficient of the highest power of m
in such cOnjunctive Will be the determinant

0K1 0K2 0K3 ..... oKi. oooooooooooooooo 0Ki+e

1K] 1K2 1K3 ooooo 1K5.............§...1K5+e

2K1 2K2 2K3 ..... 2Ki ooooooooooooooooo2Ki+8

i-"lKl i_1K2 i‘I'IK3" 3"“1K2 ooooooooooooooo z~1K2+e

1 al a2 ....... ai__1 aiooooooooooo a,+e

1 a1 ....... 02—1 ai ........... am,"1

1 .......am at,- ........... 024.84

1 . ' at,

the weight of which is evidently that of

, 0K1X1K2 X 2K3... XMKix (a5):

V zze.1+3+5+.‘..+(2z‘—-1)+e.z‘
.213. i2+ei, 0r i(e+.i), which is (n—t)(m-—:) if iznq.

3 M 2
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Hence the weight of the leading coefficient in the lowest-weighted conjunctive of

fand g0 0f the degree I in .22 is (m—1)(n—:), m being the degree off and n of go.
From this we infer that any conjunctive off and g0 of the degree I, of which the

leading coefficient is of the weight (m—:)(n-—:) (all the coefficients being of course
understood to be integral functions of the roots off and e), must, to a numerical

factor pres, be equivalent to any other of the same weight; and furthermore, any

supposed function of a: of the 1th degree which possesses the property characteristic ofa

conjunctive of vanishing, whenf and g0 vanish simultaneously, but of which the weight

of the leading coefficient would beless than (m—t) (n—t), must be a mere nugatory

form and have all its terms identically gem *.
Art. (21.). We have previously shown, art. (16.), that S, as'defined by equation

(21.), is an integral function of the rootsf and g0, and vanishes Whenf and go vanish.
Moreover, its weight in the roots has been proved to be (m—:) (12—1), and consequently,

if by way of distinguishing the several forms of S, we name that one where I in the

equation above cited is supposed torbe divided into two parts, 22 and :2, SW, we have

for all values of v and :2, such that v+v is not greater than 92, SM to a constant nume-
rical factor pres identical with the (v+v)th simplified residue to (f, 90), so that the ,

form of 8,, ,, depends only upon the value of v+v.

Art. (22.). It must be well borne in mind that this permanency of the value of

SW.” for different 'values of v has Only been established for the case where 2' can be

the degree of a residue tof and 90, that is to say, whenz' is less than the lesser of the

two indices m and n. When 2' does not satisfy this condition of inequality, the

theorem ceases to be true. It is clear that when man and v+v=m=n, 31,”, Which

always remains a conj unctive off and go, can only be a numerical linear function off

and go; and I have ascertained when mzn on giving to v and u the respective values
successively (O, n), (1, n—l), (2, (72—2)), (n, 0)

that 30,n=f; 31,,,__1:(n—1)f+¢; ngn2=Wf+(n—l)¢m

3n—1,1=f+(n- 1X0, Sn, Fab.

Thus, by way of a simple example, let

f=x2+ax+ b:(w-—h1)(w— h2)

¢=J92+W+B=(m*m)(m—n2)

W ”1x0 ]so,,=(m__hl)(m—k,)<' ‘- ““2 —(m—-/z,)(m-—/L,)t—_-f

[Ml [21kg]—
* And more generally it admits of being demonstrated by precisely the same course of reasoning, that the

number of arbitrary parameters in a conjunctive of the degree 2', and of the weight (m—z')(n—z')+s in the roots

cannot (abstraction being supposed to be made of an arbitrary numerical multiplier) exceed the number s.
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222(33— k)(x—k)[/:Z::]X[’5]

lthial
2251:2212,“__]€;-'-_{(]”1 k1)(h2—k2>}2

..=2;—;1.{k 1. (w—kawx—km—k» - }
1— 2 1'- 2 —(x—k2)(h1—k2)(h2—-lcl)

£222; - {<h.—h.)x+ { (k.+k.)h.-— (1.1..ch }}
=(rr—h1)m+ (m— h2)w— (k1+k2)w+ (h1h2+k1k2)
=(sv2—(h1+k2)ay+hllz2)+(x2—(kl+k2)x+k,k2)

=(m2+ax+b)+(m2+wm+fi3)

=f+¢ ;
so we find also 32,02q0.
‘Art. (23.). The expression 31,, V, which is universally a conjunctive off and o, con—

tinues algebraically interpretable so long as 72+» has any value intermediate between
(0) and m+n; when v+v=0, we must of course have v=0 and 22:0, and SD, 0 becomes

the resultant offand o when v+v=m+ng we must also have the unique solution

v=m and 12:72, and Sm,” becomes necessarilyfx QD, which we thus see stands in a sort

of antithetical relation to the resultant off and go, say (f, go). Nor is it without interest

to remark thatfx <p=0 implies that a root offor else of ¢> is zero; and (f; ¢)=0
implies that if a root of the one of the functions is zero, so also is a root of the other,

2'. e. that a root ofeach or of neither is zero. As i increases from O to n or decreases

from m+n to m— l, the number of solutions of the equation v+y=i in the one case,

and the number of admissible solutions of the equation v+v=i in the other case, which

is subject to the condition that :2 must not exceed 72, continues to increase by a unit at

each step; there being thus n+1 different forms SM when v+v=n, and the same

number when v+y=m-—l. For all values of 2' intermediate between 72 and (m— 1)

(both taken exclusively) it is very remarkable that SW will vanish, as I proceed to

demonstrate. 7

Art. (24.). The weight of the coefficient of the highest power of SW (0+2; being

equal to 27) is (m—z')(n-—i), and consequently, when 2' is greater than n, and less than
m, 3%,, would contain fractional functions of the roots off and go, if there were in it a

power x5, but 3”, v has been proved to be always an integer function of the roots. Hence

the coefficient of .275 Will be zero, and so more generally the first power of x in SW, of

which the coefficient is not zero, will be .29“, subject to the condition (since evidently

the weight of the several coefficients goes on increasing by units as the degree of the

terms in x deci'eases by the same) that 0) be not less than (m—z')(z'—n); let then

w=(m—i)(z'--n), SM becomes of the form Ax5“""+Ba:i"""‘1+ &c., where A is of zero
dimensions; but this is impossible if i—w<n, for then Ami““’+ &c. is a conjunctive of
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weight lower than the lowest—weighted simplified residue of the degreei—w. Hence
w is not greater than i—n 01' (m—i)(z'—n) is not greater than i—n, 2'. e. m—z' cannot

be greater than 1, 2'. e.z° when intermediate between m and 12 cannot be less than
m— 1, otherwise Sm will vanish identically. Moreover, when i=m— 1, w=i—n, and

i—w=n, and accordingly Sump” is not merely, as we might know, 81 pm’orz’ an alge-

braical, but more simply a numerical multiple of go for all values of v. The same is

of course true also, m being greater than n, for every form SW_M since this is always

a conjunctive off and go, of which the former is of a degree higher than the S in
question, so that the multiplier offin this conjunctive must be zero*.

Art. (25.). To enter into a further 01' more detailed. examination of the values

assumed by S”, 1, for the most general values of m, n, i, would be to transcend the limits

I have proposed to myself in drawing up the present memoir. What we have esta-

blished is, that to every form of 3m-” appertaining to a Value of 2' between 0 and 77,

there is a sort of conjugate form for which 2' lies between m+n and m; that for

i=m—-—l or 27:72, 3mg, becomes a numerical multiplier of 90; and that when 2' lies in

the intermediate region between 92 and 711—1, 3152....” vanishes for all values of v. 1. I

pause only for a moment to put together for the purpose of comparison the forms
corresponding to 1° and to m+n—i. By art. (16.), making i=v+v,

31: E(w—hql) (x—hqg) . .. (m—hqv) X (123—7751)(x—77$2). . . (512—275)

, [hfh h92"‘hqb] X [hqu h9v+2"'h9mj

X 77% flézu'ngv ' n§v+1 n§v+2"'775n __ .

[h‘h h(Iz ”'th ii X [7751 7752 "J75?

h90+1h90+2" 'hqm n§v+1n§v+2"°n§n_J

I‘he conjugate form fo1 which2’:=m+n--i and m—v 12—» take the places of v andy
(m—v)(n—12) Will be got by taking

311:2(w— hqv+1)(x- h9v+2)" (33--hqm) X (617-~va+l)(~r— 7754—2)“ (w—fis)

[fish h92"'h9v:l X [h90+1k90+2'”h9m]

X 7751 7752 "J75 n§v+l n§v+2 "'775n

ihql hQQ "'th‘1 7751 7752 0007751,

h 12 .J2 ix 290+1 qv+2' "1m 775v+177§v+2nd7§n

which it will be pe1ceived a1e identical, te1m fo1 term, in the fractional constant

facto1, and diiTe1 only1n the 1inea1 functions of :19, which1n 3 and1n 3,, are complemen-a
tary to one another. Our p1ope1 businessis only with those f01ms for Which i<n.

Art.» (26.). It will presently be seen to be necessary to ascertain the numerical rela—

tions between 30,5 and 3,5,0 When. i<n, and this naturally brings under our notice the

  

* It thus appears that if the indices m and 12 do not differ by at least 3 units, 8 Will have an actual quanti-

tative existence for all values of 2" between 0 and m+n; or in other words, the failure in the quantitative:

existence 0f the forms 3i only begms ‘70 Show itself When this difference18 3; thus if m=n+3 .9” exists, and

3114—2 EXIStS, but 3n+1—-—O.
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inquiry into the numerical relations Which exist between the entire series of forms

Sm—v for a given value of 2', corresponding to all values of 7) between 0 and 73 inclusive.

In order to avoid a somewhat oppressive complication of symbols, I shall take
a particular numerical. example, i. 6. 71227 72:6 i=4, and compare the values 01?

30,4; 31,3; 32,2; 33,1; 34,0, all of Which We know to be identical, [to a numerical

factor pres] with one another and with the secund simplified residue tof and go, that

being of the fourth degree in x; our object in the subjoined investigatiOn is to deter-

mine the numerical ratios of these several forms of S‘to one another.

- First. Let 21:0 v:=4. The leading coefficient 30,4 is

775 776

2h‘ Iz2 kg h4 h5 126 h7

775 776

771 772 773 774

WhiCh we know 5L: priori (it should be observed) to be essentially an integral
function of the h and the 77 system. In this, the term containing 773 will be evidently

 

775
(A.) , 2h] kg n3 h4 h5 ha h7,

‘ 775

771 772 773 774

 

the :7 system to Which the latter summation relates being new reduced to consist of

911772773774775. In. this expression, again, the coeflicient of 272 is evidently}. Hence,

therefore, the leading coefficient in 30,4 contains the term 272.273. _
Secondly. Let 0:21 v=3. The leading coefficient in 31,3 becomes

77177233 X [774 775 776

2 kl L_hg kg h4 kg, h6 h7
[h2 h3 h4 125 I56 ’37] [774 775776].

, X
h , m 772 773

In this, the factor affecting 272 Will be

771772 773 ’74 775 __

BL,“ 1X [’12 [73,14 h5 h6h2]

[/22 ha h4rh5 h6 bf] [’74 775 :1,
X

7:6 being new understood to be eliminated out of the 27 system included within the

above summation. Again, in this latter sum the factor affecting 272 Will be

[m 77277;} X [774 J
(13.) 2...]21 h2 h3 M [15 h6 h7

[/12 m, 122/15 h6 h,” [774 J
k ' X1 ,_ 771772 773

925 and 715 being now both eliminated out of the 22 system. This last sum can of course

only represent a numerical quantity.
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S0 in like manner, again, if 22:2 12:2, the coefficient of 77%.772 Will be similarly

reducible to the form
[771 772] 'X [77374 J
h1 kg h3 h4 h5 h6 h7 .

(0-) , 2 123 I74 115 126 M 223 274” m: 32’
mm X me

So, again, when 27:3 12:1, the Coefficient of 272. 272 will be I

[—771 772 773 774

la h2 ha h 725 126727Jinfi

[14/257,16hj 772773774 331;

Whhh XX[771 J

 

(D) 2 

and finally, the coefficient of 27%.»: will be

, [771772 77374 :‘l
H hem .

(E) 2W1 1“ S”0,49

th hzha 724

out of all Which sums it is to be remembered that :75 andfi are supposed excluded
from appearing. All these several coefficients being numbers in disguise, we may‘

determine them by giving any values at pleasure to the terms in the h and 21 system.

Let now 771=hl 272=h2 77322-713 774:}54, then in (B.) it Will readily be seen that all the

terms included within the sign of summation vanish identically, except the following,
viz.”

"711772773
7 JXLMkWhhth
hmhhlt5h6h71><fl4 ]

h4 L771 772 773

.—

 

h..—

_771 772 W47 X 773

m j thhflhmm:
:h i12h4h5fll16/L‘IX [273

-hS‘ J 771772774

r"771773774: 772 M

_@ X hhhwhmh_
—/I I23 h4 I25Mhfih] [772 ~

[2 X
2 771773774_

 

 

r772’73774 X 31 T

kl hwhhh/lwh

‘Whhkhth F1 '
k X

.. 1 772 773 774._

' In each of these expressions the first factor of the numerator is identical in value
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(by reason of the equations h2=772 h2==n2 1222:2272 7222:2722) with (~)3>< the second factor

of the denominator2 and the second factor of the numerator with (—)6)< the first

factor of the denominator; hence the coefficient of 272.27% in 3222 is —-4.

In like manner the only effective terms of S2, 2 Will be

[7713 W2 F773 774 j [—773 774i X 771772 -

h2JX Jh I12 h2 A2117_2 J12 [22 11212112 1221122
[/132/12/122k2h] >< [772772 ’ "122/12122/12/12] x [27227;
  

   
     

ha ’54 77177222 ' mh1h2 773774‘

I’m :72XF212 774 “- “712 774 X '"m3 7
2122/22 XLhthhhm hh2 hmhhhmh
h2h2h22h2h]x 772272’ :122/229222l2h2/11X1W2n2

L_ha hi i L_771773__ » {77277422

“7712774. x 772773 '— ">72 273 X, m4 ‘
21221122 112 1127221121222 122/222 2122112112 11221122
“/12 12,2/12/12/22 ’ m2“ "52};2/12122112] 2222'“

L_hsg h3 :J X |__772773_~ ”h2 k?) X L771774__ 
Any other term Will necessarily contain in the numeratora factor, Whose symbolicai

representation Will contain one of the quantities 771 772 773112 in the upper line, and one

of the quantities h2 h2 122 In, having the same subscript index in the lower line, and

Which Will therefore vanish; the number of effective terms being evidently the

number of ways in Which four things can be combined 2 and 2 together, andthe

value of each term is evidently (—)2'2.(——1)2‘5.l, so that the entire value of the
coefficient of 272.27% in 322 is +6.

Precisely in the same 'Inanner, we shail find that the leading coefficient in S2, 2 will.

contain the term'—-4tz7§.z722 the (---1) resulting from the operation (—1)“3.(-l)3'4,

and in 32,22 the term 4472.272, the +1 resulting from the operation (—1)”. Hence it

appears that 322; 32,2; 32,2; 32,2; 3222 are to one another in the ratios of l ;2 ~41; A

6; —-4; l ; and so in general for any values of m, n, 2' (i being less than 772 and less

than n) it Will be found that i

J 8"0,2‘: 31223-4: S22z'—-2: ”-3520

will be in the ratios of the numbers '

2. . m__ .23—1 m__ .i—l i—2 2m”.
1; (—1)MI.Z; (—])2( 2).Z.‘-—§-“; (—4)?“ 3).Z.*-2*.“§“,...; (“IN ).

Art. (27.). The method employed in the preceding investigation Will enable us to

affix the proper sign and numerical factoi to S2, 2 or 32- 2, or in geneIal to S2,2-__22 in

o1der that it may repiesent the Bezoutian secondary of the degree 2' in m. [This
latter has been already identified With the simplified residue obtained by expanding
i933 .

fx

sufficient to compare a single term of any such 3 With the corresponding one in the

Symmorphic Bezoutian secondary. Let us first suppose that mzn, fand 90 being of

MDCCCLIII. 3 N

under the form of an improper continued fraction] For this purpose2it Will be
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the same degree. - A'glanee at the form of the Bezoutian square will show that if we

form the Bezoutian secondary 0f the degree (11—13) in m, the coefficient of its leading

term will contain the term (—-)(""1)”‘ (0,1)i; (0,1') as usualdenoting the product of the

coefficient of :12” in fby the coefficient of 111"”i in go, less the product of the coefficient

of w” in q: by that 0f 1”” in f; and as we suppose the first coefficients in f and go to

be each 1, if we term the other coefficients last spoken of az- and 061 respectively, this

said coefficient of the leading term" of the ith Bezoutian second:17y will contain the

term (—)“‘”’§(ai—oai)i, and consequently (— l)(z 1)2ti .101and (—- )“E‘

New by the like reasoning as that employedIn the preceding a1tlcle, the coefficient

of the leading term in SW“ 1'. e.

qu1 11%. . .hqi]

71 71 ...71m J
l’hql hqg .../1%. 7

Lh9i+l hqi+2"'h9m

will contain the quantity 2(h1.h2.h3...hi)i, and therefore will contain a term

 
2(x_h%+l) (m "hqi+2) ' ' ' (73- hqm)

(E(h .2.l1 113. ..hi))i,..1' 6.(—)“a2, Which is equal to (—)"a’§, since (i—l)z' is always even.

Hence 3111-1 0:-...(-— )i'i2x the cm71esp0nding Bezoutian secondary.

Art. (28.). The above applies to the case where we have supposed 111,211. When

this equality does not exist we may proceed as follows. Prefix to h(m), the first coeffi—

cient of which, is still supposed to be 1, a term 5—111“, where e is positive and indefi-

nitely small and let $11 so augmented be called CD(m). Then if klkg...kn are the roots

772*”

of 9011,11k2. ”k7,, t0gethe1 with the (111—11) values ofc_)M.1.. ,will be the roots of CD(m).

But it has already been proved that when (as he1e supposed) the first coefficient

offx is 1, the Bezoutian secondaries tofand g0 will be identical with those tof and (1)

respectively; at least it has been proved that these latter, when 2:0, but the form of

(I) is preserved, become identical with the former, and consequently the same is t1ue
when 2 is taken indefinitely small. Now if we call the (111—11,) roots of CD which do

not belong to q), 11”“, 11M” .11”, and make

hql hqzu .hqi“

[771 772 ”Jim _J
3

[hql ll'q2 o o o/Lqi ]

[19141 h9i+2' ' 'th

hfih‘h” '9ih "

771 ’72 “-7711,

[kg llq2 "flail.

h91+1h91+2”']14m

1Phnmi, 0—“2017_h9i+ 1) ('12——h95+2)" (1‘17—Lth)
 

h 11 ...h .
we have Tmi0—2P(hq‘/Z12 Whi)[ 11 12 $711]

7711+1 ”n+2 "' 1n ’

where P(hqlhqz'thF (m'fl' hqisr 1)(JC’— i”91:”+2) (123-—_hQ1n)h
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But smce 1cm.” Ic,,+2...lcm are Infinite 1n value,

rhql hq2 mhqi _ _ _ — i ii

|kn+ll€n+2...km]—(( kn+1)-( kn+2)-..( km))(s)_

L.

1 i

Hence \Fm—q', o: (E) 213(th haw ' 'hQi)

1 i

= (E) Sm—i, 0

an(l Sm—z‘, ozeiqf7nwi, 0'

But by what has been shown antecedently [taking account of the fact of the leading
coefficient of (I) being 2 in place of 1, which introduces the factor 2"], we have

5i‘.IJ‘m_i, O: (— )(i*1)‘;_B;) ‘

where B;- is the Bezoutian secondary 0f the (m—i—l)th degree in w tof and g0; but

B; it has been proved 2132-, the Bezoutian secondary of the same degree to f and go;
5—1

hence 37724, Oz (— )i '7". Bi.

Art. (29.). If new we return to the syzygetic equation, ¢f—tgb+3=0, Sr may be
treated as known, having in fact been completely determined asa function of the

roots, as well in its most general form, as also so as to represent the simplified residues

tof and go in the preceding articles; it remains to determine the values of 7' and t
as'functions of the roots Corresponding to any allowable form of 3, but I shall confine

the investigation to the case where Sr is the lowest-weighted conjunctive, or which

is the same thing, a simplified residue to tand go of any given degree in .22; each value

of; Will then represent one of the convergents to ?when expanded under the form

of a continued fraction. If Sr be of the 5th degree in x, «r is of the degree (n—i— l)

and t of the degree (m—i— 1). This being supposed, and calling n—i—lzy,

m—i—lza, I say that at will be represented by G and 7' by I‘, Where

hql hq2...hqm

771 772 “-77”

km h ”.th 7’
92

hh .h
|_ qp.+l (Ip.+2' ' 9m

G=(_)i2(x—hq1)(x—hq2) ...(.:t'—‘hqu)r

and 7 is an analogous form I‘; hl 122...hm, as heretofore, being the roots off; and 271 272nm”

of go. To fix the ideas and make the demonstration mere immediately seizable, give

m and 72 specific values; thus let 772:5, 72:4, i=2, so that Iw=5—2—-1::2. Put 3

under the form 32302 so that S in the case before us

[figs h94 h95 :i

. .771 772 77-3 774 ,
=E(x— hql) (“7_ he) hqs ha. [qu -

hill h92

3N2
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1 Now make xzh, thenfzzO, and 3 becomes

[:93 h94 h95 ],

Eh—Iz h—h ””72 ’73 ’74
( )( Q2) figs h94 figs

hQ'thZ

[hlh5] [hlkz I13 ]

. , 714k m 772373 m.z. e. 2 [hm[22 [233:1 ,

Liam}:

 

hl being kept constant in the above sum, but kg, 123, h4, h5 being partitionable in all the

six possible ways into two groups, as into h4, km 122, 123 in the term above expressed.

This sum is evidently identical with I

. [/21 5953 1 h . [hzha ]

Ewe’i'e'bflmm]XEW-

Lh4 125 - e [24 [15”!

Again, gb becomes ‘ ‘ _

{a ‘
L771 772 773 7741'

Hence 25:;- becomes

h2 h3

L124 121
G

But When xzhl, —----;. becomes
(-)

[’11 1L712237737741
Lh2h3_| hull 7

flhhhj
h] F2312}; 1

z.e. =[h h1L”1”-:’73’741
iz2 I137 W

Mh: h17:1
=(—-1)it. .

Thus when xzhl, t: G. In like manner, When mzhg, 01° km 01' lg, 01' ks, 1‘ always :G; .

but t and G are both functions'of a: of the same degree, and of only two dimensions
in :1). Hence t is identical With G. ‘80 in general it may be proved, that Whenever

31'th or I12 or kg... or h”. t and G, Whichare each of only (nwl—z') dimensions in x,

2
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are equal. Hence universally t=G, as was to be shown. To find 7' we must avail our-

selves of the symmorphic, or as we may better say (it being at the opposite extremity

of the scale of forms, the antimorphic), value of 3 represented by 30,» taking care to
preserve S strictly identical under both forms of representation, in point of sign as

well as quantity. That is to say, we must make

UL. kg .../am,"
h

(In
 

. . 772' 77 2'

SR), i=(—)z(mml)2(m"’7ql) (“27-7799 "‘(m—nQi) 2; +1 7: +2 7'7 a
gi+1 qi+2”. ‘I'n

  __77q1 77412 "'77Qi_]

 

  

[3741241 774i+2' ‘ ”741nm

12 12...};
=<—>w2<x—n..><w—n..>-..e—n...)e:—1 2 “:9,

7745M 7745+2"'nqn

L_qu ”‘12 7792

where w=i(m—z')+m(n——i),

50 that (__)w: (__-_)mz‘—i+mn-—mi= (__)mn-—i ;

and consequently the same reasoning as was applied to t to prove t:::G, will serve to

show that —-rr=I‘, where

_ . [ng1’7§2"'77§v]

. ’ h. huhm
F: (_)mn.2(w"77§1)(x“77§2) - “(x—nép) 3

[775. 77g. we]

n§v+1 ”§v+2' ”77$”.

 

‘0!”

[hlhwuhm]

. ”£1775.” 77g,
«2-: -- “2 x-«n ar—n ...x—n . , -(,) ( 51X 52) ( eTfigl ”£2 ...ngv—V

, 775v“ n§v+2' ' 'nEnJ

where
, wzmn— 1 —- mvzmn—e l _~—-m(n——i—- 1)

=Vmi--m-- 1.

Art. (30.). I have not succeeded in throwing tand er under. any other than the

singleforms for each above given, and it is remarkable that whilst apparently t and
sr admit only of this single representation, 3 admits 0f the Variety of forms included
tinder the general symbol 31,, M for a given value of i; and it ought to be remarked

that these forms (although the most ‘perfeetlyr. symmetrical and exactly balanced

representations) [and for that reason pos*sibly the rhost commodious for the ascer-

tainment 0f the allotrious factor belonging to them 1'_eSpective1y]byn0 means exhaust
the almost infinite variety of modes by which the simplified residues, 2'. e. the hekiSto-
barytic, or if we like so to call them, the prime conjunctives, admit of being represented
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as functions of the roots of the given functions; but if in art. (16.), instead of writing

¥ ’ [Iquhqg...th—|

R: 77a 7712mm?” l

hQI h92 ° ° °h9'v ”£1 ”£2 ° ° °;7§v

la I1 12 X1_ qv+1 9v+2° ‘° {7m 77Su+177£u+2°°°77€n

R: P(h91h92' ”h% ; ”£1 ”§2' ° ~77gv) 9

7 [[291 h92 '° °h91) ‘l [7751 ”$2 ° ° ”751/ ]

hqv+1 h90+2° ° 'thJ X 77Sv+177$u+2 ' ° '77Sm

where P represents any function symmetrical in respect of l1g1,hq2...l1qv, and also in

respect of 27$}, ngg...;7v, (the interchanges, that is to say,_between one [2 and another it,

01' between one n and another 77, leaving P unaltered), it might be shown that the

value of 31, V resulting from the introduction of this more general value of B would

(as for the particular value assumed) always be expressible as an integral function of

the roots, and consequently, ifP be taken of the same dimensions in the roots as the

numerator of' R previously assumed, z'. e. 7», SW would continue to be (unless indeed

it vanish) identical (to some numerical factor pres) With the corresponding simplified
residue. If, on the other hand, P be taken of less than 2» dimensions in 12 and k,

we know 61 priori that 31,,” must vanish, as otherwise we should have a conjunctive of

a weight less than the minimum weight. When P is of the proper amount of weight

w, it is I think probable that another condition as to the distribution of the weight

Will be found to be necessary in order that SM may not vanish, viz. that the highest

power of any single (h) in P shall not exceed 1), nor the highest power of any single 17

exceed 12. But as I have not had leisure to enter upon the inquiry, the verification 01'

disproval of this supposed law, and more generally the evolution of the allotrious

numerical factor introduced into Sr”, V by assigning any particular form to (P) satisfying

the necessary conditions of amount and distribution of weight, must be 1',eserved

amongst other points connected With the theory of the remarkable forms (19.) art.(15.),

as a subject for future investigation.

A1't.(31..) A property of continued fractions, Which, if known, I have not met

With1n any treatise on the subject (but Which has been already cursorily alluded to
in these pag,es) gives rise to a remarkable property of reciprocity connecting '2' and t

severally With 31n the syzygetie equation 7f—tgo+S::O.

Let the successive conve1gents to the ordinary continued fraction

1 1 ' 1 ' 1 1.
91+ 92+ 93+ "'qz-—-1+ 3:-

We had made

 

 

be called .

L
-.__

ml’ m2'°'mi._1 mz-
11.12.1213"

reSpectively, it is well known that

mi—l'12—l—1m 4—-1=(_)i—1~15
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but I believe that it has hot been observed that this is only the extreme cases of a
much more general equation, viz. '

mi-p li_ mi limo =(_)i~p;l‘bp-1*2

where (Al, (.02, to;- denote respeetively the denominators t0 the convergents t0 the

continued fractions formed with the quotients taken in a reverse order, i. e. the con-

tinued fraction
1 1 l 1

' "“ " ““0

22; 9224+ gi_2+"'+qg+ ql
 

This is easily proved When 3:1 ; poo is of course (as usual) to be considered 1. 80

more simply for the impmper continued fraction,

la 1 1 l 1
—.—_-u._-__ M ‘M

mFQr %:"'qz-——1—- 95’
of Which the convergents are Supposed to be

[1. 22 3M l:
C C . —_,

and the reverse fraction
1 1 1 1
W

9r- qz--I"°qg— 5?

 

 

of Which the convergents are supposed to be

A1 A2 A;
2;, 51;, ”FIZZ,

we have the more simple equation

li.mi,_p—li_p.mi+popf,=0.

And it is well known, 01‘ at all events easily demonstrable, that

li—1._.__1.. 1 ,1. -1
[a ‘JQi— gi—l— gi-Q...QQ

MMW

mg —{]i"‘ 95—1—~ qu2 ll?

Art. (32.). If new we use subscript indiees to denote the degree in 4v 0f the quan-
tities to which they are affixed, we have the general syzygetic equation

K'rm_i_1fm-— Ktm~i_1.¢7n+KSi=0, ‘

where K, a constantlwhich I have given the means of determining in the first.
section), being rightly assumed K.?WH, K¢m_i_1, become the numerator and demo-

minator respectively of one of the convergents tog}, expressed as an improper continued

72'} -* 1

fraction, and KSi becomes the denominator to one of the convergents t0 7., 0r,

* See London and Edinburgh Philosophical Magazine; “ On a Fundamental Theorem in the Theory of

Continued Fractions,” October, 1853.
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n—l '

T? 3*. Conversely, it is obvious that if We adept as our

 

which is the same thing, to

primitive functions (f(m) and tm_1, (0) being the value of K when i:0, we shall

obtain as the general form of 0111' syzygetic equation, bearing in mind that (m— i)

new replaces (n), '
c.K’(rr)m%-fm—K’Sm_i_ltm_l+K’7'i=O;

and similarly, if we adopt as our primitive functions ¢n_1 and chn, we obtain for our

general syzygetic equation, observing that (-n— 1) now replaces (m),

K’SWHJW — CK’.Sn_i_1.@n—I—K’71::O; .

SO that (making abstraction of the constant factors and looking merely to the forms

of the several functions which enter into the equations) we see that on the first

hypothesis, viz. 0f t‘m__1 being substituted for go”, the eonj unctives of each degree in .2:

change places With the second conjunctive factors, 2'. e. the original multipliers 0f gb

0f the same degree in 5e, and vice versd’; and in the second hypothesis, Where 7n_,_

takes the place offm, the eonjnnctives of each degree in :8 change places with the

first conjunctive factors, 2’. e. the original multipliers off of the same degree in x, and

vice verset’; tm_l and ??_1 being respectively multipliers of g?) and f, such that the

difference of the respective products is independent of cc. These results ought to be

capable of being verified by aid of our general formulw for t, 7-, S, and as this verifi—

cation will serve to exhibit in a clearer light the nature of the reciprocity'between
the conjunctives and the conjunctive factors, it may be not uninteresting to set it

out.

Art. (33.). As usual, let hl h2...hm be the roots 0ff(x), and 271 772“',77m—1 the roots of

@(w), the last conjunctive factor t0 go, which is of the degree (mnl) in x, will be

represented, neglecting powers of (—), by 15m...” where '

[—th 12%...
kg ”-1..l

zfm_,1—_-2(tcc----hql)(w---hq2)...(.7c--—hqm_w1\)LE:1 772 W77 i

thl Izqg...hqm”1J

If new we for greater simplicity make tu_1=t(a2), and call the roots 0ft,'77'1 77’2...27’7,,..}

any such quantity as

[km —|
game) @0292) ' ' 'Cp(h9m~1)

7711 ”I2. ' 'n’m_1J:t(qu>:(hqm— h91><h¢1m_h92) ' ' '(il’qnz_}1’97n~1)x(hqm_hql)(kqm_qu)' . . (hqmmh

 

 

 

)
9m~1

: ¢(h91)@<h92) ° ' ' ¢ (th— 1)

1
_Ram,

* Sincez' is always supposed less than n (n being the degree of the lower degreed 0f the two functionsf and e),

the fact of the last quotient to €712]; being wanting to 7”“1

 

Will not affect the accuracy of the statement in

the text above, since this latter Will contain as many quotients as can in any case he required for expressing Sic
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R denoting a constant independent of the root hqmselected (and which constant is in

fact the resultant of the two functionsf(a7) and $022)), that is to say,

¢(hl)¢(h2)¢(hg)---¢(hm)e-

7 But by our general formulae (8.) the simplified: residue to f(m) and t(x) of the
ith degree in a: will be represented by *

[h95+1h'9i-h2”h9m ]]
”I 7712 ”.77! .1 .

%O:E(Jv—hq1)(‘T— hqe)" .(613—hQi) kg [1612 I? j ‘g ;
... 912

L [:h::+lq2h9242'" 'thJ J

3,52, 6: 2(£" km) (5.3.... h92) - . . (x—qu.) X R”? (¢h’qz'+1)m1 '¢(h9i+2) “I ' ' ° $0579.41

a [h% i292 "°h9i ‘J

h91+1 h4€+2u hq4m J

=Rm‘i’12(a9-—hql)(w—kq2)...(x—quypmqlwwqg)“M.)
[1141 h "12:?

I . 1 Lh95+1h9i+2"hq
Q — 7n" ""

the relation which was to he obtained. So conversely, in precisely the same manner,
calling 29,- the conj unctive factor of the degree 2' in x to t(m) in the syzygetictequation,

‘ which connectsflm) and t(w) with a corresponding simplified residue, we have

kg: I192" 'Qih

”,1”; "'n'm—l

[h% h% "'hQi—J ,

L_hqu hai+2'“h4m ,

=Ri~12(x.—hq,)(x—hqz)...(w—h)thmthw¢th
[kg lzq2 ...hqi]

h9i+l h9:+2°°°k9m

the Conjugate equation tothe one previously obtained*. .

And evidently the samereasoning serves to establish the reciprocity, or rather

reciprocal convertibility, between the Sr series and the 7' series, when in’lieu 0f the

original primitives f(a?) and g)(w) we take as our primitives T(JL’) and ¢(w),r(w) being

the function which satisfies the equation

¢(w)fx-—t(m)§bm+ R=0,

Art. (34.). It may be rerharked that if nzm—l (the last syzygetic equation being

1",: E(x—hql)(w—5%) .‘..’(x—-hqi)

__ '-1
‘RZ 032:,

4* M. HERMITE, by a peculiar method, first discovered one of these two conjugate relations of reciprocity, .

applicable to the case of. STURM’S theorem, where ¢w=f’w, and I am indebted to him for bringing the subject

under my notice.

MDCCCLIII. ' r 3 ,0
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thus tm__’1.qu;l—¢m_2.fm+30=0), When tmgd and fm are taken as the primitives, the
corresponding equation Will be of the form *

t'm—l -tm—1 "'" T’m—2fm+3’6=0 ;

these twb equations mast therefore be identical, and consequently t’ _.,=gbm._1 (to a
numerical factor pres), so that tm_l and ‘Pm—l are reciprocal forms; this is also obviOus

from the consideration that t'm._l must, by the general law of reciprocity (established

above), be a residue to (fm, ¢m_1), which the latter function. itself may be considered
to be. ’01' the same thing is obvious directly, by writing

 tm~1=t(m):2(w—hql)(w"7142) '(m—hm") (h —:(i)‘:h<p(iljghm)fi(.h(:n_l)_h )9

and then making

t'm..==2<x—h><w—wk) —hq,,,..l> (h hgggtwq»).("(711 \ 

322(33—[241W ll(12”) (mflth—l)' (¢('k91) ¢(k92)‘A”¢hQm—l‘ h9m)3
 

Where

A=(_)m-’%i~ '(hl—hg)”.(hl—h3)2...(hl—— my

x (hg—haf... (h2—hm)2

‘ X (.h'm-«lu—hm)2

=(-—-1)’"E§"‘D(D being the Discriminant,m01e commonly called the
Determinant tof) or finally,

m—l

t'm,_--‘D (p, as was to be shown.

SECTION III.

On the application of the Theorems in the preceding Section to the expression in terms
of the roots of any primitive function of STURM’S auxiliary functions, and the other
fimctionswhz'ch connect these with the primitive function and its first dg’flérential
derivative. 7 I

> Art. (35.); The formulae in the preceding Section had reference to the case of two

absolutely independent functions and their respective systems- of roots: When the

functions become so related that the roots of the one system become explicitly or
implicitly functions of the roots of the other system, the formulae will become

expressible in terms of these latter alone, and in some cases the terms (of which the
sum is always essentially integral) Will become separately and individually represent-

able under an integral form. Such, as I shall proceed to show, is the ease for tWo
functions, of Which one is the differential derivative of the other. Whenf and $7 are
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thus related, so that 22%, calling as before h, 122...}2,“ the roots of j; and m 722.0%”

the roots of gb, we shall have in general .

  
 

 

 

[nlqn:...2m§_l] =(h4‘“mm“—772)" (h4'“Wm“)

. I2 . h "1 h ‘ .
:flhi =[V‘Qz-H ]=[ (Ii-H JX[ Qi-H .» ‘1‘

4 +1 thlflhq' "Ththqi'+2' "4h4m h41h92"'hqi h4€+2 h4£+3' 'hQmJ

Consequently ‘

[h4£+1h4i+2"'qh4m ]: thi-l-l " X thi-Ha ] X850. X [th ] ‘

771 ’72 "7772—1 - _?71’72---77m—-1__ “771 ’32H-77m—1 771 772-r-77m—1

z ”7&qu ~ X "hen“ ]

2h41h‘12' ”hqi._ ___hqi+2 hqi+3"'hqm-—1

X ~héi+2 ] X [hqiw ]

‘h41h92"'hqi th-H h4i+3" 'hfin'“1

X&c.

"1‘ ”I'll

,, X[h:m['42' "kgij XLh:i+1hqi+2”'h’14m-— :{

thi-l—l h9£+2"'h9m ]

771772 ~~~77m..1
Hence LE , 2’

3 hQi-l—l h4i+2" 'th]

__th kg,2 mhqi J

i'hq. ] [12“ ] [1% J
"H x ' 2 x ......... x

L_héhi-Ha h9£+3"'/l9m ['45 h4€+1"'h4m [2'41 h42"'h4ni“—1

=(_)2(mfizxm-i—U:(hqi+1hqe+2”ham)?

the Z denoting the operation of taking the product of the squares of the differences
of thequantities which this symbol governs. Hence the Bezoutian' secondary to

f andf’ of the (m—z'-- 1)th degree in ac, viz.~——-—-

 

’71 772 ---’7m--1 Z
('—5");33%h9i+1)(m~.h%+2)” '(wéhqm)[hq hqg :::h:i],

hQi—l-l [291:2 h9172-

0")“5’”g(hqxh”42 ”h42)2(m-hQi-F1)(m-.h%+2)" 'q(m_'hm)

:§(h91h42' 'h4¢)2(‘r-— hqi+l)(a"_ h4i+2)” J_(mWkm),

3 0 2

becomes
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since (—)“‘"”=1, which gives the well-known formulae (enunciated by me in the
London and Edinburgh PhilOsophical Magazine for 1839) for expressing M. STURM’s
auxiliary functions in terms of the roots of the primitive, and which I therein stated

Were immediately deducible from thegeneral formulae (also enunciated in the same

paper) applicable to any two functions! These more general formulae appear to have
completely escaped the notice of M. STURM and others, who have used the special

formulae applicable to the case of one function becoming the first differential deri-
vative 0f the other. 4

Art. (36.). In precisely the same manner, if we f01m as usual the ordina1y syzygetie

equation
. t.f’m——'zfm+3=0,

we may find the different values 01” "t given by'the complementary formulae; and

using t; to denote the multiplier of the degree 2' in x, 2.16. appertaining to the residue

of the degree (m—i— 1) in :13, we have

[7’91 [7’92” 'Qz'hz‘J

ti=E 771 772 --77m—1

[kg ‘th' mhq. ]

hQi-i-I h9:+2” kg9771.

=:(}1q1htqg..qui)(.T—hql)(w—hq2)...(a’J—hqi).

Art. (37.). Thus, if we make 1=m+1

fl(m)=fm—1=§(h91h92”'h9m-—1)(m——h91)(w—h42)”'(m‘mhqm—l)’

It is evident from the form of flu: that it possesses relative to fay, the same 'p-ree
perty as fan, I mean the property that when .29 is indefinitely near to a real root of

1}:likef}:) will
pass from being negative to being positive, 01'in other words, flax and fa: have

always the same sign in the immediate vicinity to a real root of far. Hence it fol—

lows that fl(a2) might be used instead off’1', to produce, by the Sturmian process of
common measure, a series of auxiliary functions, Which withfx and fl.:1: would form.

a’rhizoristic series, 2'. e. a series for, determining (as in the manner of M. STURM’S
ordinary auxiliaries) the number of real roots of fin comprised Within given limits.
The rhizoristic series generated by this process will, it is easily seen, be (to a con—

stant factor pres) thedenominators (reckoning +1 as the denominator in the zero

«(33— hq1)(a:—hq2) ...(:c—hqi)

far, and1s passing from the infe1i01' t0 the superior side of such 1',00t

I ,. (z: ‘ ~ ‘ 4 , .

place) of the successwe convergents t0 €90; thrown under the form of a contmued frac-

l 1 ~ 1. 1
t1011 --- ------ M. STURM’s own rhizmistie se1'ies,0n the contra1y (will

91— g?— 972—1— (171; .

be to a constant fact01 pres), the denominatms 0f the eonve1gents t0 theinverse

   

fractionj}:-—--, Which W111 be of the form K9%“197:1“"-92: 51'; accordingly these two
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rhizoristic series will be equivalent as regards the number of changes and of combina-

tions of sign (afforded byeach) corresponding to any given value of m, of which of course

, the q’s are linear functions. This result agrees with what has been demonstrated by
me by a more general method (in the London and Edinburgh Philosophical Magazine,

June and July1853), where it has been proved, by means of a very simple theorem of
determinants, that the two series '

    

_1__ 1 1 1 1 _1“ 1 1 __

91’ 91- q2—’ q1— (12- 93’ q]- 92- ‘93 ' 9”
and . ,

1‘ 1 1 1 1 1 1 1 1 1

     

 

  

4—72; ‘qn- qn-l ; Q72“ ‘qn—l qn-2; . .qn— qn—l“ 9n—2."Ei

always contain (for real values of ql, ([2, q3...qn) the same number“ of positive and

negative signs.

‘ Art. (38.). Having now determined the general values of S and t in the equation-

1f’ (m) —7fx+$3-=O as explicit integral functions of the roots of fx, the more difficult
task remains to assign to 7 its value similarly expressed. This cannot readily be

effected by means of substitutions in the general formulae, the method we adopted for
finding t and S; but all the other quantities except 7 in the syzyzetic equation being

integral functions of the roots, it is evident that 7 also must be an integral function:
. . . t ’ —-3 ‘

of the same, and to obtain 1t we may use the expressmn 7: %~.

To obtain the general form of 7 by direct calculation from this formula would
however be found to be impracticable; the mode I adopt therefore to discover the

general expression for 7 corresponding to different values of 3, is to ascertain its

value on the hypothesis of particular relations existing between the roots of ft, and
then from thesparticular values of 7 thus obtained to infer demonstratively its general

form, as will be seen below. The demonstration of 7 is unavoidably somewhat long,
7 being'in fact represented by a double sum of partial symmetrical functions.

Using the subscript indices of each function as the syzygetic equation to denote its
degree in cc, we have in general

tm—i—lf’x_7m—i—2fm+3i=02
where if we make ,1

hl—w=kl hg—x=k2 .........hmmm=k
so that »_ 7 m,

hi — hw=ki_kw3

. ZULQ1 hag...hgp)=Z(kgl kgz...kgp),

we have .in effect found 1

Si: 2(kql.kq2. . 'k95)z(k%+l kqi+2.‘. .km)

and therefore

and
tm_,z._1=i2(lcq1 k42°"ka—i—l>:(k91 15%. k ' ) ;

" Qm-i—l

we have also f’(a:)=(--—)"m"‘.21kl k2...km_l.
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Let ”us commence with the case where i=0, we have then

30=ZUf 113.. Jim)

*2\k¢11k¢12ka—1)Z(k91k'¢12“ka-l)9

we have thus

(_)m°fm‘2(k1°k2°”k’m)=“-2(l£¢11k(12' k—‘Im1)X2(k¢11k"12k9m—1Z(k¢11k42"'k‘1m—1))+g(kl k?"'km)'

[It may easily be verified that the negative sign interposed between the two parts of

the right-hand member of the equation has been correctlytaken, for

C(k k2” .mlt ) contains a term WW“).k§(m‘2)...k§n_2.k;_l,

20.1.ql .12.. k__qm 1) contains a term It Jag ...km-2.lcm_1,

and

E(kqlkqz. km1)?_:(kqllcq2. k_qm 1) contains ate1m 112m“3 .kgm-fi. ..lcfn,2.km__1,

and thus the term It?” ” .k§(m"2)...k;‘n_ .Icm__1, which does not contain 1: k2" .km, will (as

it ought to do) disappear from the right-hand side of the equation.]

Now suppose

. k1=k29
then

:(kl k2...km)=O,

' C(kfh k42" ka—l) :09

except when one or the other of the two disjunctive equations

([1: 92:Q3---qm_1=1, 3, 4...?”

912 92: 93-..qm..1=2, 3, 4...m

and also

is satisfied (by a disjunctive equation, meaning an equation which affirms the equality
of one set of quantities with another set the same in number, each with each, but in

some unassigned order).

Hence
2]: k ..Icqm_a(kqlr

91 92'

:22, 1.2., 1...:(21 1.3 ...].m).
km..-)

Hence when

‘11 ‘12k1=('—' )m152 7722-2 becomes 1‘122“: k ”—ka1):(k1k3"‘km)2

.. 6. 2:41., k3...km){k 21.»,k..Ic.m_l+2lc3k....icm},

the 2 referring to 713,24, ....,rm supposed to be disjunctively equal to 3, 4, ....m

Now 7W2 is of (222—2) dimensions in .27, and whenever more than one equality

exists between the It’s, So and tm__1 both vanish (in fact every term in each Vanishes

3~_O________+tm_.1f'.22
separately), and therefore 2mg, which—_.[ckg. m, will vanish.

Hence (--)"“2~m_2 must be always of the f01m

21(h41k42"°h‘1m~1) X ?(k91k22'"k2m—1 ; ka)’
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‘1’ denoting some integral function of (712—2) dimensions in respectof the system ‘of
quantities km kq4...k The result above obtained enables us to assign the value of ,

Qm'

. ‘I’Url, Ira...km, k2)

viz. [£12094 km... k.__,,44 1)+2k3.lr...m.lc

NOW‘for a moment shppose,4selecting (m— 1) terms k1, k3, k4...km out of the 772 terms

of the k series, that

00:”. k3 k4...km, k2)=7r’2"”2—k’2""3.81(m773...97m)+7€’2"”‘4S2(771 773...77m)

j; &c. ZFk2 Sm,_3(k1 kg...lr,,4)i2Sm__2(lt1 k3...km),

where 8. means that the quantities Which it governs are to be simply addedtogether,

S2 denotes that their binary, S3 that their ternary, and in general S, that their r-ary '

products are to be added together.
When klzkg, (2 becomes

kT'2—kT‘3(lrl+Sl(k3 k4. . .km))+k°{‘*4.(kl S.(lca k4...km) +S2(k3 k4. ..km))
...-1.231244% 820:3 k4...km) +33%. k4...lcm))—__L—_&c.$k1(klsm;4(lc3k4...kn’.) +Sm__3(k3 k4. ..km))

i23m_2(k3 k4...lcm), ‘

which evidently equals

i{2sm_2(k 1.2.. ..km) +ch swag. k....km) },

z'.e. _-l_—_{ic12(k k4. ..k.44__4)+2k3k4...km}.

Hence When klzlrg, ‘F:Q, and

(—)m¢m_2=2:(hq4hq4...hqm_4)xn(k44k k444_ 41:44)

and so in like manner, when k. is equal to any one of the (m— l) quantities k2, k3....km.

the form of 93,44 above writtenwill have ‘been correctly assumed. But 7W2 maybe

treated as a function of (m—2) dimensions in k1, and consequently anyform of

(712—2) dimensions in It}, which fits it for (m-— 1) different values of k1, must be its
general form, and accordingly We have universally, ,

(-—)m¢rm_2:.-_E§(hq4hq4...hqm_l) X {(50—th)m“2—(a2-—hqm)m“3SI(m—hq4, x—hq4...m-hq4444)

+(w—hqm)m"4S2(m+Izq4, m—hq4. ..m— Izhml)-l— &c.

?(m—hqm)Sm_3(m-hq4, 33—12%...wfihqm_l)+2Sm_2(az—hq4, wmhq4....2:—hqm_4)}.

When kl:k2.

Art. (39.). With a view tobetter paving our way to the general form of =2- for all
values of 2', let us pass over the case of i=1 and goat once to the equation

tm__3f’ar—rm_‘4fm+32:.:0;

and to better fix our ideas let 772:7, so that the equation becomes

t4.f’w—r3.fw+32=0;

we have then, preserVing the same relation as before ['21 6. using h to denote any root
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offa: and k to denote h—x], the equation

+k1 [1‘2 [$3154 k5 k6k7‘73zqu1’Mq2Z(kqs«14 kqs kqs ken)

—2(k k k k k k)><2{(k k k k ):(k41k42 [£43 k44)}’41 42 43 44 45 46 41 42 43 44

and 73 will vanish Whenever more than three relations of equality exist between the

k’s, for then each term in both of the two sums in the right-hand member of the

equation abovewritten Will separately vanish; and of course three relations of

equality between the same are sufl‘icient to make all the terms in the first of these 3

sums vanish. This relationship between the different k’s corresponding to a multipli-
City 3 may arise in different ways; the multiplicity 3 may be divided into 3 units

correSponding to 3 pairs of equal roots, or into 2 and 1 corresponding one set of 3

equal roots, and a second set of 2 equal roots, or may be taken “en bloc,” Which

corresponds to the case of one set of 4 equal roots. I shall makeythe first of these
suppositions, Which Will sufficiently well answer our purpose in the case before us.

Thus I shall suppose k3=k3 [72==k5 k3—=k3,

_ then, as above remarked, C(kq k k k k )=0 for all values of 93 93 93 9393,, and therefore44 45 46 47

2kg:kq2:(kq3kk k«17)205

also 2.163kgk k k kqfi becomes
43 44 45

k3233kk(k .172 .32k+2k.32332kk+kk+kk3),

and 12317732733734) vanishes33except for the cases Wheie q3 92 93 93 represent respectively,
93 the index 1 or 4, _q2 the index 2 or 5, 93 the index 3 or 6, and 93 the index 7.

Hence 2k k k I»: Zflc k k k )= 231163 k2k3~k7Z(k3 k2k3k7),
41 42 43 44 41 42 43 44

44 45 [£46

 

and consequently «:3 becomes

_+8§(k3 k2 k3 k7)x{k3 k2 k373+2k(k k2+k3 k3+k2 k3)}.

Hence we we able to p1edlct that the genelal expression for our 7- in the case befoxe

us Will he
3 (k:4+k35+kgg) —' (k:4+kk2+k4]%)(kq1+qu+kqg+kq7)

'73::l:2{:(kq1qukqskq7) X +(kq4+kq5+kqs) (qu. [$522+qu k43+kql 113174—1632. qu3+qulmq7+k31€qg "

_4(k41k42k43+k41k42k47+k41k43k47+k4zk43k4?) J

For in the first place, the fact that the 7 vanishes when more than three relations
of equality exist between the It’ss, proves that we may assume 73 of the form

2K0: It It k)x¢{k k k k- [£343]»:1736},
41 42 43 47 41 42 43 47’

the semicolon (;) sepatating the lc’s into two groups, in respect of each of which

severally go is a symmetrical form. But if in the expression last above written for 7-3
we make 3 A k3=lc3 k2:ic3 7532473,

it becomes

(2.372345...)~(Ic?+k:+k§>(k+5+1:+14) ‘
$8§(k3k2k3k7) +(k3 +k2+k3)(k3 k2+k3 k3+k2 k3+k3 k7+k2 k7+k3 k7).

«4(If3k2lfa—f-Ifllf2li‘+k3‘k31f7—I—If2lf3k7)
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Now in general if
ar=az+az+ag+ ...+aiz

and
S,=22(a1.a2.a3...a,),

a,-—a,_ISI+a,_2Sg_-;i; . . . irSrz—‘O.

x Consequently the sum of the terms constituting the second factor in the above
eXpression ‘

-_ =(3—4)k1.k3 k3+(2—4)k7(]f1]€3+k1 l?cs-i-Jc2 k3).

Hence the above expression becomes

_—_|;8Z(Icl 7:2 7:3 7:7) {k1.k2.k3+2(k1 k2+lc1 Ica+7t2 k3)k7} .

‘ Thus; then, whenever it, kglca are reSpectively equal to any three of the quantities

1:4 kskfik” which may take place in twenty—four different ways {twenty-four‘being the

number of permutations .of four things}, our 73 Will have been correctly assumed; but

{(kqlkqakqakq) being replaceable by {(th 129,2 hqa 12%), the 73 may be treated as a cubic
(function in k1, k2, kg, and arranged according to the powers of Isl kgka will contain

only twenty terms; hence, since the assumed form is verified for more than twenty,

ale. for twenty-four values of I21, I22, ha, it follows that the assumed form is universally

identical with the form of 7, which was to be determined. i

Art. (40.). Now, again, in order to facilitate the conception of the general proof,
let us suppose fa: to be of only five dimensions in w, i still remaining 3: it will no

longer be possible when we suppose a multiplicity three to prevail among the roots,
to conceive this multiplicity to be distributed into three parts, for that would require
the existence of three pairs of roots, there being only five. But we may, if we please,
make h1=h2=h3, and h4=h5, or else lal=h2=lzazzh4, or in any other mode conceive the

multiplicity to be divided into two parts, 2 and 1 respectively, or to be taken collectively

“en bloc.” As aimode of proceeding the more remote from that last employed, I

shall choose the latter supposition. Then we obtain (7 now becoming nflq, 27. e. 71)

[‘1 [‘2 1‘3 k4 [€5.71: i2qu k92 k k X {2qu k92§(k9i 1%)}: .9'3 44

and “§(kql lcqg) will vanish, except in the case where 91 represent the indices 1 or 2 or 3

0r 4, and q2 the index 5 ; also

21%: [£92 [£93 k94= kzl+ 4k? 'k5’

Hence our equation becomes

15:.Ii5.?'= i (k11+4]{1: k5)4k,.1f5:(l€1 k5):

1 - 4?;(k, 1:5) (k1+ 41:5).

IQ-now, we assume for the general value of r in the case before us .

7:: 22:05, 1:95) { (kq2+193+ lcqq) -— 4(lcql +kq5) } ,

when k1=k2=k3=k4, 7‘ becomes _ *

‘ taut, k5)(3k1-(4k1+k5)),
i. e. i4§0¢1 k5)(k1+4k5).

MDCCCLIII. 3 p

and 7 becomes
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Hence then for the two systems of values of [21112 hg, viz.

' ’hlzhtl hlzhs

hgzh4 01' h2=h5

h3=h4 h3=h5,

the farm of a- will have been correctly assumed. But since the derived form is a
linear function of hl, kg, h3, this is not enough to identify the assumed With the

general form, since for such verification four systems of values must be taken, four

being the number of terms in a function of three variables of the first degree. If,
however, we had adOpted‘ a separation of the multiplicity three into two parts, and
had started with supposing Azkgzzka k4=k5, we should have found that (2' would

have become .
' =6:(l€1, k5)(2]{1+3]{5).

Moreover, when these eqUalities subsist,

Isl 1:2 1:3 k4+lc1 1:2 153 k5+it1 k2 k4 k5+k1k3 k4 k5+ic2 k3 A74 1%

becomes 2k? k5+3k§.k§, and the common factor kilg disappears in the course of the

Operations for finding er, and eventually we have to show (in order to support the
universality of the previously assumed form for 7) that

zqz—l-qu-i—nqg—anl-l-nqfi) ,
becomes —2nq4——335 When .

flq2=7793==nql=m
and

zq4=nqsr~=nm

which .is evidently true. Hence then :2- will have. been correctly assumed for the
following cases,

and also for the cases

A:

2=k5=It3 and lil=k4

k1=k2=k4 and kfizk;

k1=k5=k4 and lfzzicg ~,

#2:,k52k4 and klsz

i. e. for eight cases in 211], whereas four only would have sufficed, V Hence, “ ex abmzm

dantia” demonstratiom’s,” the form assumed for 73 is in the case before us’the general

form. '

Art. (41.). We may now easily write down the general fOrm. which 2' assumes for:
all values of 2' and prove its correctness. If the roots be "h; 112: h3...hm, and

tm—i- [fir “'Tan—i—2f‘i'v'I—Sz‘: 0:
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we shall have t} ,

+t __2 [102% h92h93°”h9m—i-1) X [am_€_2-—a'm_.~i_3.S,+6m_i_4.s.2q__. Ste. 1

t...— mfii—l'“

l +("’)m~i“30'1 -Sm—-t—-3+ (" )m_;_g(%+ 1)Sm—i-—2] j,

Where 0:, denotes in general the sum of the Nb powers of the (i+ l) quantities

@“i’amnsl’ (x*h9m_e+1)2 ...(.rc-hqm),

and S, denotes in general the sum of the products of thecomplémentary (m—i—l)

quantities “ '
(m—hql), (w—hqa)...(w—hqm_i_l)

combined, r and r together. It will of course also be understood that a¢=i+l, so

that «0+ 1 =i+2. , *
Art. (42.). To prove the correctness of this general determination of the form of

7,34%, let us suppose in general that i+l relations of equality spring up between the

(m) quantities k1, k2, "Jan, we shall then easily obtain (N representing a certain nume-
r’ical multiplier)

21%!ch k‘ 9m~l

.. .. ~ 3
13kg? l...kflm~;-1

m—-S-—l

 iQ:N.:(k1 k2--’km-i*1)]c"l

k1, k2...km_.,._1 being what the (It) system becomes when repetitions are excluded, and
being respectively supposed to occur {111, (1:2, pomqfl times respectively, so that

, M1+M2+ +pm-.-_i=m;

thegfractional part of the right-hand member of the equation immediately, above
written will be readily seen to be equivalent to

zfl’Qm-t—l(k91 ' [£92 ’ ' ‘ k9m~i-2) '

To establish the correctness of the assumed form, we must be able, as in- the parti—
cular cases previously selected, to prove two things: the one, and the more difficult

thing to he proved is, that when the series of distinct quantities k1, k2, k3...km become

converted into pol groups of 1:1; {402 groups of k -~-{bm-s-1 groups of law-” then that

2M9! 0 (A792 [€93 [£94 . . .-k9m-i-l)’

or in other terms,
» .

Bike! keg [£93.ook9?n_hi_12;n—i—l(p)9)’

becomes identical with
_ ' am~i~2_am-i-—3Sl:l: &C. +(0’0+1)Sm—i—2“

The other step to he made, and with which I shall commence, consists in showing that

the number of termsin the expression last above written, considered as a function 0f“
(m—i—2)th degree of (i+l) variables, is never greater than the entire number of

ways in which (2+1) quantities out of m quantities may be equated to the remaining
(m—i— l) quantities, viz. each of the first set respectively to. all the same, or all dif—
ferent, or some the same and Some different; in short, in any manner each of the 5+ 1

quantities with some one or another (without restriction against repetitions) of the

m—i—l remaining quantities. This latter number being in fact the numbers of ways
in which (m——i-—- l) quantities may be combined (i+1) together with repetitions

3 P 2
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admissible by a weil-known arithmetical theorem is (m—é— l)"“, and the first number
. (i+l)(i+2)...(m—-2 . .4 , 4 , , 4 .
IS 1.2...(m~i—2) , wh1ch IS always less than the other. It remains then only to 

prove the remaining step of the demonstration ’1“.
Art. (43...) To fix the ideas let 212210, 5:5, and consider the expression

(1:44-13; +it3+it§+k3+7eh~ (k§+k§+7f?+k§+k§+ki)(k1+k2+k3+k4)

+(ks+ks+k7+ks+kg+km)(k1.k2+k. k3+k1 7114-192 1:44-1— k2.k.+k3.k.)

"70‘1 k2 k3+k1 k2+k4+k1~k3Fk4+k2-I{3-k4)'

N01vs11ppose the six quantities 11,, 11,, 11,, 11,, kg, 11,, to become respectively equal each to

some one 01' another of the fuurquantities 11,, 1:4, 11,, 1:4, as. forinstance, I shall suppose

k5 =k5=lc7==k4

k3 =k9=k4

. klofik3'

Then (491:4: (52:3: 953:2) [1’42]:

and the formula of art. (41) becomes

(3k?+2k;+k§:—)—(312+214+'11:)(1 +14+14+14)

+(3k+214+14)(1 .144+]: .1»4+1» .1:44+k4.k+14 .114—1—114 11.4)

_7(1 .41 41.1.1 .14 .k4+lc4k4 14—1—14 .41 .14)

=31(114—k§.(“l}mm4+k4+k4+k4)+1404 14+ 114 k4+k4.k4+k4.m)

+2{kS—ki.(%.+k3+k.+k2)+3091k4+ic.k4+k3 k4+k4 k4+k3+k1)
+(kg—k§("k'4+’k4+k4+k4)+Ir4(k4.lc4+k4.k4+lc4.k4+k41m

_ {1:4 1.4 14441414 14-1-1414 14-1—1414 1:4}

:41, 11, 14—21414 14—31414 14—41414 k4

z—klfwlilf{m+:2Hifi—H}?

In the above investigation the quantities Which with their lepetitions make up
the 11’s system, me 114, 11,, 11,, k4, appearing respectively 1,2,3, 4 times, that18 to say
repeated 0, 1, 2, 3 times; 713 l more than the sum of the repetitions 0+1+2+3, and
the numbers 1,2.1, 3, 4 a1ise from suhtmcting fiom 7 the sums 1+2+3; 0+2+3;
0+ ] +3; O+l+2; respectively, so that the remaindexsl, 2, 3, 4 denote 1e3pectively
one more than the number of repetztions of[14, 11,, [14, 114,z. e. we the number of appear-

 

 

 

* If this first step of the demonstration appear unsatisfactory or subjectto doubt, it may be disPensed with
and the result obtained1n the succeeding article (the demonstration of which18 Wholly unexceptionable) being
assumed, it may be proved that the formula there obtained on a particular hypothesis must be universally true,
in precisely the same way and by aid of the same Lemma1n and by aid of which the formula obtained1n the

Supplement to this section for the simplified quotients to?” upon a like particular hypothesis13 shown to be

of universal application,1.9. by showing that otherwise a function of 2i— 1 variables would contain a function
of 21‘ variables as a factor. 4
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ances of lg, 1:1, 1:2, ha ; ' and thus With a slight degree of attention tofthe preceding 'pror-‘I
1 cess the reader may easily satisfy himself that the preceding demonstration (although

not so expressed) is in essence universal, and the form of 7- as an explicit function of
a: and 0f the roots office) is thus completely established for all values of m and of 27.

Supplement to SECTION I II.

022 the Quotients resulting from the process qf' continuous diviSz'on ordinarily'applt'ed
to two Algebraical Functions 2'22 order to determine their greatest Common Measure.

[Received October 20, 1853.]

Art. (a.)* We have now succeeded, in exhibiting the forms of the numerators and

f’03denominators of 3%- deve10ped into a continued fraction in terms of the differences of

the roots and factors offa. It remains to exhibit the quotients themselves of this
continued fraction unde1 a similai form.

Lemma.~»~An equation being supposed of an arbitrary degree 11, there exists 220
function qf n and of less than- 2i qf the coeflfcients'f, which vanishesfar all values qf' n
whenever the n roots reduce in any manner to i distinct groups qf equal roots ; 07' 2'22

other words, anyfunctz'on 0f 11 and the first 2i—l coefiicz'ents of an equation of the nth

degree, which vanishes for all values qf' n in every case where the roots retam only'1
distinct names, must be identically zero. -

To 1ende1 the statement of the proof more simple, let 2' be taken equal to 3. And
let the roots be supposed to reduce to p roots a, q roots I), and r roots 0. , And let 5,.
in general denote the sum of the rth powers of the roots. . Then we have evidently

p ‘ +9 +r :80
pa +qu +rc =31

pa2+'qb2+7"02=82

pa3+qb3+rc3=ss
pa4+qh4+rc4=s4,

Eliminating p, q, r between the first, secondi third and fourth equations,'We obtain '

1 1 1 s0 '

a ' b c _ S,

a2 122 c2 .92

a3 53 03 83‘

* The articles in this and subsequent sections to Which Latin or Greek letters are prefixed,a1though

in strict connexion with the context, are supplementary'1n the sense of having been supplied since the date,

when the paper was presented for reading to the Royal Society. All the articles marked With numbers (from

1 to 72) and the Introduction, appeared'1n the memoir as originally presented to the Society, June 16,1853.

1* In the proposition thus enunciated the coefficient of the highest powerof :c is supposed to be a nume1ica1'

quantity.
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In like manner eliminating 0p, [79, or between the second, third, feurth andfifth

equations, we have
1 l 1

a b c' 52 :0;

a2 52 c2 83

a3 b3 03 s4

and so in general we have for all values of e,

l l 1 se

a b 0 sm :0;

a2 [22 ' 02 39”

a3 b3 (:3 se+3

whence it may immediately be deduced, that, upon the given supposition of there
being onlythree groups of distinct roots, we must have the following infinite system
of icoexisting equations satisfied, Viz.———-

sot+slu+sgv+s3w=0 say L020

slt+82u+83v+s4w=O L120

s2t+83u+s4v+s5w=o L220

s3t+s4u+s5v+86w=0 L3=O

s4t+s5u+sfiv+s7w::0, L420,

&0. &o. &o. &c.,

and conversely, when this infinite system ofaequations is satisfied the roots must

reduce themselves to three groups of equal roots.

Let now <p be any function of So .91 s2 Sm which vanishes when this is the ease.

Then. q: must necessarily contain as a factor some derivee of the infinite system of

equations above written, 27. 6. some function of sols, 32, &c., which vanishes when

these equations are satisfied; 2'. e. someeonjunctive of the quantities L0 L1 L2 L3; but

it is obviously impossible in any such conjunctive to exclude 36 from appearing, unless
by introducing some other 8 with an index higher than 6, and consequently go cannot
be merely a function of .30 s1 82 83-84 35, nor consequently of n, and the first. five coefli—

eients; or if such, it is identically zero, and so in general any function of n, and only
2i—l 0f the coefficients, which vanishes when the roots reduce to 2' groups of equal
roots, must be identically zero, as was to be proved.

Art. (1).) It ought to be observed that the preceding reasoning depends essentially
upon the circumstance ofn being leftarbitrary. If n were given the preposition would
no longer be true. In fact, on that supposition, the n roots reducing to 2' distinct roots
would imply the existence of nhi conditions between the 72 mets; and consequently
n-‘-z' independent equations would subsist between the n coefficients, and functions
could be formed of i only of the coeflicients, which would satisfy the prescribed cong-
dition of vanishing when the roots resolved themselves into '2? groups of distinct
identities. ..
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Art. (0..) Let D,1 rgmfl. be used in general to denote the determinant

8'1 87.14"! Sr1+2 . . . 8714-22“).

81’: ‘S'rg-I'l sr2+2 . . . Sr2+i~l

O O O 1,

Sr; 513'.“ Sri+2 ‘ ' ', Sri+5~19

then the simplified z'th Sturmian residue R5 may be expressed under the form
__.__1 y __._2 _.__,

D1,2,3...i'zn z *D2,3,...2'+1 $71. z +D3,4...(i+2)mn z dN‘iDn—i,n—i—l,...nf

which is easily identifiable with the known expression for such residue.

Now obviously the necessary and sufficient conditions in order that the 'n "roots
may consist of only repetitions of 2' distinct roots is, that R;- shall be identically zero,
that is to say, we must have

D1,2,...i=0 D2,3...i+1=0 ”-1" Dn—i,n—~i~—l 72:0-

But the reasoning of the preceding article shows that although these equations are

necessary and sufficient, they are but a selected system of equations of an infinite

number of similar equations which subsist*, and that, in fact, whatever he the value

of (n), we may take 1'] r2...r,. perfectly arbitrary and as great as we please, and the

equation
D¢lq.2.,.,..==0

must exist by virtue of the existence of the 22—2? equationslast above written.
I

Art. (01) I now return to the question of expressing the successive quotients of{g

as functions of the differences of the roots and factors; that they most be capable 0f

being so expressed is an. obvious consequence of the fact, that the numerators and
denominators of the convergents have been put under that form, since if

N“? :Nii 1E}.
Di~2, Div—l, Di

 

are any three consecutive convergents of the continued fraction

1 1 1
—.—— --———QT: Q2_"""®:.’

we must have 7
Difl2.Ni-Ni_2.Dz-=Qi.

It would not, however, be easy to performthe multiplications indicated in the above

equation, so as to obtain Qi under its reduced form as a linear function OH}. I pro-
ceed therefore to find Qi constructively in the following manner. V

Let RM, RM, R; be threeconseoutive residues, f’a: counting as the residue in the

5—2R —-Rz- . ' ’
zero place, then Qi=~R—:-- and 18 of the form §m+§~p

* But qucere whether any other suficient system can be found of equations so few in number as this system. ,
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Now in general if We call the n roots of fat, Where the coeflicient of .22” is supposed
to be unity, kl h2...h22, and if we use Z2 to denote E&(hgl 12222...h22)*, with the convention

that Z2272, Z221, we have, employing (i) to denote ~12~{(——-1)"'+] },

 _Z?—-1 Z33 .23.. 264022222...h2222)(x_h2222)(22—.12222)242—122)}Z 2
—Zi--l‘ i—2"' (i)+1

R2_,=Z;-2Z2~"':<2>+12{§(h21h22h2)(x——Iz2+l)(x—lz22+2)(2...-—h)2
i—l' i—3"' (i)

 

2 2._2. 2_2...Z2 ’
_2=Z%~2.Z?_4”.Z:2i::2{é’(h91 hag...h95_1)($—h9i)($—Il9i+l)...($——h9n)}. 

The part of R2__l Within the sign of summation is 2

Z- m’H— E(hgi+1+hgi+2+ . . . +1119”)?;(h2,l 122,2 . .V.h2,&.)w”"‘“ + 8:0,,

say 2 Z2 xn‘i—Zan‘i“‘+ 8m,

and the part of R222 Within the sign of summation is

Z2m”"“’1-«- Z;_2.:v”"'+&c.,

and Z3.Z““Tn2+12"2.222J2=Z22 Z .Ct+(Z2-21Z”Z2Z'2-222)‘+ an algebraic fraction. 

 

Z-mn'2—Z2- w”“““1

2 2 2 2 2 —1

I ' 2' 2 2 ' 2 2 2
3: Z7: i_3-00Z(i)+1 Z3'__10Zi__3ooo (2‘)

x {Z2..2.Z2-m+(Z2- Z’i—Zezé—afl
.__Zi~’—1 222.2221” 2% ,
"' Z22 ' 2-2.22.22.. .2222“ ‘

T2- denoting Z2-_] .Z2- m+ (Z2__2 Z’2. .—-Z2-.Z§..2).

I Art. Ce.) If the pi'ocess of:obtaining the successive quotients and residues be con-

sidered, it will easilyvbe seen that each step in the process imports two new. coeffi-
cients into the quotients, the first quotient containing no literal quotient in the part

multiplying m and containing the first literal coefficient in the other part, the second

quotientecontaining two literal coefficients in the one part and three in the other, and

in general the ith quotient containing 2i—2 of the letteis in the one pait and 2i—-— 1

of them in the other. Hence T2 being made equal to L2- .m+M2-, L2- contains 2i—2 and

M2- contains 2i—1 of the literal coefficients of fin.

Muieover, We have

 

 

P _. -- P2-
Z2 of the form Tami,m ,

, 5*] 2

Where '

Pi~1=2:(héz h92”'h95)779i+1 719i+2"'779n

P._2=21(h01 h02”’/20i_ 1)779i 779i+1"°770”’ ‘

* I it will be rememberedIS the symbol of the operation of taking the product of the squares of the differ-

ences of the quantitieswhich it governs.
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and Pi, which is the ith simplified residue, vanishes when the 72 roots in any manner

become reduced to only 2' distinct groups.

I proceed to show that if we make

Ax+BH=U=AZ1(a2—hlZ)+A 2(30— h2)+.. W+AZ ”(m—hn),

where in general

AM represents 210291 hog...h9i_fll)(he—hgl)(he—Izgg)...(he—h9i_l),

then will
Ti=Ui.

It will be observed that Am is identical with what the simplified denominator of the

(i—1)th convergent becomes when we write he in place of m, and consequently, when

arranged according to the powers of he, will be of the form

hei*l+c2 hei-2+ +01

where cl, c2, 02- are functions of the coefficients, but containing no more of them

than enters into QM, i. 6. containing only 2i—2 of them.

Now A- is made up of terms, each consisting of some binary product of

Ci, C2, .00, (Li

combined with some term of the series

' 21;“, EM” 2110;

and any one of this latter set of terms expressed as a function of the coefficients offix:

contains at most 2i—2 of them.

Hence only 2i—‘2 of the coefficients enter into A, and in like manner only 2i—l

of them into Bi.

The number of letters, therefbre, in A2- and in B2- is the same as ian- and in Mi,
viz. 2i—2 and 2i—l 1espectively.

Now let the roots consist of only 2' distinct groups of equal roots, so that T

P,__2
becomes =ZZ.'P

i-l

 

I shall show that in whatever way the equal roots are supposed to be grouped upon.

this supposition, there will result the equation

 

Where Ti: {21(7701’702'” 77%)}2'

i~2:2{770i770i+1770n:(7707792..7702.__1)}

Pi;1=2{770i+1 770i+2'°'770n:(7701 7702, ”7702.) },

and H5=AZ771+A§W2+---+Ai.77m

A6 meaning 2{(776—-779,)(773—7702) - - . (773—7707;_1):(7701 779,,- . ~770£._1)}:

and 27m meaning m—Izw,

MDCCCLIII. ‘ 3 Q
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Let the n factors be constituted of 77%; factors :71 m2 factors 272...mi factors 272.. Then

Zi=M:(771772'--77i)9

Where p=m1.m2...m.i

‘Pz-_1=MZ(771 772---m)771m‘”1-’7é"2”1-'-’7§””.—1’
and Pi_2=M1.Z(772 773- . .m)n’1’z‘-77;"2”1 - ”772"“

+M2.Z(771773...27i)27’1"1‘1.77’2"2. .47?”

+ &c. 8w.

+{It-Z(m 772- . .m_1)n’1"1‘1-77’2”2‘1 - . .712“,

. . .....L". .../1°. ...... -13WhEIG~ H’r—ml M2“mg (”i‘mi'

__. 2 ‘ ’71§(’?2”13---fl2‘) ”2:071 ’13'--17i) ni§(’71"12---7)i-1)
Hence Tam—‘w 10717720375) {WW7—9gW-—— T+ +T 5.

Again, in Ui the term containing 271 Will be

m17712{(271—-«772)(771—773)m(m—m-KOe 773---m) }2

=777’I 771x (m2-m3--°mi)2 X (771—772)2(771_773)2--- (771—77i)2{:’72-773~~775}2

#9 ,S 52:77] X :(771772- - .771):(772 773" '772‘)‘

 

Hence, Ui=p2§071772”.ni){171§’79173~-m+17g:711”3'--’25+ &CH}=Ti
m1 m2

Hence, therefore, Ui—Tz- vanishes Whenever the roots of fm contain only 2' distinct
gmv’zpsvof equal roots, and it has been shown that U. and T2- each contain only 2i-—-1

0f the coefficients offm, so that Ui—Ti is a function only of n and these 2i—l letters,
and consequently by Virtue of. the Lemma in Art. ((1.) Ui—Tz- is universally zero, i. 6.
U2. is identical with T2, as was to be proved. In the same manner as observed in a
preceding marginal note,’ the expression given in the antecedent articles for the

numerator of the 73th convergents having been verified for the case of the roots con”

sisting of onlyi distinct groups, could have been at once inferred to be generally true
by aid of the Lemma above quoted.

Art. (f) Since the coefficient of x in Ti is meZi, we deduce the unexpected

relation
EZULI h2...hi_1) X ZZULI h2mhz) =Pi+P§+ - - . +1172»

Where Pg: E{(he——h91)(he—-h92) .. . (haw hgimlflUtgl hag. . . 719M) }~

a . ,
So that every simplified Sturmian quotient t0 {-5, When the (n) roots offx are real, Will

be the sum of 92 squares. But the equation is otherwise remarkable, in exhibiting

the product of the sum of W" (”1—3) :(fi—i; +2) squares by another sum 0fn(n_11):'2'.(fi:i_ 1)  

squares under the form of the sum of 92 squares,
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If We call the ithsimplified denominator to the Sturmian convergents to‘fif, D.(x),

and if we call the ith simplified quotient X(m), we have

X517: E;(D,-..lh.) .(mA-he). .

If we construet the numerators and denominators of the convergents to

.1... .3... .1. .1.
Q1"" Q2“ @3in . .

according to the general rule for continued fractions as functions of Q1, Q2, Q3, &c., so

that calling the denominators Al, A2, A3, &c. A..,

A1=Q3 A2=Q1Q2"1 ------ AezQiAi—1”Ai—2:

We have A-lm=z;‘2ZL"..Z‘;“’Dt-1(w),2

i-wl i—-—3' (i)

Aida being in fact the multiplier of fan in the equation which connects fa: and fat
with the z'-—-1th complete residue, and consequently retaining Q(:c) to designate the

complete z'th quotient, we have
Z2 Z Z- 54...Z(1.x ——$1.? :- w 2 13...}; xwhU“z: .-:...zzt)+l{ M )

6 ‘8 8
‘-— 22—- - i~— "'Zai:Ze 1. 83 85 o 2...,{{A....h}2(x—h)}
Z? ’£-2 5—4' ' ' (i)+l

 

 

 

Which equation gives the connexion between the form of any quotient and that of the

immediately preceding convergent denominator of the continued fraction Which ex-—

presses 5;.

Art. (g.) I have found that the coefficients of the n factors offlu1n the explession

above given for the quotients possess the property that the sum of their square roots
taken With the proper signs is zero for each quotient except the first (the coefficients
for the first being all units), 2'. e. Dihl+Dih2+ ...D.~h,.=0 for all values of 2' except i=1.

Moreover 'I find that the determinant formed by the 22 sets of the n coefficients of the
factors offa: in the complete set of n quotients is identically zero, 2'. e. the Deterw
minant represented by the square matrix D

” l 1 l l "‘

~(D1~h1)2 «(D1h2)2 (1)153)" -..(D1hn)2

(132.22,)? (13212212 (13.1.)2 ~~<Dahn>2 >=0.A

  1.. (Dn-lhl)2(Dn——l h2)2(Dn-1h3)2 ° °° (Dn4lhn)2 .1

Art; 1(h.) It should be observed that U. is the form of the simplified quotients for all

the quotients except the nth (2'. e. the last), for Which the simplified form is not U”,
but U,,,-—:—-§(hl 122...}1”), Which arises from the circumstance of the last divisor, Which is

thefinal Sturmian residue, not containing av; it being evidently thecase that the division

3 Q 2
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of a rational function of a2 by another one degree lower, introduces into the integral
part of the quotient the square of the leading coefficient of the divisor, subject to the
emceptz'on that When the divisoris 0f the degree zero, the simple power enters‘in lieu

of the square. The general [formula gives for the ?reduced nth quotient the eX—y
pression
 

2{(hl—lz3hl—h3...h3—fl;§(h3 133.../33))2(3—J31)},
Which equals

@021 h3. . .hn)2:(h3 h3. . .72”) (312—121).

Rejecting the first factor, we have

2§(/2.3 h3. ..hn)(m—h1),

Which is equal to the penultimate residue, Which residue is (as it evidently ought toibe)

identical With the simplified last quotient.
’ I

Art. (2.) We have thus succeeded in giving a perfect representation ofjfjg, 2'. e. of

1 ‘ 1 3 1
m+m+------ +m3

under the form of a continued fraction of the form

1 1 l

m1(x_61) _ m2(x_ee) _ ...... 773437—692),

  

Wheze mI 9713.. .m3-, 61 63.. .63 are all determinate and known functions of h] h3...h,3.

We may by means of this identity, differentiating any number of times with respect

to as both sides of the equation, obtain analogous expressions for the series

1 1 1

M+m1+'"+(3‘—731r
But to do this we must be in possession of a rule for the differentiation of continued

fractions Whose quotients are linear functions of the variable. Isubjoin here the
first step only toward such investigation.

Let the denominator of

_1_ 1 1
q1__ ?..uné;

where 91 93.. .93 are any n arbittaty quantities, be denoted by [93, 93, 93.. .933], so that

the entile fraction will be equal to

[9393--{73]
[9193 93-931”

any such quantity as [93 9333....93] may be termed a Cumulant, ofwhieh qi, 93+3...qn may

be severally termed the elements or Components, and the complete arrangement 0fthe

elements may be termed the Type. The cumulant corresponding to any Type remains

unaffected by the order! of the elements. in the Type being reversed, as is evident from

any cumulant being in fact representable under the form of a symmetrical determinant,
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thus ex. gr. the cumulant [919293 94] may be represented by thedeterminant

ql 1 O O

1 Q2 1 O

O 1 Q3 1

O O l 94,

and 94 Q3 92 91 will in like manner be represented by the determinant

Q4 1 O O

l q3 l O

l 92 l

O O l 91 ,

which is equal to the former.

Art. (j.) Let it be proposed in general to find the first differential coefficient in respect

to a: of the fraction

[QiQi+1----Qn]: '

[Q] 92 93-“an u

where each 9 is a function of one or more variables.

I find that the variation of Fl. may be expressed as f0110WS:-—~—

—BFi'={B[ql,¥ 92 9M, 9%] +B[ql, qg.-.qi_2, 942-1] 4:

+B[ql, 92, 93-"qu 9M] [gm qn_1]2+ &C- +5[9u 92, 93"'qi—29 9m] -‘ [9m qn-u 9n—2- 4-92-12}

-2- [91, 92, 93- 49”]2-

Art. (Ia) Suppose i=2, and glzalw-l—bl' q2za2w+b2~--»--qn:ana2+bm‘

we shall have by virtue of the above equation,

1,; 2-6 i{__L__1__-L 1}
dx 2’ ' 'dx' 91"" 925" 93.7.9”

1
= _W[qlqgojme’lan-12+an~1-qi+an—2- [gm qn_1:l2+ 8L0. +a1[qn, 9n-” 9n-2 92:12}.

If we call ngg every such quantity as .[qn,-qn_1...q£] represents to a constant

factor pres the (i—]_)th simplified residue (gm: counting as the first of them) to

g, and making certain obvious but somewhat tedious reductions, and rejecting the

1 . .
common factor ——W3, we obtam the expressmn

COR? R3 R3 ...... R2 ..._— , ; ,
Cl +C1.CQ+CQ.C3+ 1+0 _1.cn-<W-f~”" Mfr)’n

 

 

where R R2...an represent gem and the successive simplified residues to flu, Q23, and
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Ci means the coeflicient 0f the highest power of x in R2, and C0 the first coefficient

infm* , ,

Art. (L) Ifwe take g(m) 0f the same degree asf(ac) and for greater simplicity make the
first coefficients inflat) and g(x), each of them unity, the successive simplified residues

9% -0«"f”+9
903

to :17 will be identical with the simplified residues to (including amongst
J?

them the quantity gm—«fm itself), and sinee

(fw~g(x))g’w-(fw—g(m))’gw=(g’wfw-f"x-g~'v),
the right—hand side of the equation above written, when the residues are made to
refer to f and g, instead of referring to f and go, are taken of the same degree in w,

becomes equal to f’mgm—fmg’w; and if we now agree to consider f and g as homo- _
geneous functions each of the nth degree in .2: and l, the equation becomes

2 R2 R2 R2
1 -. n

5314—0C+03.30 -|- +Cn-1.Cn

:{f(x9 ”Exam: 1)——g(ct’ 1>dxf($’])}:1lzm(dwf+d1f> (dxg)nWdwg+€71g><dif>

df d df d
Zachdi—dxcg}:E3“: 8):

where J indicates the Jacobian of the given functions f and g in respect to the
variables :17 and 1, meaning thereby the so—called Functional Determinant of JACOBI

to f and g in respect of m and l, which equation also obviously must continue to
hold good when we restore to the coefficients of m” 111j andg thei1 general values

It may happen that for particular relations between the coefficients off and g

 

* This result may he obtained directly as follows ;..._.. . >

Letfw, gm and the (m—l) complete ‘Sturmian residues be called p0 p1 p2. . .pn; let the n complete quotients

be called 91 92.nqn, and let the allotrious factors to the residues p2, p3, pn be called pug {1,3 . . .11.”; then

POEQIfP1—-P2; P1=92 P2‘P33 [92:93 P3“P4§ 8‘0-

hence p13p0— p08p1 ::9391 + (@891 —p05p2) ‘

2,031.71 + P3892 + (P38P2‘—P28P3)‘

= 810.

=Pi391+p§392+10§593+. +Pn59ns
but we have in general pix,“ .Ri;

hence 392-29511 .fltlh
Ci [12'

a . . C-
and p3392=~6~1m1MR?3m;

but it may be easily seen that

111...] spi‘; 3L4 except when 5:1, for which case 115..., 1415: 1,
¢~1

CO
R3812; when i>1, and :69};fan: when i=1,

1

hence Pi28%“

 

1

021.4.C

which proves the theorem in the text.
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certain of the residues may be wanting, which will be the case when any of the

secondary Bezoutics havetheir first 01' successive first terms, affected with the coeffi-
cient zero; the equation Connecting the residues With the Jacobian willthen Change

its form (assome of the quantities Cl, Cg,” .C will become zero); but I do not propose

to enter for the present into the the01y of these failing, 01 as theymay more propelly
be te1med,8ingula1 cases in the theory of elimination.

A1t. (m) The se1ies last obtained fox J (f, g) leads to a reSult of much interest in
the theory, and of which great use is made in the concluding section of this memoir,

Viz. the identification of the Jacobian (abstraction made of the numeriCal factor n)

with what the Bezoutiant becomes When in place of the 12 variables in it, u, urnun,

we write a: “‘1, a2“”2, m, 1. Thus suppose f and g to be each of the third degree,
and Jet

Ax2+H$+G

Hx-2+ Bm+F

Gm2+ Fm+C

be the three primary Bezoutics; if we make

' $22” $21) l=w,

these may be written under the form I

Au+Hv+Gw==L

Hu+ Bv+ Fw=M

Gu+ Fv+szNg

and if the Bezoutiant ”be called Q, We have

14:22; 34:63:“! 2%,,-
The simplified residues tof and g are L,_(L, M), (L, M, N), where (L, M) means

the result of eliminating a: between L and M, and (L, M, N)-the result of eliminating

a and '0 between L, M N; and bya themem (Virtually implied in the direct method*

of reducing a quadratic function to the form of a sum of squares), if we call the
leading coefficients of these quantities Cl, C2, C3, we have

(L M)2 (L: M3N)2__ .
CQZ+C .C + ewe», “3
 

1 o 6 1 3
Hence when 72:23 §,J(fi g):::‘cI when 1n 8, u, v, w are turned 1nto mingl, and so

in general for any values of n, the Bezoutiant correspendingly medified, becomes

1.J(fig), as was to be shownfit

* Viz that of M. CAUCHY, adverted to in Section IV art. 44—45.

1* Compare JACOBI, “ De Eliminatione,” § 2. The general expression for the allotrious factor, I may here

incidentally mention, is given under the head Theorem (1,, § 16, which comes quite at the end of the same paper
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Art. (n.) The expressions obtained f01 the quotients to i.— may be generalized and

extended to the quotients t0 fig, where W‘ and fm are two functions of x of any de—

grees m and 92, whose roots are respectively, A k2...km, and h1 h2...hn. If we suppose

1 1 1 1E?— ...... ...—..—
fw—Q(w)-— 92(w)— 93(w)— qm+1(w)’

Where Q(x)1s 0f 72— m dimensions, and 92(50), 93(12)” .qm+1(a:), each of one dimension

in m, it may be proved that on writing

 

  

 

1 . 1 . 1. _Nz(w)

QW- qg(w)- """ 91(w)—Di(w)’
weshall have

2_f__k9 ‘123M{(Nk)7-9—91,»—k)}=Lqi+l(x) . . . . . . . (A.)

[29 I2,102.{(D h9)2.;~h(w—h6)}:qu+l(x) . . . . . . . (B)

Where CiC’=0,. . . . . . . . . . . . (E1)

qu+1(m) being the (i+ l)th simplified quotient. When Q(m) is a linear function of as,

in. finding qlm from the formula B, we must take D0x=l. The proof of this theorem

being generally true, may easily be shown to depend upon its being true in the special

ease*, When m=p+i, and n =,w+i’ (m being supposed less than n), and ill, [22, kn

become 11 l2...lM Ill knufzw and k1 k2...km become l1 l2...lM k1 k2...ki; and the truth of

the theorem for this special case (if for instance we Wish to prove the formula (B))

depends upon the expression I

  

hwhlzq __ M2 .Wh_
k1k2...km hi, hmwh

X’h h. I: _._ 111/12 ...h
kl: ..km fl hWhh  

  

being identical With the eXpression

{hwhflw J_lhllz2 ...};
11/1211,” hi, hi,+1...]2n-

hi,

151 R2. 16X 1, ~
ih1h2...hil'—l hil+1evo 7?:

  

>< (hg—hlm—ha...</2¢,—Izi,_]>}

 

 

  
* By Virtue of the Lemma, that when gm andfar are two algebraical functions (mn+ am” 8:0.) ; (WW+ amnfle} 8:0.)

no function of the coefficients vanishing identically When 2' roots offx coincide with z' roots of cpa: respectively can
be formed, in which there are fewer of the coefficients off and q) respectively than appear in the leading coeffi-

cient of the (n—z'+1)th residue of §-
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as it may readily be shown to be. ' And the formula (A.) may be verified in- precisely
the same manner. There is no difficulty in finding the values off) and C’,-Whiehiare
products of powers, some positive and some negative, of the leading coefficients in

the simplified residues, and recognising that they satisfy the equation (13.) ; When (pm

is of one deg1ee belowfx this equation is of the form C+C’=0.
Art. (0.) When gammf’m, this expressiOn for the (i+])th simplified quotient becomes

E(Dzh)(x-/1), as previously found; the conelative expression will be

"E(Nikrffllmjl‘; (33" k):

.vk‘hei‘ng anyroot of f'm=o, Which is equal to the former expression. ~ The general

expressions above given for the simplified quantities are ~ of course integral'functions
of it andflc, although given under the form of the sums of fractions, by Virtue of the

3(5)well-known theorem that 2 fl, WhereS is an integral function of h, and the sum‘ma-

tion comprises all the roots (ll) offh=0 is always integral.
Art. (19.) It Willvbe fo1‘1nd that for all values of 1' greater than unity

2W1(NW19)fig:

«and that 2.11 (D he);}—~f:._:

The theorem of 1:111; (11.)1s in effect a. theorem of Cumulants of the f01m

[Q1(x), 92(39):- 910”)" .,q.z(£t’)]

whete the elements are all independent of one another, and Whete fa: 1"ep1esents

[Q(1) 92(50) (1300)» 94%)] and W replesents [(1239 93(53): ...q.,(x)],
11 being any number whatever greater than 1'; this makes the theorem still more
remarkable. The urgency of the press precludesmyinvestigating for the present the
more general theorem which must be presumed to exist, whereby 9...“ can be con-
nected With, [qlq2qg...gi], 01' [912 913.0113], and With [(11 92 91-41119] and [£12 93-1-9'£+e:ia
when each (q) represents a. function of an arbitrary degree in x. The theorem so
generalized would comprehend the complete theory of the quotients arising from the
p1ocess of continued division without exclusion of the singula1'eases(at present
supposed to be excluded) Whete one or several consecutive p1ineipal coefficients in
one 01 mo1e of the residues, vanish.

A1t.(q.) The complete statement of two twin theorems suggested by and intimately

connected With the hiform representation of the quotients :75}, givenin the preceding

article, is too remarkable to be omitted.

Suppose th——f"1: and letthe successive conve1gents to fx be called
fa"

1. m 13222.11: thILx
W, h“, col 9

, Tl I (z? 1125” ngwl 01.2, T7212?

 

where‘the subScrolet index to t 01' '1‘ indicates the degree in :13. Then if we call the
1113061111111. ' 3 11
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roots offa: hl hg...h,,,~the theorem already cited in a preceding article, concerning the
denominators of the convergents, may be expressed as follows :-—---

" 1:1; 2. 1:11 » , 1'1 "
@111) ’ 1111) ’ ‘’ @1111.12)

(Ti 1202; (T1 [22)2; ...; (T [1,02
< 2 - . 2 V 2(T2 hl) ; (T2 112) ; ...; ('12 n)

H o

  ('1‘.. .1112; ('121-212 (Tn-hag
where it will be obse1ved that the fi1st line of teuns consists exclusively of units
smcef’ =qu by hypothesis.

Co1relatively I have ascertained that preseiving the same assumption that cpxaf’aa
$1k ‘ filk

so that consequently 7}“ means ?h’ the following theorem obtains, viz. that if

I1:I 76211-1171-: are the (w—l) roots of @511.»

@ik1¢'ka¢fkn-l"(11:) 1 (11:) g (11:)
< (t1(k1))23 1(t1(k2))23 -°°(t1(k 4))2 , >

(t2(k1))23 (t2(k2))23 ---(t2(k -1))2

~(tn~2(k1))2§ (tn——2(k2)) 3» "-(tnwik ~1))2«

It may consequently he conjectured, when g0 and f are independent functions of

ac and respectively of the degree 12—1 and n, and 3% is expanded under the form of a

. . . 1 t t 1.1 y .
contmued fraction, of Whlch, as before, T- ; “EFL; ; 7i:— are the successwe convergents,

‘ 1 2 ‘76

  

that we shall have analogous determinants to the twin forms above given, each
separately vanishing, these more general determinants differing only from their

model forms in respect of the uppermost line of terms in the one of them, being
each multiplied by certain functions of h1, h2, hn reSpectively (all of Which become

units when (pmzf’m), and «in the other of them by certain functions of 1:1, h§,...kn.
The eXaet form, however, of such functions, and even the possibility of such form

being found capable of making the determinants vanish, remains open for further
inquiry.

SECTION IV.

On somefurther Formulae connected with M. STURM’S theorem, and on the Theory of
Intevrcalatz'ons whereof that theorem may be treated as a corollary.

As preparatory to some remarks about to be made on the formulae connected With
M. STURM’S theorem, it is necessary to premise two theorems concerning quadratic
functions of great importance, one Which, notwithstanding its extreme simplicity, is
as far ae I know very little (if at all) known, and the other was given in part many
years ago by M.'CAUCHY, but ‘is also not generally known. The former of ,these
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two theorems is as follows. If a quadratic homogeneous function of any number

of variables be (as it may be in an infinite variety of ways) transformed into a function
of a new set of variables, linearly connected by real coefficients with the original set,

in such a way that only positive and negative squares of the new variables appear in

the transformed expression, the number of such positive and negative Squares reSpect—

ively will be constant: for a given function whatever be the linear transformations

employed. This evidently amounts to the proposition, that if we have 272 positive and
negative squares of homogeneous real linear functions of 72 variables identically equal

to zero, the number of positive squares and of negative squares must be equal to one

another, so that ex. gr. we cannot have .

i{ui+'u§+ 850- +u§+uZ+I-ui+2-*ui+3— &C. “ugni’

identically zero when n of the variables are linear functions of the remaining n; and

this is obviously the case, for if the equation could beidentica‘llysatisfied we might make

“n+2=u1 “n+3:u2 ------ “2n:un—1n

and we should then be able to find un+1 as a real numerical multiple of um and con-

sequently should have the equation u:.{1+k2}:=0, which is obviously impossible;

afortz'ori we may prove that in the identical equation existing between the sum of

an eVen number of positive and of negative squares of real linear functions of half
the number of independent variables, there cannot be more than a difference of two

(as we have proved that there cannot be that difference) between the number of

positive and negative squares. Hence there must be as many of one as of the other ;

and as a consequence, the number of positive squares or of negative squares in

the transform of a given quadratic function of any number of variables effected by
any set of real linear substitutions is constant, being in fact some unknown trans—
cendental function of the coefficients of the given function. I quote this law (Which

I have enunciated before, but of which I for the first time publish the proof) under

the name of the law of inertia for quadratic forms.

Art. (45.). The other theorem is the following. If any quadratic function be repre-
sented in the umbral notation* under the form of (031 x1+a2m2+ +an $902, where an

a2...a,,, are the umbrae of the coefficients, and x1, m2...xn the variables, then by writing

  

 

    

 

       

 

   

al a1 a1 a1 a1 '
a71‘i' m2‘i" 583+ 334+...+ fln=yl

a1 2 as a4 an

atla2 a a a a a1a2
x2+ 1 2 w+ 1 2 504+ 850' + xn=92

a a a a a. a‘ a 0526131 2 3 __ 1 2 3 311+ 850. + 1 mn=y3

a) a2 a3 1 '2 4 9 a1 a2 0,, ~

8:0. &c. &0.

a1 a2...an . __

wn—ym
a1 a2...a,,

  

* For an explanation of the umbfalrnotation, see London and Edinburgh Philosophical Magazine, April 1851,

or thereabouts?

3R2
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(al xl+a2x2+...+an xn)2' Will assume the form

a1 a2 al a2 a3 a1 a2'-'an-—l a’n

   

y¥+ aga2 y§+ (11012013 93+“.+ a1 a2..v.a,,_,1anyi

1 a1 a2 a1a2...an~1

   

 

  

“1

a1

      

a1 a1 a2 a1 a2. ”a,“ .

and consequently the number of positive squares in the reduced form of the given

function Will always be the number of continuations 01' permanencies of sign of the

series

a1

_;
(11

011112 a1 a2 a3 a1a2...an‘
’

o
q 0'.1;

      

a1a2 ar1 a2 a3 a1a2...a,3

the several terms of this progressien being in fact the determinants of What the
given function. becomes When we obliterate successively all the“ variables but one,

then all ‘ but that another, then all but these two and a third, until finally, the last

term is the determinant of the given function With all the variables retained. This
comes to saying that if we call the function (suppose of four variables) f, and we write

{Eff def dgf dfi’f 

 

 

  

  

diff dwl dwg dwl dw3 dwl dwq

dgf def dgf dgf

dévg dwl dwg dwg dw3 dwg dwé

def dgf 4:” dgf
de dwl dws dwg day: dwg dw4 1

def def dgf i2!

d4 dwl dw4 dwg dag dw3 dwi’

(Where all the terms are of course coeflicients of the given function expressed as above
for greater symmetry of notation), the inertia of f Will be measured by'the-nu’mber

0f continuations of sign in the series formed of the successive principalminor‘ coamal
de

d619,. aims, ’

, 11,1 1, 2 1, 3 F(l’ l) (1’ 2) (1’3). (1’ “l
1, (1, 1), [(1’ 1) (1’ 2)], 2,1 ,2, 2 2, 3 , (2" 1) (2’2) ,(2’ 3), (2’ 4) I

(2, 1) (2, 2).. 2 3 3 (3, 1) (3,, 2) (3, 3') (3, 4)
.’ -.(4, 1) (4,2) (4, 3) (4,4) ;

 

determinants (in Writing Which I shall use in general (r, s) to denote

and in like manner in-generalih

* I have given a direct (i posteriori demonstration in the London and Edinburgh Philosophical Magazine,

that the number of"contin11ations of .sign in any series formed like the above form a symmetrical matrix, is

unaffected by any permutations of the lines and columns thereof, Which leaves the symmetry subsisting, that

is to say (using the umbral notation), if 01, ‘02, 93. me) are disjunctively equal, each to each; in any‘arbitrary

order to 1, 2, 3 .. . . 2', the number of continuations of sign in the series

a9 " (191 (192 £191 (192 (193 (th1 a92 (193, . .‘.ag.
1 l

1, ’

        

s , t 1 .

. a9]. 6191 0392. “91 €192 €503 . (191 (192 6293. . . . agi .

is irrespective of the order oi the natural numbers 1,, 2, 3 .2' in the arrangement 91, 92, 03 . . . .011.
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Art; (46.). Reverting now to the simplified Sturmian residues, since by thetheory‘
set out in the first Section these differ from the unsimplified complete residues
required by the Sturmian method only in the circumstance of their being divested

of factors, Which are necessarily perfect squares and therefore essentially positive,

these simplified Sturmians may of course be substituted for the complete Sturmians'

for the purposes of M. STURM’S theorem. The leading coefficients in these simplified

Sturmians, reckoningf’(m) as one of them, Will be

22221021 12), 21021 122131.111 11)
which it is easily seen, as remarked long ago by Mr. CAYLEY; are'the successive prin-

cipal minor coaxal determinants of the matrix

60: 612 02: 63°°°0im-1

01, 0'2, 0'3 ....... 17m

62’ 63 oooooooooo 6773-“).

amfll O-m oooooooo 0‘2")”2,

where in general a,==iz’{+h;'+... +hjn, and of course 002m. M. HERMITE has improved

upon this remark by observing, which is immediately obvious, that if we use 11?. t0

5/1denote, not the quantity above written, butw_h1 +55%.”—2122+. the successive coaxal

  

x_mm/z’

dete1minants of the above mat1ix Will become 1espectively

J... . “51129) . . , g(kli‘e [33) . “[31 hgnhm) .

Ew—hl’ Eitv-gWas42)}, E(x—Ilex—hgflx—lza)’ '_,"(x—Izl)(x—/zg)...(w—/zm)’

that is to say, these successive coaxal determinants, When multiplied up by fir, will
become respectively

2(x—h2)(ay-— hB)” ($"— hm); 2:0“ h’2){(‘T_ h3)(‘r_'h4)”(w‘hm)}992:01“ h2' "[2m):

that is to say, Will 1eplesent the simplified Sturmian series given by my general
formulae. » M. HERMITE furthei remarks, that the matIiX formed afte1 this rulewill

evidently be thatWhich represents the determinant of the quadratic function (Which
may be treated as a generating function)

 

  

‘ +h1.u2+h1.u3+...+h1*1.un}2,    

in which, since only thesq11a1ed diffeiences 0f thete1ms in the (h) Seties finally
remain in the successive eoaxal determinants, we mayW1ite (110—11), (111—712).. .(w— hm)

Simultaneously111 place of /z h2 .mh without affeeting the 1',e8111t ConseqUently the

generating function above may be replaced by the geneIating funetion

2-551.{111+(mehl)u2+(w-—h1)2.u3+...+(:c——hl)’"".um}’;'



484 MR. SYLVESTER 0N FORMULA] CONNECTED WITH STURM’S THEOREM;

the corresponding matrix to Which becomes

1

  

19 92, m

gm~2a gm—‘la ° ° ' 02m—35

. 1 ’ . . . . »
where (9%. denotes 2(m—a)‘, and 2x_51:1}; Hence every smphfied resxdue IS of the

form

{a a2 ”.9? 1 {0 90 91...a,. 1
f,“ 9293 We L_WXM 91 ”we; L

o l . o. . - |
9? 9”,ng Let em WM

The residue in question will be of the degree m—r-—2 in cc, and consequently we
have, according to the notation antecedently need for the syzygetic equations

”0192 ”.9? 1'
I

tr+13< 92 (9.3 . 07-5-1 ?

k0709°+r 027—1}!

  

F0 90 91 .ar “
0 01 ~07.“ ‘

“77‘:< 91 0H2 >'

L0} gr+1 ”'62?“le

Elegant and valuable for certain purposes as are these formulae for tmahd '23, they

are affected With. the disadvantage of being expressed by means of formulae Of a
much higher degree in the variable m than really appertains to them, the paradox

(if it may be termed such) being explained by the ‘circumstance of the coefficients

of all the powers of a: above the right degree being made up of terms Which mutually

destroy one another. Upon the face of the formula 25,.“ and 7,. Which are in fact

only of the degrees r+l, and 7" respectively ‘in a: would appear to be of the degree

1+3+5+...+(27--— l), 2'. e. of the degree r2. ‘

Art. (47.). I may add the important" remark, Which does not. appear to have
occurred immediately to my friend M. HERMITE When he communieated to me the
above most interesting results, that in fact, by virtue of the law of inertia for quadratic

forms, we may dispense with any identification of the successive coaxal determinants

of the matrix to the generating function

29—1—fi1{2{1+k1u2+h?.%3+ +h?wl’um}2
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With my formulae for the S’turmian functions, and prove ab initio in the most simple
manner, that the successive ascending coaxal determinants (always of course supposed
to be taken about the axis of symmetry) of the matrix to the form above written, or

to the more general form (which I shall quote as G, viz.)

E(gmhmwl.(/Ll)u1+¢)2(h1)u2+...+¢m.(hm).um}2 . . . . . (G.)

(where Q, gum,” are absolutely arbitrary integral forms of function With real

coefficients), Will form a rhizbristic series in regard to fat (2'. e. a series, the difference

between the number of the continuations of sign between the successive terms of

whichcorrespondingto two different values of Q Will determine the number of real

roots of g lying between such two assumed values), provided only that g be an odd
positive or negative integer. Nothing can be easier than the demonstration, for
Whenever g is greater than any one of the real roots as (ill)

let. Any pair of imaginary roots Will give rise to two terms of the form

(i+m\/:T)9.(v+w\/M:T)2 and (l——m\/:T)q.(v—w\/:if)2;

or more simply,

(L+ MJZ-i). (v2+w2+2vw\/:T)

and (L— M\/:_1') . (v2 — w2 — vaJZT),

Where v and w are real linear functions of ul, ug, ....un The sum Of which coupie

Will be

2{L.(u2-—-v2)~2va}=%.{(Lu—-Mv)2—-(L2+M2)v2} =p2— 92;
so that each such couple combined Will for every value of a: give rise to one positive

and one negative square.

2ndly. Any real root of the series hl, kg, ...hm, 'When 3 is taken greater than such roots

Will give rise to a positive square of a real linear function of ul, u2, ...un.

St'dly. Any real root of the same series, When 3 is beneath it in value (9 being odd),

Will give rise to the negative of the square of a real linear function of the same. Hence
the number of real roots between 13 taken equal to one value (a), and 3 taken equal to

any other value (b), Wiil be denoted by the loss of an equal number of positive squares in
the reduced form of the expression (G) When 3 is taken (a) and When 3 is taken ([9) ; 2'. e.

by virtue of art. (45.) Will be denoted by the difference of the number of permanencies

of sign in the successive minor determinants of the matrix corresponding to the

quadratic form (G.)* (which we have taken as our generating function) resulting

* The inertia of the quadratic form G is the measure of the number of real roots offit comprised between 00

and p, and may be estimated in any manner that may he found most convenient. * ’If p .be made infinity, and

fill be taken equal to hi‘l, and the inertia of the corresponding value of G be estimated by means 0f the for-

mulae in ordinary use by geometers for determining the nature of a surface of the second degree, the criteria of

the number of real roots in fee will be, or may be made to be, symmetrical in respect to the two ends of the

expressionfw. This system of criteria, however, is not so good as that given by the Bezoutiant to the two

differential coefficients off(x, 1) taken with regard to x and 1 respectively, Which Will also possess the like

Character of‘symmetrical indifference, and be one less in number than the former.
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fromthe substitution respectively of a and b in place of g, which gives a theorem
equivalent to that of M. STURM, transformed by my formulae, when we Choose to

adopt thepartiCular suppositions

qz—l olhzl 1121:}; ¢3.h=h2.;.gomh=hm~l.

This method "of constructing a rhizoristic series to fit by a direct process is deserving

of particular attention, because it does not involve the use of the‘notion of- continuous

variation, upon which all preceding proofs of STURM’s theorem proceed. It completes

the cycle of the Sturmianideas. Happily this cycle was commenced from the other

end, for it would have been difficult to have suspected that the root-expressions for the
terms in the rhizoristic series, could be identified with the residues, had the former

been the first to be discovered, and much of the theory of algebraical common mea»

sure laid open by means of this identification would probably have remained unknown.

Art. (48.). I proceed now to consider a theorem concerning the relative positions

of the real roots of two independent algebraieal functions asindieated by the suc-
cession of signs presented by their Bezoutian secondaries; this more general theory

of intercalations or relative interpositions will be seen to include within it as a corollary

the justly celebrated theorem of M. STURM.
Let the ma] roots offan taken1n descending orde1 of 111agnitudes be h 112...}1p, and

the real-roots of $.23 taken111 the like o1'de1'171 272...17q, so that

fit: (m—h1)(m—h2) . .. (x—hp)H

gm: (.17—771)(5L‘—772) .. . (m—nq)K,

H and K. being functions of .1: incapable of changing their signs. Now, as in

10(1)M.STURM’S method, let us inquire what takes place in respect to the sign of K5"

which I shall call the Indicatrix, as x descends the scale of real magnitude from
+ co to —00 . If between +00 and ill, 27 real roots of gas are contained, it is obvious

that as .76 travels from +00 to the Superior brink of ill, the Indicatrix will Change its

sign from -|— to —- and from -— to + altogether 2' times, so that at the moment when

.1; is about to pass through 121, it will be positive if z' is zero 01' even, and negative if
2' is odd ; but the moment after :0 has passed through the value .711, the indicatrix will

be negative on the first supposition, and positive on the other supposition. Hence

immediately after the passage of .51: through [’11 the indicatrix will have been once

oftener negative than positive on the one supposition, and as often negative as posi-
tive on the other. Again, in like manne1 as a; t1'ave1ses the intenal between it and

the infe1i01 brink of I12, if no 27 01' an even 1111mbe1'of17’s occupy this inte1',val the sign

which the Indicatiix had at the beginning of this interval will have been 1eve1'sed

once often’et', than. restored; but if there be an odd number of 71’s so interposed, the
number of reversals and restorations will have been identical; and so for each

successive intet'val,1'eekoned £10m a value for .51: immediately subsequent to one leal

1oot offw, down to a value 1111 med1attly subsequent to the next less real root of the
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same; and it is evident that the effect upon the sign of the Indioatrix at the end of
every such interval depends, not upon the number of 27’s grouped together in such

interval, but upon the form of the group as regards its being made up of an odd or

even number of terms [the first interval will of course be understood to extend from

+00 to a value immediately inferior to hl, and the last from a value immediately

inferior to 12,, to ——00 ]. Hence as regards the relation of the signs of the Indieatrix
at the beginning to the sign at the end of every such interval, nothing will be altered

by taking away any even number of 21’s that may be found therein. If we suppose

this to be done, we shall then have in some of the intervals one 27 occurring and in

the other intervals non; that is to say, some of the Iz’s will be separated by single 27’s,
but other h’s will come together. Again, by removing any even number of h’s not

separated by 72’s (and thus removing an even number of intervals), ittis clear that as
many changes of sign of the Indicatrix will have been done away with from + to --
as from - to +, and no effect upon the excess of the one kind of changes of sign over

the otherikind of changes of sign will have been produced. By removing pairs of h’s
in this manner, it may happen that 27’s will again be brought together, any even number
of Which, not separated by h’s, may again be removed and then pairs of h’s not sepa-
rated by 27’s in their turn, and so continually toties quoties until at length we must arrive
at a reduced system of It’s and 27’s, where no two k’s and no two as come tOgether, or

else all the ES and all the 27’s will have disappeared. Let the scale of k’s and 27’s thus
simplified and reduced be called the effective scale of intercalations. The number

of 12’s and the number of n’s in any such scale will be equal, or Will at most differ

from one another by a unit, since at each part of the scale, except at the end, every

his followed by an 27 and every 27 byan 12. If the scale begins and ends with an h,

there will of course be one more it than 77; if it begin and end With an 27, there will be

one more 27 than [2; if it begin with an h or an 27 and end with an 27 or it, there Will

be as many of the one as of the other.
1st. Suppose the efieetive intercalation scale to commence with an h; then in passing

from + 00 to just beyond the first It the sign of the indicatrix 9? changes from + to —- ;
fr

it changes again from —— to + as it passes the first 27, then again from + to —— as it passes

the second h, and so on ; that is to say,» there will be a change always in the same direc-
tion from + to —— as :12 passes, from beingjust greater than to being just less than any h

appearing in the effective scale. 2nd. If the effective scale begin With 77, the indicatrix
will conversely be negative after passing the first and every subsequent 27, and change

from — to + in the act of passing through the first and every subSequent It. So

that on either supposition the changes of sign for the effective scale always take place

in the same direction, and the number of h’s in the effective scale will be measured

by the number of such changes, and consequently will be measured by the difference

between the number of times that the indieatrixfir—j changes its sign from + to --

as xtpasses through each in turn of the real roots offit}, and the number-of times that in
passing through any such root it changes its sign from —- to + ; if the former number be

MDCCCLIII. 3 s
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greater than the latter, the effective scale of interpositions will begin with a root offw;

if it be less, the scale will begin with a root of gear. If instead of beginning with +00

and ending with —00 we begin and end with any two limits, at and b respectively

(making abstraction of all roots offx 01' 0f gm: lying outside these limits, and forming
the effective intercalation scalewith the r00tScomp1'isedwithin these limits exclusively),

we shall obviously obtain a Similar result, but with the condition that the changes from

+ to —- will be in excess if an even number of h’s and 21’s combined be cut off by

the superior limit, and the effective scale begin with an h, 01' if an odd number of [1’s

and 27’s combined be so cut off and the scale begin with an 17; and in defect if an odd

number of h’s and is combined be so cut off and the scale begin with an it, 01' an eVen

number be so cut off and the scale begin with an 27. If, new, supposingfm to be of u,

and gm: of not more thann, say (m) dimensions, we form the signaletz'c series fay, @512,

B1, 1B2, ’.. .mB (where the B1, B2,.. .Bm are the Bezoutian secondaries 01' simplified suc-

cessive 1esid11es corresponding 10;: expanded under the form of an improper con-

tinued fraction), it may be shown, in thessame way as for STURM’S theorem, that

wl1enever—-f:cha11ges from + to — a change of sign will be gainedin the series, and

when from —- to + a change will be lost; and that no change can be gained 01' lost

except as :17 passes through the successive real roots of fx. Hence the difference

between the number of changes of sign in the above signaletie series when a: is taken

(a), and the number of the same when x is taken (6), will indicate the number of

roots of fa: remaining in the effective scale of interpositions formed between such of

the roots offm and of gays as lie between (a) and (b); calling the one number 1(a) and
the other I(b), the sign 0fI(b) —-I(a) depends not on the 1elative magnitudes of (a) and

(b), but upon the manner in whichthe effective scale commences; if I(a)——I(b)_is

positive the effective scale formed between the (a) and (b) will commence with a

root offx; if negative, it will commence with a root of @(x). 1
Art. (49. ). In forming the scale of effective interpositions, it is evidentiy not neces-

sary to go on reducing the (h) series and the 17 se1ies sepaiately and alternately, the
same result will be effected more expeditiously by eliding simultaneously any even

number of h’s that come together without being separated by an 17, and any even
number of 17’s that come together without being separated by an (12), and, repeating
this process of simultaneous elision, as often as may be required, until no two Iz’s
or 27’s come together. Thus, for instance, denoting the magnitudes of the series of real

roots off and of go by the distances of h and 27 points taken along a right line from a
fixed point therein, and supposing such series of roots between the limits (1 and b to be

hhhnnnhnnhnnnhhnhnhhhhhnnh,

0111' first reduction brings this scale to the form»

hnhhnnhnhh;

the next reduction brings it to the form

hannhn;
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and a third and final reduction brings it to the form

¥ hnhn;

and accordingly We shall find for such an arrangement of» the h and 17 system
I(b)—I(a)::j_3—2.

_Art. (50.). If wesuppose gear: 330;, by a well-known thebrem of algebra, any two

consecutive roots of fit: Will contain between them an odd number. of roots of goal",

and the number of real roots of f’m greater than the greatest root of fx,»and the
number of real- roots of f’x less than the least root of flu Will each be even. Hence
the effective intercalation scale between any two limits (0:) and (b) will be formed by
merely reducing the 17 groups to single units, and the number of 11’s in the scale so

formedwill be thetotal number of h’s between the limits (a) and (b). Moreover,

since such scale commences always with a root. offx, or with an even number of roots
offa: followed by a root offay, if the number of h’s and, 17’s cut off be even, and with
a root off’x or an even number of roots offlu followed by a root offin, if the number

so cut off be odd, it follows that for this case I(a)-—-I(b), (a) being the superior limit,

Will be always positive, and Will measure the total number of real roots off(m) lying

between (a) and (1)); this, then, is STURM’S theorem, treated as a corollary to the

Theory of Intercalations.
Art. (51.). If wewrite down the last syzyge‘tic equation between fa: of m and ¢(x)

of 11 dimensions, viz. 3 , . .

Tn—x-(x)f(w)-t ~1(w)¢w+30=0»
it has been shown that the succession of signs in the Series formed With fay, ea: and

their successive Bezoutian secondaries Will contain the same number of continuations

and variations as the series formed With f(x), tm_1(a:), and their successive Bezoutian

secondaries. This indicates that the effective scale of inte1positions for fm and

gm: Will contain an equal number of roots offa: with the effective scale forfa: and

tm__1(.r) ; the two scales however Will not necessarily be identical, because the roots of

gm: will not necessarily be in the same order relative to the ES in the one scale as those

of tm_,. a: relative to the ES in the otbe1 scale. This equality is perfectly well ex—

plained a posterzori by the form of twp .23, Which by the formula1n Section II Will be

rep1esented by
k3. ha" ¢hm—l2(w-,-h>(m—h.) (x-—-h...9.3,,34354533.:5.31%.}; 

lEi'm-d

Now, whenever a: is indefinitely near to any one of the roots of fay, as I133“ this sum

reduces to the simple expression ~

(oh... eh..." chm-,={¢>hWok$12337;,

and consequently in the immediate neighbourhbod of every real root of fir, em and

t,,,-11a: will have always the same or always a contrary sign, according as $1133. $1133.. .th
qm

is positive or negative, which will depend upon the relative disposition of the real

mots 1nf and q), in either case the effective scale of interpositions forfa: with gar and

3 s 2
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forfm with tm_,..sc must contain the same number of h’s; but the difference Will be,

that if ¢h,.qolz2...gohm is positive an It Will occupy the first place in each scale, or the

second place in each scale; but if negative, then in one scale an (h) Will occupy the

first place, and in the other scale the second place.
Art. (52.). The same proCess of common measure or residues Which serves to furnish.

a rhizoristic series for flat) or a synrhizoristic series for fa: and gm, Will serve alsoto
furnish superior and inferior limits to the real roots of any proposed equation. Thus
suppose fm to be any rational integral function of (.17) of the degree (n) and (p(zv) any
other function of x, Which I shall begin With supposing to be of the degree (n—- l),
and let the successive quotients resulting from the process of finding the greatest
common measure offm, gm: continued until the last remainder is not a constant but zero,

be supposed to be (as they may generally be taken, but subject to cases of exception,

which will hereafter be alluded to) 72 linear functions 9192...q,,, then we shall have

 

££__1___ .1... 1 i
fw"ql+ 92+ ”'9n~1+ qn’

and therefore ¢m=K.N
fic=K.D,

Where N is the numerator and D the denominator of the fraction
1 1 1 ‘

 

(11+ 53:"???
and K is a constant (the value of Which is immaterial to be considered, but in fact equals

' L L2 . 2

+J._§._E &c.
'"L‘? L: L: ’

L0, L” L2, L3, &0. beingthe leading coefficients of the last, the last but one, the last

but two, 81.0. of the Bezoutian secondaries tofir and 90m). Accordingly,

ifnil, let 132912901 ;

. 1
1f n22, let D=q2 ql+l:pol{q2+;}=ym(b2;

2

.y 1
1f ”:3: let D=93{92 91+1} + 91:fb1{1’2{93+;}={"3;

and in general let D:p:1.po2.yl3...pon,

 

 

Where . M1~=ql {402:9247171 ”3:934—5;°""'°"an=qn+fk:fil°

Now suppose a: to be so taken that b

91 does not lie between +1 and —-1‘.

92 . . . . . . . . +2 and --2‘

93 . . . . . . . +2 and —-2 ,

94 . . . . . . . .+Qand-——d >, . '. .» . . .. (0).)

qnwl . . . . . . . 2~and -—2

q.a . . . . . . . . 1 and -l#
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Where it willvbe observed that the excluded region lies between +2 and --2 for all

the intermediate quotients, but between only +1 and --l for the first and last quo-1

h ‘ o o e 0 ' ' 1 o o 0

,tlent. Then {.01 1s pos1t1vely or negatlvely greater than I, therefore 71sapos1t1ve 01'

negative f1act10n but 92 is positively or negatively greater than 2; therefore {11; will be

of the same sign in 92, and also {112 will be positively or negatively greaterthan 1;
1

therefore ;— will be a positive or negative f1actlon, but 93 is positively or negatively

greater than 2; therefore 1113 will be of the same sign as q3, and also (113 will be
positively or negatively greater than 1 ; and proceeding in this way, we find that all

values of F's: from i=1 to i=n—1, will be of the same. sign as 9;, and positively or
. . l . . . .negatlvely greater than 1. Fmally, Ii: W111 be a fract1on, and therefore, smce q,“ 1s

positively or’negatively greater than I, Mn=9n+£jj will have the same sign as (91“)

(but of course is not necessarily greater than 1, nor would that condition serve any
purpose were it satisfied). We infer consequently, that When the conditions (w) are
satisfied, 5.0,, {1,2, {113...{tn will respectively have the same signs as q; q2...qn; andtherew
fore D:p,.p2.p3...pn has the same sign as 91- q2.qg...q,;. Now suppose

qlzalm+b 92:012.$2..+b .qiflzan.w+bn,

and solve the ‘Zn equations

apic+bI==-l—cEl a2m+62=+02...a,,,_.il.1r+bn_,'= r(,';,,,___1 an.1z'+b,;:= 13,;

a1x+ 191:: -- cl 02m+b2= -—- 02...an__1.1r+bn_1= '-—cn__, anw-l—bn: -— c”,

Where 61:1 02:2 03:22-........ cn_,=2 cn=l.

Whenever in any one of the n pairs of equations above written the coefficient of x is
positive, the upper equation of the pair will bring out the greater value ofav; but
when the coefficient is negative the lower equation will give the greater value.
Take the pair

Gfl—i—bizci

aix+bi:-—'

If a,- is positive aim—l—b; will always be positiVe, and greater than ci betWeen .2200 and
m: the greater of the two values of :12; if a; is negative aix+ [2iwill always be negative,
and less (i.e.nea1'e1' to ~00) than —-c for all values of ac between the Same limits as
before. So again it will be seen in like manner, that whether a be positive or negative

between mz—oo and m: the lesse1 of the two values of :12 Corresponding to the
above pai1 of equations, aw-f—bi will always 1etain the same sign, and Will be greater

than +01, 01' less than -- oi, according, as a,- is negative 01' positive. ‘ if, then, we take the

greatest of the greaters of the 12 pairs of values of :12, 1?. e. the absolute greatest of the
212 values, and the least of the lessers, 2'. e. the absolute least 70f the same,isayL and A

between "L and A, q], 92, ”,9” will each always retain an invariable sign, and will then
fall Without the limits i011 i0; ......... ion“1 ion, so that between +00 and L

and between A and—oo , plaguam i.e. a constant multiple of flat), Will retain the
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same sign as ql.‘qg.r..qm i. e. Will never change its sign from {the beginning to the end
of one interval, nor from‘the-beginning to the end of the other; and consequently

L and A will be a supe1ior and inferior limit respectively to the lea] roots of fir.
Will of course be observed that it is indifferent for the pmposes of the fo1egoing

theorem, whether”fxwbe expanded under the form of a proper or an improper f1actlon,

z. 6, whether We employ the ordinary or the Sturmian process of successive division,
for changing the signs of the iesidues will only have the effectof changing 9; into

(+)qz, and the pail of equations (+)qi:=+c remains the same whether the + 01 the
- sign be prefixed to 9%.. The xesult18, that if we form the 212 quantities

351—121. iz—bg. W3. 352-4225-}. 351-42,z
ma] , Wag , “3 , , “H 1, .5. M£9 1

the gieatest of them will be a superior, and the least of them an inferior limit to the
roots offm

Itmay be remarkedgthat if the successive dividends in the course of the proCeSs

be multiplied respectively by k1, k2, kn, 5;: will take the form

, 91+ 92+ 93+ 9”,

and if we write azlar+61=--I__-Q-cll azac+lag=ic2 anx+bn2icu

 

and make ~ 01:21 02=1+Ic2 ca=l+17c3 cn=1+km

the same reasoning as above will show the greatestand least of the 272 quantities

i1—b1 i(1+IcQ)—b2 j—_(1 +1I.:,,z)---bg,,,..1 . 351—12,,

a1 ’ a2 ’ an..1 ’ an

will be a superior and inferior limit to the roots offx.

. For greater simplicity, again, consider k1, k2...lc,, to be all equal‘ to unity; we may

make this addition to the theOrem as above stated, viz. calling L1 A1 ‘; L2 A2; Ln An

the greatest and least values of the terms contained respectively in the series marked
below 1, 2, 3...n, viz.-—-—-

       

(1 M. 322—52 i2—b3_ igébn—1__i1—bn
o) . a1 3 a2 3 a3 , .00 an_l' ’ an

(2' 3:142“, i2—53, i2_bn—l; il—ba.) . . . (1Q , a3 ”Wan-l , an

il—b3 iQ—bn-1 551—5”
(3.) o o o e .o o o a g .0! WWW; a

3 ”*1 n

a _ .1_‘ “—1
(n—l) “1.4:...ij 5515"

  

V an—el an

t ' f ‘ , ‘ . 3!; 1-4—6
(7%.) o o _ . o o o o o ‘0‘ 1. o o c * I ° an n)

* For a generalization and improved form of statement of this theorem see Supplement to the present Section.
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LlAg'; L2 A2; Ln An will be respectively superior and inferior limits tofx,-.¢m and

theirsuccessive residues. As a corollary, we see, of course, that L and A, the superior

and inferior limit to theroots of'the given fanetionfw, must always lie between + co

and the greatest root, and between -—oo and the least root, of the arbitrarily'assumed

function (bx.

Art. (53.). Let us now assume somewhat more generally that gm: is any number
of \ degrees 01 in a: lower than far, which will cause the first quotient ([91 to be
‘of the degree 01 inn}; and let us further suppose that gm: stands in such a relation

tofit: that the following quotients, 992, 903, 9%, are of the degrees 02, 03.. .99 in a: (92, 03...:9;

being supposed'not necessarily units, as they would generally be, 'but any positive
integers whatever, as may happen in consequence of one or more of the leading
coefficients in any residue vanishing), then

‘ ff?— 1 1 1 +_}__

fw—991+ 902+ (103+... 999’

where 91+62+63+...09=n, and consequently fx will beequal to the denominator of

the last convergent above written, multiplied by a constant, so that we have now

c.fx=ml.m2...mp, where

 

' 1 1
m = m = -...m = ——-—-~--.

‘ 1 991 2 902+m1 P 99 ~1+mpwl

..nd as in the case previously considered, so longtas

>1 >2 >2 >1

901 Or 992 01' 993 01. ".99p 01‘

<--1 '<--2 <-—2 <—1

far will have the same sign as 991.992...ggp.

U Let now 9912:1301 ggz=ic2...qu=icp,

where 7 01:21 02:2...Cp-1=2 09:1.

Consider any pair of the above equations as qgi—c?=0.

let. Suppose all the roots of this equation are impossible, 935—0? must be positive

fof all values of x, and 995 can never lie between +65 and ——c,-; moreover, since upon

the hypothesis made, qgi-l-ci and 995—01 always retain the same sign, viz. that of the

coefficient of the highest power of 99%., it follows that 9’91- must also always retain the

same sign ; for if we construct the two curves y=qgi+ci and yzqgi—ci, these will both

lie on the Same side of the axis of w, and never out the axis, consequently the curve
3/:qu which lies between them, must also lie on the same side as either of them, and

never out the axis. _

A» Hence, then, if the roots of the equation are all impossible, qgi will always retain

the same sign, and will never fall within the region bounded on its two sides by

+c.- and -—ci._ ,

2nd. Suppose the equation to have one or more possible roots, and Ii to the greatest,

and, 7t; theleast (which of course, if there is but one possible root, will be identical). If
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the leading coefficient of qt. is positive, the greatest root (l) of the equation qi~c=0 will
exceed the greatest root of (l’) of the equation 9951-0520; for between 32:00 and x==l’, 9,,"

must go through all values intermediate between 00 and —-c.-; hence there must be a
qualityl intermediate between 1’ and +00 , Which will make {loi-T-Ce- In like manner,if the

leading coefficient of ‘10; is negative, it will be seen that the greatest root of qgi+ci=0

Will exceed that of gei—cz-zo. Moreover, in the one case qi will be always positive

and greater than 0., and in the other always negative, and less than 0,. In every case,

therefore, between +00 and li, 90; retains the same sign, and does not fall within the

region bounded by +0,- and—ci; the same thing may be shown to be true for all

values of a: between —-oo and ii. Hence, then, by the same reasoning as that employed

in the preceding article, We are enabled to aflirm, that if we form the equation

(qu—l)(q§2+4)(qfis—4)...(q§p_l'—4)(q§p—l)=0, . . . . . . (4..)

its greatest root will be a superior limit, and its least root an inferior limit to the

roots of the equation fm=0,whatever he the value of the assumed function m; and if
the above equation (¢.) has no real root, all the roots offa; will be imaginary.

Art. (54.). In the preceding two articles it has been supposed that, all the quotients

are taken integral functions of m; but the process of successive division may be so

conducted as to give rise to quotients 0f the form

ami+wa+ ...+c+-g+ +

Suppose then that we have in general

I

E”... 1 1 i
fx—QH‘ 92+."+Qw"

 

Where q], 92, gm are each of the general form above written (but of course i and 2"
being not necessarily the same for any two of the quotients), and suppose that the

sum of the degrees in x 0f (11, 92, % is n+t, where t is essentially (as it must be)
positive. Then we shall find, as in the last article, that L and A being called the
greatest and least roots of (qi— l)(q§—4) ...(qf,_1——4)(gi——l), D thedenominator of the
last convergent to the continued fraction above written, will never change its sign
between + co and L, nor between A and --oo ; but here we shall have

fszxtxD.

Hence m‘.D Will be invariable in sign within each of these two intervals.
1st. Let t be even; then f(x) Will be invariable in sign, whatever Land A may be

for each such interval. »

2nd. Let t be odd; then if L is >0 and A<O,f(a2) cannot change its sign in either?
interval; but if L is <0 or A> 0, fa: will change its sign as .1? passes through zero,
but will be invariable for each of the three regions contained between +00 and L,
L and 0, 01'0 and A (as the case may be), and A and -- 00; so that universally L and
A will be a superior and inferior limit to the roots of fx, making abstraction of the
roots (if any such there be in fa?) whose value is zero.

Art. (55.). I shall close this section with offering (for what it is worth) a bare
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suggestion as to the mode in which the theory of Intercalations may hereafter be

found to admit of being extended from a system of two general functions of m, to
a system ofvthree general functions of .2331, four general functions of w, y, z, and in

general to a system of 2 general functions of 5—1 variables, or which is the same thing,

of 5 homogeneous functions of 2 variables. In the case of two functions of .r,f(w)

and gem, fr=0 and mzo may be considered to represent two systems of points in a

right line; and the theory relates in this case to the relative positions of these two
“ Kenothemes ” 01- point systems ; and of course using tr and y to denote the distances

of any point in a line from two fixed points therein respectively, instead of fm and gar,

we may employ two homogeneous functions of m and y, as flay, y) and go, (as, y), to

denote these two systems of points. So, similarly, if we have three functions of two

variables,f(x, y), g(x, y), h(w, y), which I shall suppose to be of the same degree, we

may consider the mutual relations of the Monothemes, that is to say, the three plane.

curves, denoted by the equations f(x, 3/):0, g(x, ”=0, h(m, y)=0. Now every tWe
0f these‘will intersect one another in a System of points, which we may call (f, g)'f‘or
the intersections off and g, (g, h) for those of (g and h), and (h,f) for those of IL and

f. If we take any two of these systems of intersections, as (f, g) and (g, IL), they will
both lie upon one of the given curves (g). And by reading off the two systems of

points (f, g) and (g) It), arranged according to the order upon which they are disposed

upon the curve g, we may, by following the course of such curve, form a scaleof

effective intercalations for these two systems, and in like manner for the two systems
(g, 12) and (h,f) ; (h,f) and (f, g). Now I believe that it will be found that when
f, g, h represent any algebraical curves consisting of a single continuous line, either
extending to infinity in both directions, or returning to itself (and I have fully satisfied

,myself of the truth of this for the case of ellipses), each effective scale of intercalation

will contain the same number of pairs of points; if, however, the curves consist of

more than one branch, asfif hyperbolae be considered, suchis no longer necessarily

the case; from these facts, conjoined with the light thrown upon the subject by its,

relation to the theory of combinants explained in the succeeding section, I am induced

to infer the probability of the truth 0fthe following law (which, for avoidanceof

further uncertainty, I confine t0 the case of functions of the same degree), Viz. that

if f, g, It be three homogeneous functions of x, y, and z of the same degree, and if

U, V,W be any three linear functions off; g, 12, and if U20, V=O, W:O be treated

as the equations to three cones, and if we form an effective scale of the intercalations
0f the lines of intersection of'U and W, and V and W, according to thecrder in

which they are disposed upon W (Which seems to require that the linesshall be con-

tinuous, in order to admit of a fixed order of reading off the intersections of any two

of them upon the third) ; then whatever value may have been givento the coefficients
in the linear functions the number of elements remaining in any Such: scale" will (as I ‘
conjecture) be constant, and some . theory (to be discovered) for three functions

analogous to that of Bezoutianresidues for two functions Will serve todetermine the x
_ MDCCCLIII. 3 T



496 MR.~SYLVESTER ON A'DEVELOPMENT OF THE METHOD OF. ASSIGNING

number .of the elements so remaining. And so, in like manner, but with a difficulty
increasing at each step (as at the next step we should have to pass into» quasi—space of

four dimensions), a theory of’ intercalations may be conjectured to exist for any (92)
general functions of any (n— 1) variables.

Development qf the method qfassigning a superior and inferior limit to the roots qfany

algebraical equation. '

_ Art. (on). Since the articles1n the preceding part of this section on the method of”

discoveri‘ng'limits to the roots of an algebraical equation were written, the method of

which the germ is therein contained haspresented itself in a much more fully deve-

loped form, which I proceed to exhibit: for greater simplicity I shall suppose em to

be of 72—1, and fan to be of 72 dimensions in ac, and that by means of the ordinary

process for common. measure (except that as in STURM’S theorem the sign of all the

remainders are changed) g has been thrown under the form of the improper con—

tinued fraction
1 1 1 1

where (11 92mg” are all restricted to signify simple linear functions of m.

Suppose the series 91, 92, 93, mg” to be resolved into the distinct sequences

9192---Qt; 9H1 Qi+2~uqzfi (li’+1"'9i”"'9(i)+1"""an

in such a manner that in each sequence as gm qi+2...qg the coefficients of a: have all

the Same signg but that in any two adjoining sequences the coefficients of m have
opposite signs, so that for instance in 9,5 and gm the coefficients of a:- are unlike, as
also in 92-, and 9,1,“; there Will of course be nothing to preclude any of theSe sequences
becoming reduced to a single term.

The first theorem is, that the greatest and least roots of the product of the cumu-
lants

. [91 ‘12" ~91] X [92% 911.2...qu X [9<z>+19’m+2~-9n]
are superior and inferior limits to the "roots of fit. To prove this theorem Ibegin

with premising the two following lemmas, one virtually and the other expressly

Contained in the Philosophical Magazine for the months of September and October
of the preSent yeartt.

‘ * Each ofthese tWo lemmata flows readily from the faculty pieV1ously adverted to engaged by every cumulant

of being rep1esentable under the form of a determinant As to the second lemma, it becomes apparent imme«

diately when the cumulant1s so repiesented, by separating the matrix into two rectangles and expressing the

entire determinant laecording to a well-known rule for the decomposition of determinants as a function of the

“determinants belonging to these two rectangles taken separately As to the first lemma, by Vreason of the cumn-i

lant [11:1 «2%.... . .wi._1 w; wi+1j being so representable, we know that when [w 1 mg. .w.i__1 wi] =0, [wl Lug. .. . wad]

and [mi wg....wi+1] must have opposite signs. Suppose, now,” that the theorem is true when the number of

elements1n the type does not exceed2, then the roots of [w‘ wzuwi-'1], say of tIJ'imngeing called It, h2 . Jain},

and of [1»; (.02. . ..w,-._'1 wz], say of 1.1/1, being called k1 kg. ..Icz, these maybe arranged in the follewing order of
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Lemma A. The roots of the cumulant [91, 92.. .92.], in which each element is a linear

function of ac, and wherein the coefficient of m for each element has the like Sign,
are all real, and between every two of such roots is contained a root of the cumulant

[9192...qmj, and ex converse a root of the cumulant [92 qQ..,qi], and (as an evident

corollary) for all values of g and 5’ intermediate between 1 and z' the greatest root of
[911 92...qi_lqi] will be greater, and the least root of the same Will be less than the
greatest and least roots respectively of [9,, qp+1..._qp,_l 99,].
Lemma B. For all values of the elements 91920.9”, the cumulant

[9192"'9w~1_ goo gw+1Qm+2' ' '9n]

= [91 92-..qu 90,] X [90,“ garnet]

"' [91 92'--9w~1] X [9w+2-'-9n]°

Thus ex. gr. the cumulant [abcdjz‘i e. abcd—ab—cd—ad+l,

= [ab] x [Cd] — [a] x [d] =(ab— l)(cd‘—1)—ad,

and [abode], i. e. abcde—abc—abe—ade—cde+a+c+e= [abc] [a8] —— [ab] [6],

i. 6.: (aboma—c) (de— l)— (ab— 1 )6.

Art. (6.). Now suppose that (11 (12. ”gm qw+1...qn are all linear functions ofx, and that the

coefficients ofa': have all one (say the positive) sign in qlq2 . . . gm, and all the contrary signs
in qw+1...qn, and let L be not less than the greatest root of [91192.qu or of [9“] 5'4"],

andalso let A be not greater- than the least root of each of these same two cumulants ;

then by lemma A, L and A Will also be respectively greater than the greatest, and

less than the least roots of [9192...qwqjand of [qw+2.'..qn]. ’NOW the coeflieient of

the highest power of a: in both [9192...qw] and in [9192...qw_1] is positive, but as to
[qw+1...qn] and [90,”...an is of contrary signs in the two, Viz. negative in that one

of those cumulants Which contains an odd, and positive in that one of- the two Which

contains an even number of elements. Hence by Virtue of Lemma B, L and any

quantity greater than L substituted for a: Will make [9192...qn] to have always the

same sign, and in like manner it may be shown that A‘and any quantity less than A

substituted for a? Will also cause [5142...an to retain always the same sign. Hence
L and'A are superior and inferior limits to [91 92.. .997] ; and the same reasoning would

magnitude klizl kghg k3 . . .k5_1 kid [65; and if the roots of [wl wgu . winl wi'w;+1], say of i115“, be called Z1 [9. . . .Zz-H,

from the fact of the leading coefficients in tI/i_.1 and Mpi+1 expanded according to the powers of a: having the

same sign, it follows that when w=oo , KI/iwl and kIJi+1 have the same sign, but they have ‘contrary sighs

when writ; hut \llz‘...1 does not change its sign between $200 and w==lc, hence klli+1 does change its sign he-

tween $200 and w:?cl, and therefore a root of xbifl lies between 00 and k,; in like manner precisely it may

be shown that-a root of lez-H lies between ----00 and kg; and since «Dig; changes its sign between]:1 and lag,

between kg and k3 . . . . k, and between ki_.1 and kg, «[1241 must likewise change its sign betweenone and the other

extremity of each of these intervals, and hence the roots Z1 lg....l,;+1 are intercalated between 00 , .761, 1:9, ..... lez-

—-oo , or which is the same thing, [61’ kg, . . . .kz- are respectively intercalated between l1, Z2“ . .Zz-H ; consequently,

if the theorem is true up to i, it is true for i+1, and therefore true univérsally; but is manifestly true Wheh

5:2, for then m: __—I_—_ 00 makes [cup Lug], 2'. e. cu1 wg—l positive; but w1=0 makes it negative, Which proves the

theorem contained in Lemma A.

’

3T2
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evidently apply‘if we had supposed the signs of the coefficients of a: in the first partial

series of elements to have been negative, and in the other series of elements to have

been positive. ,

The greatest and least roots of [91 92...qw] x [qw+1...qn] evidently satisfy the cone-

dition to which L and A are subject, and may be taken in place of L and A

respectively. They Will accordingly be superior and inferior limits to the cumulant

[9192...qw qw+1...qn]. _

Again, by virtue of theorem (8.) it may readily be shown that

[91 924-qu 9111—1 qwg+2~ 41291,,“ man]
= [91 92-411] >< [9.11.1 qwl+2mqw2l >< [912+1..-qn]
{9191.410111] >< [quH-qug] >< [912411-412]
- [91 92. . - 91,] X [911.1 -- .9124] X [912191. 4%]
+ [91 92---qwl——J >< [911411-4114] >< [awn-qn] ;

and hence if 9192mqn are all linear functions of :1: in which the coefficients of x have

all the same algebraical sign in any one (taken per se) of the three series

91 genvgwl; 9w1+1mqw2; qw2+1°H9n§

but so that this sign changes in passing from one series to another, it is easily seen,

by the same reasoning as in the preceding case, that the two positive and two nega-

tive products on the ri-ghthand side of the equation all give the same sign to the co-

efficient 0f the highest powei of x, and consequently that if L and A be superim and
infetior limits to

[qw-qwl]: [qw1+1---qe]a [9w2+1o-oqn]a
and consequently by Lemma A, to

[91 92'”qw1-l]7 [9112o-wqwgls ‘ [quH-we—z]: [qwlwmqwg—J: and t0 [912411-411]:
L 01' A substituted for :1: will cause [(11 92...an to retain always the same sign, and

Will consequently be superior and inferior limits thereto; and so in general; whence

it folloWs,1eturning t0 the theorem to be demonstrated, that the gIeatest and least

mots of

[91 92-- ~qu X [9141 Qi+2~ ~91] X"X [q+1o- 911:]

will be supe1io1' and interim limits to the cumulant [9192”.qn], z'. e. to C .fm*, and
'1 therefore to fit: as Was to be proved.

m o a c u

* If£‘— expanded as a continued fractlon by means of the common measure process gwes use to the quo-

tients ql, qg,...gn, and if L1, L2,. ..Ln...1, Ln be the leading coefficients of the successive simplified residues,

(Ln-being, in fact, the final simplified residue, 2‘. e. the resultant to gm, fx), we must have ¢w=C[q.2, 93 .. .qn]

fw=C[ql, 9g..‘.qn],‘ where (supposing gm to be of 72—1, andfw of 71 dimensions in w),

0:}— L2 . L121..2- sz__4 81c.

Ln L2- .L2_3.2L 810..n— 5
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Art. (9/). The second theorexfi is the following: if 91 92,...9,” be linear funetions of

.12, say alx+bu azm+bg...a%m+bn, in Which the eoeflicients 0f mbave all the same sign,

and if we take the quantities pol, p12, ...wfl__,', all having the ’same sign as (21 a2...an, but

otherwise arbitrary, and make '

7'51—1-‘(101 k2=P°2+fi ‘ k3=P3+é"'kn-1:(1’n—2+;%; [fuzzi’

then the greatest of the quantities

Icl—b, k9+b9 kn—bn
WET’ "E: ’ "W8? ’

say L, is a superior limit, and the least of the quantities

a1 a9 , .0. ma“ 3 

say A, is an inferior limit to the roots offx.

L and any value gxeate1 than L substituted for a: Will evidently make ql—kl;
9—k2, .. .; qn-«kn, all of them positive. ‘

Hence when ac: or >L 91 is positive and >51», and

l 1 l 1 . , , .
gs“§">k2"‘“>[b:+“~;‘, z. 3. IS posmve, and >142,

l

__1
«qa—W “>k—i>ps+i £1? 2'. e. is positive, and >pb3,

" l

1 1 1 1
and qfl~Qn~1-' 922—2. 0 0E; > Fn—lwf‘n-nl

   

, 2'. e. is positive,

and consequently the cumulant [qlngauqn], which

I 1

:91X(.‘12“§;)X"(qa£1“ E) X 8“

remains of a constant sign When L and any quantity greater than L is substituted

for w. Hence L is a superior limit. In like manner A and any quantity less than

A Will evidently make ql-Hq, q2+k2; qn+lcn all of them negative, so that When

x: or <A q, is negative, and < flag

1 1 . .qz—E<kz-f; 1s negatwe, and < "Pa:

1 l s °. qs_i.z<]{3..;; ls negatlve, and < #903:

Q 0 ‘C O O 0

O O t O O ‘0

1 1 ".1. 1‘
gm»! "" 972—2” 91 P'n—l Farm}

    

and gnu- is negative.
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So that [91 qg..._q,.] for all values of .1: less than A Will preserve an invariable sign,
and consequently. A is an inferior. limit tofx

Art. (3.). It maybe remarked that the quantlities

1

) {‘71—}

may be derived successively from2 one another, according to the same law, from
Whichever end of the series we begin.

If we take any two consecutive terms as

l
M5+WF'V-l ; Mi+l+i£a

the effect of diminishing (1111 is to decrease the first of these two terms, and pro tanto,

 

I 1;
1‘01; {b2+‘;;; Ps’i‘g ”Mn—fl‘i—‘fww713— 3 Mn—l'i‘wi

to tend to deduce the limit; but on the other hand, -—-ibeing increased, there is

b1ought into play an opposite tendency, Which operate:pro tanto to increase the
Value of the limit.

Art. (2.). It is of importance to remark, that by a right selection of the system of
quantities 1w, (122...;101111, Whichenter into the composition of k, 112.1..191, L may be made

to coincide With the greatest root of [9, 91.4.1] ; and soin like manner by a right

selection of another system of thesequantities, whereby to form [:1 k2...kn, A may

he made to coincide With the least root of the same. Thus let 111 p12...1u1,,_.1 be so

chosen, that ‘
91—11320 q2—k220...qfl—kfl=0

are all satisfied by the same value of :13.
1 l 1

The 2 ‘ = -— = ----- 21.-..-.”n 91 {1'1 92 1502+“! 93 l""3'+’,&2 qn Pa~1

exist simultaneously.
Hen... .. .1 __ 1.. .1... .1.

J (112qu 91 ”3—93 ”2—93 99"" 91

1 1 ' 1

  

qn=q11u1—- 9114""???

which is satisfied by making [9,1, 911-1, 9,112...qu =0. _
It remains then only to show that the greatest root of 1:1: in this equation substituted

for a: in 91, 92, 91. will make {1111 @2---{°°11..1 all of one sign, and that the least root of a:

similarly substituted, Will also make them all of one, but-a contrary sign, Which may
be proved as follows.

We have

==q1 1°°2—- [91: £12] (11 1°3-[q1 92911811» 92] 8°C1111149192911} [91, 91 9.-.];
and by Lemma B the superior limit to [91 92.nqn] will be a superior limit also to

91: 92 931'": 911-4: and t0 [91 92]: [91.92 931'": [91 92N-2‘9n—43V
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Consequently this superior limit will make-‘wl, p2...an_1 have all the same sign as
that of the coeflicients of :10 in 91, 92, 9”,. And in like manner; the inferior- limit to

[q,, 92, 9”] will cause pol, a2, {1%l to have all the contrary sign to that of. these
coefficients.

Thus then we see that when the coefiicients of :c in the partial quotients to g ex-

“pressed as an improper continued fraction form a single series of continuations of

signs, by a right choice of the arbitrary constants (1'1: #2, m_l the superior or
inferior limit given by this new method may severally and separately be made to

coincide With the greatest and least real root, or each in turn with the sole real root.

offar, if there be but one. '
Art. (Q). The general method of enclosing the roots offm within limits is founded

upon the combination of the two theorems above demonstrated. An arbitrary

function W one degree in m below, fm being assumed, and by aid of the auxiliary

function @1ng being thrown under the form

C[quqz,qu-qa,q'2,mqt " ...... (9)1,(q)2m, (m,

in which the coefficient of w is supposed to change sign in the passage from g; to qg,

from 9;, to 93', &c., a superior limit is found to each of the cumulants

[9192mm], [(13 gau-wl, [(9)1 (9)2---(9)wl>

taken separately, by means of the second theorem, and then by Virtue of the first

theorem the greatest of these superior limits is a superior limit to the cumulant

[9192...qi ...(g),...(q)(i)], I

and consequently to fix, and so mutatis mutandis the least of the inferior limits of the

same partial cumulants is an inferior limit to the total cumulant

[9192--.qz-~-(q)1(q)2m(qu-
Art. (27.). .When all the roots offm are real, if gem be so assumed that all its roots aye

intercalated between those offit, the partial quotients to 33% will form but one single

series. In order that 9032 may fulfill this condition, it is necessary that the coefli~

cients of {0.29 shall be Subject to certain conditions of inequality, not necessary here to

be investigated; but no conditions of equality, 2'. e. no equations between the coeffi-

cients of cm, are introduced. by this condition; 01' in other words, the eoefiicientsii of
gar, the auxiliary function, are independent and arbitrarywithin limits ; and we have

shown that in this case the auxiliary cOnstants a1 {Jogullwwjlgmay be so determined that

the limits may be made to come separately and respectiyely into contact with the ?two

extreme roots. Whenall the roots of f2? are not real, the quotients (hewever m is

chosen) can no longer be made to form a single series. It still however remains true,

that, by a due choice of the auxiliary function followed by a du‘e‘choiee oi the

* It need scarcely be stated thatf ’a: is the simplest form of ow, which satisfies the condition in questiont
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auxiliary constants,gthis coincidence may be brought about, so long as there is a

single real root in far ~
It is rather important to demonstrate this universal possibility of effecting a coin-

cidence of the limits to the roots with the extreme roots themselves, because it is the

most striking feature Which distinguishes the method of limitation here developed

from all others previously brought to light. ’
Art. (9.). Before entering upon this‘demonstration I may make the passing remark,

that every method of root-limitation is implicitly a method of reot-approximation._
F111' instance, let 6 be any given quantity hetWeen which and +00 it is known that

~ . . . . 1 . l
a rent of fx hes. Then 1f we write $212+? and form the equat1011y’ff(e+§)=0,

and find L a superlor 11m1t to y, 11: 1s clear that 6+1: W111 he between .9 and the root

. . . 1 1 . .
offx say E, next superlor to 6. Again, making wzze+i+y, and findmg a superior

limit L’ to y’, we shall have e+£+fiy still nearer to E than e+ilj was; and so we may

proceed advancing nearer and nearer, and alWays from the same side towards E at

each step, and finally obtain E under the form 3+ilj+111+i1177+ 8:0. And in like
. a , 1

manner calling E, the root'next below e, we may find Elze—1}?"N—Rl—fi, 8w.

Art. (1.). In establishing the theorem of coincidence above adverted to, the follow.
ing notation will be found very advantageous. Let (2 denote a Type of any number

of Elements, as q, 92.. .q,_ 9:, and let 0 denote this same type when the last element,

and Q the same type when the fixst element is cut off, and "'9 the same type when

both extremes are cut off, so that the apocopated type (2 will mean [9, 92mggm];

apocopated type ’0 will mean [(12 »q3...qi], and the doubly apocopated type '0' will

mean [92 qs~ 91...]
If new a type (2 he made up of the types 0 Q2.9 put in apposition, and if we use

in gene1al [Q] to denote the cumulant cmresponding t0 the type 0, them will be a vety

simple law’l‘ connecting [Q] with

[9:] [0.2] [93] --- [91—2] [01-1] [9:]
[93] [0'2] [0;] [02—2] [92—1]

['92] ['93] [’01-‘23 l’9s~1]['0s]
[’ng [12;], .. [’Q;_2] [(22.4] .

This law will beseen to he obviously deducible by successive steps} of expansion

”3 The cumulant corresponding to any portion or fragment of a type may be said to he a partial cumulant to

the entire type, and a type whose elements are constituted out of the elements of two or more types placed in.

juxtaposition may be said to be the aggregate of these types; the law given in the text above may then be

saidito have for its object ‘the expansion of the complete cumulant to any type in terms of complete and partial

cumulauts to the types of which the given type is the aggregate.
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from the fundamental theorem given in Lemma (8.) art. (i.), for the case of 92910.2,

and Will be best understood by showing its, operation in a fewsimple cases.

Thus let 9:91 92*.

Then , [o] = [91] x [92] -— [9;] x [’92].

Let (2:91 92 (23.

Then L9] = L01] X [94] X L94]
-- [0’1] x [’94] X [04] — L91] >< L94] X [’94]

+ [9’1] X [’94] x [’94]-
Let (2:491 Q2 Q3 Q4. 1

Then L9] = L91] x [94] x [94] x [94]
~L9’1]><L’94441]XLQJXM—LQ]><L9’4]XL’QHJXLQJ—LQW]XLQJXLQQX[011+
+L9’1]XLMQJXLQJXL91J—L9MJXLQJXLQJXLQJ [91JXL94JXL’4KIJXMJ
~L9’1’4]><L9]><L’9’4’]><L94]
and soin gene1al if Q:Q92. ”92-, [(2] may be expanded unde1 the form of the sum of

2‘ 1 pwducts separable into i alternately positive and negative g1oups containing

respectively 1, (i—l), (i-wl   1 --(2'-—1), 1 products.

Art. (4%.). In every one of the above groups forming a product. the accents enter in

pairs and between contiguous factors, it being a condition that if any 9 have an

accent on the right the next 9 must have one on the left, and if it have one on the

left the preceding Q must have an accent on the right, and the number of pairs of

accents goes on increasing in each group from 0 to 23—1, This rule serves completely

to define the developmentIn questioni’. *

* The sign of equality1s employed here to denote the relation between a concrete whole and the aggregate

of its parts.

1‘ The number of distinct factors entering into these products, taken collectively, is evidently i+2(z'——~1)

+(i—2), i. e. 4(5—1).

3: When each partial type 01 consists of a single element, every doubly accented (2 Will vanish, and every

singly accented .91 will become unity; hence we may derive the rule for the expansion of the cumulant

[(1l a:g 123.. . .ai] in terms of (11 a9 . . .615, Which Will accordingly consist of '

(441.449...ai)+2 1 (441.449 ..... ai)$&c.,a1 0 a9 .03. ..ai-“2

ae.ae+1 ae-ag+lxaf.af+1

 

 

the indices 8 and f, 8+ 1 and f, &c. being understood to be all distinct integers (which agrees With the known

rule for the expression of the denominator of a continued fraction interms of 'the quotients). The number of

terms in this expansion, in consequence of the vanishing of the quantities affected with a double accent, reduces

from 25"1 down to the ith term in the series commencing with 1, 2, 3, 810. defined by the equation 211+] =ui+ 215-1,

(1+4/5)i+1 1 (1—4/5)i+1.

' 73 2 "-75 ”"5"” ’
the number, therefore, of products in which double accents occur in the general expansion of [mi wg...wi] is ‘

25_1____1__(1+ 4/5)i+1+._.1._.(1_ 4/5)i+1°

4/5 2 ' 4/5 2 ‘

MDCCCLIII. 3 U
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For greater brevity, let [(23] [£28] [(28] [9;] , be denoted respectively by we, mg, we, ’wg, .,

then when. the type {2.9 consists of a single element,

@322] 'wezl @920.

It should be observed that the two equations we=0 04,20 cannot exist simultaneously,

for if (29 represent qlqg...qi,

we=qiw2~w3 w2=qselwz~wzs 820.,
so that if we=0 and @220, we have wg=0, wgt=o, &c., and thus, finally, --l-.::O, which

'is absurd.

Now, if we suppose 9102.428 to be types every element in each of which is a

linear function of art, the coefficients of a: in these elements being positive in Q], nega-

tive in £22, and so on alternately, and (2 is the aggregate of £21 Q2...Qe, it may easily be
made out that each term in the development of w in terms of wl, w‘i,’w1,’w’, ; w2, mg, 2.22, (mg;

&C. will have the same sign when we give to w a value Which is a superior limit, or an
inferior limit to the roots of each of the cumulants w}, mg, we, and consequently to

those of ’the cumulants w3,a2’2,...w;,; wulwgpnwe; 1% a212, m; the products affected

with positive signs being all positive or negative in themselves, and those affected

with negative signs being reversely all negative, or all positive.

Thus,lea:. gr. if 9:0102 7

and the sign of theleading coefficient in W2 will be the contrary of that in w2, but 0;!
and w; have both the same positive sign; so again if 0:919293,

" 'wzw,.w2‘.w3—w’1.‘w2.w3—-w1.w§.’w3+w3.'w‘2.’w3,

where the leading coeflicients in oz and 1% have contrary signs, as have also those in

"w2 andw'2 between mg and ’w'2 have the same sign; and 'of'courSe the leading coefficients

in wl, 4J3, mg, W3 have all the same sign, they being all positive, and so in general. But

the superior limit to the roots of any integral algebraical function of a:- substituted in
place of :17 causes the signs 0f the resulting values of the functions to coincide with

the signs of the leading Coefficients, so that in the example last above given, L a

superior limit to all the factors in the'several products in the equation substituted
for a: will make w,.w2.w3, —-w'1.'w2.w3, —-w1.w’2.’w3, wl ’w’z.’w3 to have all the same sign. The

like will be true of A the inferior limit; for if (2,, (22, (23 contain respectively n1, 722, 723

elements, the values of the four products last above written,’when .22:—- 00, will be

.to the values of the same when m=+ oo in the respective ratios of
(“)m1+mg+mg:l ;‘ (_)m,+m3+m3-2:l ; (__)m1+m2+mg—2:l ; (__;)m,+mg+m3~4:.l,

and so in general. Hence we deduce the theorem, that if the total type Q represent
the aggregate in apposition of thepartial orders 0192...Qe (the elements being under-

stood to be linear functions 0f x, Whichare subject to the law of alternation in the
,xsigns of the coefficients of cc in passing from one partial type to another), no superior
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limit to (01, mm ...we canmake w vanish unless each separate product in the expansion.
of w in terms of cal, cog, ...we and the appurtenant apocopated cumulants vanish sepa-

rately. ' -

Art. (A..) From the abovethemem we may deduce the following law,viz. that if

the roots of ml, 012, ...we be supposed to be a1ranged in order of magnitude, and A to
be that one of them which is nearest to + 00 or to -— 00, then if e is even it is im-

possible for A to be a root of w. Thus suppose 6:2, and consequently w=w1.w2-—w’l.’w2;

if A be a root of cal and one of the two extremes of the roots of cal, :02 put in order of

magnitude, A cannot be a root of «<5, for the roots of W2 are confined between the roots

of 1%; but if A make :0 and w. each vanish, we must have waxwgzo, hence w’=:0 as well

as w1=0, which is impossible. In like manner if a root of 502 were the extreme root,

the same impossibility could be in like manner established.

Again, suppose 6:4, so that ‘

   

I I I' I I I I I I I I I I L_ 1 0.31.002 602.603 603.604 001.092. 603 601.102.603.604 w1.w’2.'w§.'w4 wa.’w’2.’W’3.’w4

w—w1.w2.w3.w4 """" '_ —' I..-

011.012 w2.w3 .w3.w4 wl.w2.w3 w,.w2.w3.w4 022423404 wl.w2.w3.w4

Let A cOntinue to denote one or the other extreme, of the roots of w, w2 w3 6% We

must in each case, ifA makes w=0, have

w1.w2.w3.w4=0; w’l.’w2.w3.w4=O; w1.w’2.'w3.w4=0; w1.w2.w'3.’w4=0;

w’l.’w’2.’w3=0; w’l.’w2.wg.’w4=0; w1.w’2.'w’3.'w4=O; w’l.’w§.’wg.’w4=0.

Now suppose that A is a root of col, then the equations remaining to be satisfied are

w’l.’w2.wa.w4=O; w’l.’w§.’w3=0; w3.’w2.w’3.’w4=0; w’l.’w’2.’w§.’w4=0.

Since ml and w; cannot both be zero together, A cannot make 413 or '60] zero; and bej

cause A is an extreme to the roots of «12, 5115, w” A cannot make w; or Iwg or ms or 'w3 or a;

or ’w4 zero, so that in fact When x=A none of the singly accented quantities m can

be zero. As regards the doubly accentedquantities w, the same thing cannot be
affirmed, because if any!) contains only one element thecorreSponding value of :0

With a double accent vanishes spontaneously. Again, any of the unaccented quanti-

ties w may vanish, because we may suppose any of these to have an extreme root A.

Consequently the first, second and fourth of the equations remaining to be satisfi-,ed
might be satisfied on making the necessary suppositions as to the form of the quan-

tities w and the values of the extreme roots; but the third remaining equation

w’l.’w2.wg.’w4=O, in Which only singly accented quantities w occur, remains incapable

Of being satisfied on any supposition Whatever. And? the same thing would be true
if we suppose A to be a r00t of any other w instead of wl. Hence A cannot make “:0
When 8:4.

In like manner, if e be any even, number 22, there will be an equation
w’l.W2. w3. ’w4. w’.915.. 4125*]. ’w25=0

to be satisfied by that value (if it exist) of x which, besides being an extreme(on

either side) of the roots of col, b112, w2. arranged in o1der of magnitude, also makes

9:0. ‘But as such equation cannot be satisfied, neither extreme root of the roots of'
3 U 2
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w1~.w2...w2sa can be a root of w, as Was to be proved. Consequently,.unless 99.2: is so

assumed that the number of changes of sign inthe coeflicients of a: in the‘quotients

resulting from 32”.; expanded as an improper continued f1faction is even (for "if the

changes from sequence to sequence are odd the number of sequences themselves is
even), the method of limitation in the text cannot give the means of drawing either’

limit indefinitely near to one or the othet extreme Ioots offx.
Art. (am) It now remains to prove the COHVBISB, and to show, lst, that when the

number of changes is even,,z'. e.the number of sequences odd, this coincidence can
always be effected; and 2ndly, that it is always possible when far has one or more

real roots, so to assume gm: that the number of sequences shall be odd.

The first part of the proposition is easily proved. Thus suppose e23, so that

w=“’1 “’2”3—9“5"2 ‘93—‘91 wia- wa'i'wiwig W3

If wesuppose A either extreme of the scale foxmed by writing in ordel of magni—
tude, the roots of col, 5.22, wa to be a root common to w, and to 5.23 and if ’w’2=0, which

last equation may be satisfied by supposing the tyhe 92 to consist of a single element,

the separate equations .
w1.w2.w3==0 w’l.’w2.w3=0 w1.w§.’w3=0 w’l.’w’2.'w3=O

will all be satisfied; and so in general it may be shown without difficulty that if

6222+], and ifl be a root Common to @120 @320 @520...w2,+1=0, and ifwg, 5:24, ...'wtz;

be all simple lincarfunctz'ons of :12, so that consequently W2=0 ’w;=0...’w§‘=0, each

separate term in the development of to will vanish singly and separately, and conse-
quently A will be a root of w: for since A makes w,:0 w3=0...w23+}:20, every product
in the developed form a), in which :01, ms, ".502”! do not each hear at least one accent,

will vanish; and if we consider any product in which w}, wruwgm are all accented, if

in any two of these immediately following one after the other as w2k_,, sigh“, an accent

falls to the right of the first, and to the left of the second, the intervening term am
will bear a double accent, and will therefore vanish, since 92k is supposed to be a

linear function of .12; but it is impossible When every 0) is accented to prevent two

accents of contiguous odd terms in any such product, from falling to the right of the

left, and to the left of the right, term of the two, since the contrary would imply that
all the accents would fall to the right, or all to the left,‘which, as above remarked,
is impossible, on accoun 'of the two extreme terms being only simply accentable, 2'. e.
an only to the right, and am“ only to the left. Hence, when w substituted for A makes

w, mg...w2,+1 all vanish, and when mg, @4, wgk are all linear functions of 51¢,sz will be a

root of w. 1 ‘ _ '

Art. (13.). I believe that the remaining part of the proposition may be rigor0usly

demonstrated, viz. that when any of the roots offlu are real, and the number of odd

integers not exceeding the index of the degree offit is m, and the numb¢er of imagi~

naiy pairs of roots in fa:IS (.6, gm: may be so assumed that the quotients to¢fa:wexpanded
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under the form of an improper continued fraction, may be made to take theifor‘m
{21; Q2; 93; Q4; ...; 925+» where (22; (24; ”.025 are linear functions of ac, and 2' is

any number assumed at will, not less than to, and of course not greater than 772; and
where col; w3; ”mm.“ will have in common a root A, which may be made at will the

greatest 01' the least root of w1.w2.w3.w2i+1; the investigation, however, according to

the present light which I possess 0n the subject, appears complicated and tedious,

and therefore, in order that the press, which is waiting for the completion of these

supplemental articles, may not be kept standing, must be adjourned to some future

occasion. For the present I content myself with showing the truth of the law for the

simple case wherefx is a cubic function of x.

lst. If £5 gives rise to a single sequence of quotients 9, we know, from the theory

of intercalations, that it is necessary that all the roots‘bf fa: shall be real, and in order
that when this is the case the quotients may form a Single sequence Q, it is only

necessary so to assume $33, that its roots may be intermediate between those offan

2nd. If the roots off1? are not all real, or if they are all real, but do not Campose

the roots offa: intercalated between them, and if for greater brevity of ratiocination

westipulate that gm: shall have its leading coefficients of the same sign as that of the

leading coefficient offx, the leading coefficients of the three quotients will either bear

the respective signs ++-—-,0r the respective signs +—+, or the respective signs
+ —— -— ; in the first and last of these cases there would be two sequences, and there.-

fore, by what has been shown above" the method of limitation of the text could not
give a limit coincident with a root. Let us then look to the remaining case, and
inquire whether, and how, gem may be assumed so that fit shall become representable

to a constant factor pres by the eumulant [p(x—a), —q(x—B), r(x—a)], where p, q, 'r

are all positive, and a is a root offx.
Let this cumulant be called hfr.
Nothing in point of generality will be lost if we suppose the leading coefficient at

hfm to be —'1. We then have

hfm=[P(w-a)a —q<w-B); W—afl
:: ——pgr(a2—-a)2($—b) _ (p+r)(ay——a)

 

and writing fl=x2+Bx+C and making mza, we find from the above identity that

19+r:*a2+Ba+C,~ i. e. p==a2+l3a+C—r,

and~ pqr(x—§)=x+a+B, I

hence B+a+B=O, i. e. @=—B—a,

‘ * * 1 1
and pqrzl, and qr25=a2+Ba+C__T-

Hence ifgow he so assumed that the quotients to $5 are p(m—a); f—q(.:v—-;B) ; T(x—ea),
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we have , .

hex: [-q(x—-B), r(x-——a)]=-—qr(m+B+a)(a}-—-a)—~I

:-qr(x2+Bm—a2—aB)—-l=—%{x2+Bw—a2—aB+p}.

Hence ¢(w) is of the form '
' m(x2+Bw-—-a2-—-aB+(a2+aB+C—-r))=m(x2+Bx+C-r).
If we eallthe three I'ootsoffx, a, b, 0 respectively, We have

I l

q:r(ag+Ba+C—~7'):7~((a_b)(a-—c)+r) i
  

and since 9 and 7' are both to be positive, we see that (a) must be taken the greatest 01'

least of the three roots if they are all real, so that a2+Ba+C may be positive, Which it

Will of course necessarily beif 6 and c are imaginary; we must also have a2+Ba+C—r

positive, so that the form of 90x is m((m“’—-a2)+B(m-a) --«t), t being necessarily posi-

tive, but otherwise arbitrary, a form containing two arbitrary constants, one of which
is subject to satisfy a certain condition of inequality; Whereas When fix is of such a
form as to admit, and May;is supposed to be so assumed as to cause it to come to

pass that the quotients to—fit:xform a single sequence, then the three coefficients1n gm:

'1e1nain exempt fiom all conditions of equality but are subject to two conditions of

inequality. And so in general when the degree offa: is x and the number of sequences
2i+1, it is to be infeired that the n coefficients of cps Will be subject to satisfy n—i—l

conditions of inequality and2 conditions of equality.

‘ Art. (5.). The theory of the deteimination of the minimum interval between either

limit determinable by this method and the nearest root, or between the two limits

0 p (Z, a n

so determinable when m 1s so assumed that $552, gives use to a defined even‘numher of

sequences (Which Will include the theory of the case Where all the roots of fa: are

imaginary), must be deferred to an opportunity more favourable for leisurely con-
templation. As regards the application of the theory to the very interesting case of

all the roots being imaginary, the principal point remaining to be cleared up is the
determination of the least value that can be assigned to the greatest, and the greatest

value that can be assigned to the least root of the algebraical prod11otX1.X2.X3...X2,,,

Where X1, X2, .. .Xgn are all of them real linear functions of x, subject to the condition

that the cumulant [X1, X2, X3...X2n] shall (to a numerical factor pres) be equal to a

given function of the degree 272 in ac incapable of changing its sign, Which condition
implies, as a necessary consequence, that the coefficients of. a: in each of the terms

X1, X2," .XW must be affected With the same algebraical sign.

Art. (0) It should be observed thatin the application of the above method, the

division of the series of quotients into distinct sequences governed by the signs of the

coefficients ofa: is introduced for the purpose of drawing the limits closer to the roots,

'but1s not necessary for the mere object of assigning limits.
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Th us, for instance, if there be two sequences so that

[qlqg-uqa; , Q£+195+2n~95+1J

99:”? 92:01, +l)2 92:: (15° +-1-)2. .91: (-3—)2
l l l 2 ”’1 3 3 #2 ' I ' #1:..1

1 2

and ‘ 93+1=V1 9H2: (”2+312) -91+1'=(;:)

the greatest and least roots of as deduced from these equations will be superior and
inferior limits respectively to the roots of fay; from Which it is clear that if leaving

all the other equations unaltered, except those Which contain respectively q? and 9?“,

we write in place of these
2

e%-(e+;~—:)
1

_ q:+1=('é+”1)2

the roots of the system of i+z' equations thus modifiedWill afortz'ori be limits to the

IOOtS offlu but then the quantities

1 1 1
(£19#2+;113°Mi~1+pi_23 E+£~ay1+za ”2+2" "" 1,;

form the same-single series as would correspond to the two sequences

9'1 92-"95 gi+1-°-95+i’2

treated as a single sequence, and the same is obviously the case for any number of

sequences*. '

Art. (7n). If we consider a single sequence as 91 92...q3, and write

91=a1(m—cl) q2=a2(a2—-c2)...qn=an(x—-cn)'

whereab" a2, , an are supposed to have all the same sign, and write

1 2 1 2
aflx— 0022p? a§(m—cg)2= (#2411) . . .ai(m-—c,,)2= (M4)

* It follows from this, that if 91, 99,.-qn be all linear functions of w, and if ‘

Q=(qi-m)(2(112+ flgfiX(“3+711“)2) ------ (93“ J“)
Pn-J

no root of Q can lie between the extreme rootsof the function K, used to denote the cumulant

[4/93 —_ 4/93: M53", ......... . i 4/53.],
the square roots being understood. to be taken so as to make the sign of the coefficients of a: all of them positive;

and from a preceding article we know that either extreme root of Q can be made to coincide with a corresponding

extreme root of K. Hence we have an (2 priori solution of the following questidn, viz. “ To determine the (72—1):-

 

positive quantities 11,, p2,” ..}1n_1, so as to make the greatest root of Q a minimum and its least root a maximum;

for the greatest root of K Will be the minimum greatest root of Q, and the least root of K the maximum least

root of Q. Calling these respectively 1 and A, the two systems of values of pl, p2,...pn_1required will be

obtained by substituting respectively I and A for a: in the equations .
I . 1 1 ii —“m: q‘f #2:“ 93-12; pa=+~q§"'72; '''''m-pn—FiWIi-I"

 

Pn—2
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it seems not unlikely that the interval between the greatest and least of the roots of
the above equations Will be a minimum When the intervals between any pair is the

same for each pair, i. 9. When

 

 

1 1 1
+'- +-1-811—”?1—P3 ”‘2: _Ef:.l.

a1" a1 — a3 ”_ an

If we assume these equations, and write pol=ali, the equation for determining 5,

will be
[algy “2%: asga- Wang] :0-

It 12:2 this equation becomes 0101252—120.

If 72:3, 1ejecting the factor 5, it becomes

alagaafz— (a1+ a3)=0.
If 72:4 it becomes ,

‘ a1.a2.a3.a454—(a1.a2+a3.a4+a1.a4)‘é2+1:0.

If n'=5, rejecting the factorgfit becomes

a1.ag.a3.a4.a554—(a1.a2.a3+a1.02.a5+a1.a4.a5+a3.a4.a5)§2+(a1+afi3+a5)=0,

and so in general the equation in 52 being always ofa degree measured by the integer

nearest to and not exceeding 3; and it is easy to be seen that for all values of n, the

second coefficient divided by the first will be an inferior limit to E2 (of course actu-

ally coinciding With it for the cases of 72:2 and n23). Hence we have the following

valuable practical‘rule for finding a superior and inferior limit to the cumulant

[a1(m—-cl), a2(m—c2), , an(m—cn)], ‘

where a1, a2, an have the same sign, viz. if C be the greatest, and K be the least of
the quantities c1, 02,...0,” C+A Will be a superior, and K—A an inferior limit, A

being taken equal to the positive value of

“ 1 1 1 1 a ‘ ,.1/a1amas+a3.a4+
and it may be noticed that C and K are the quantities Which would themselves be the
superior and infe1i01' limits to the given cumulant if the se11es of terms a1, a2," 117”
instead of presenting only a sequence of continuations 01' permanencies, presented
only a sequenceof changes 01' variations of Sign.

 

    

SECTION V.

On the Theory of Intercalations as applicable to twofitnetions 9fthe same degree, and on
theformal properties qf’ the Bezoutiant with reference to the method qf Invariants.

Ar.t (56). Iffar and gm: be any two given functions of x of the same degree m, we
may form a system of m Bezolutics to f and Q (as Shown in the first section), the
coefficients of the powers of J: “, arm”, . .m :12" in which will compose a squa1e matrix

‘ of m lines of m terms each, Which Will be symmetrical in respect to the diagonal



AS APPLICABLE TO TWO FUNCTIONS OF THE SAME DEGREE. 511

Which passesthrough the first coefficient of the first Bezoutic and the last‘coeflicient
of the last Bezoutic'; and we may construct a quadratic homogeneous function ofm new“

variables, such that its determinantive matrix shall coincide With the Bezoutic square

so formed. This quadratic form may be considered in the light of a. generating function.

All its coefficients Will be formed of quantities obtained by taking any two‘coeflicients
in one of the given functions, and two correSponding coefficients inthe other given

function, multiplying them in cross order, and taking the difference: each-coefiicient

of the generating function in question Will consist of one or more such differences,

and Will thus be of two dimensions altogether, being linear in respect to the coefficients
offiand also linear in respect to the coefficients of o. This generating function I
term the Bezoutz'ant, and it may be denoted by the symbol B(f, go) : the determinant
of B is of course the resultant to f, go, and the matrix to B is the Bezoutic square to
f, {0. Now We have seen that the decrease in the number of continuatiOns of sign in

the series 1, B,(x), B2(m)...Bm(x) (Where B100), B2(x)...Bm(x) are the (n) Bezontics to

f, 90), as :0 changes from a to 6, measures the number of roots of fa: retained in the

effective scale of intercalations taken between the limits (a) and (b). If we take the

entire scale between +00 and —-—oo' the total number of effective intercalations Will

be the same, Whether reckoned by the number of roots off or of go remaining; for

these-two numbers cannever differ except by a unit, since no two of either can

ever come together; but the number of each remaining in the effective scale Will be
m—Zi and 912—277 respectively, 2' being the number of pairs of imaginary roots and

pairs of unseparated real roots of f and 2" being the similar number for go; so that we

must have izi’. -

Now obviously this number becomes measured by the number of continuations of

sign in the signaletz'c series ‘1‘, (B), (B2), (Bm), where in general (Bi) denotes the

principal coefficient in Bits). ' '
But (B1), (B2), (Bm) are the successive ascending coaxal minor determinants

about the axis of symmetry to the Bezoutic square; and accordingly the number of

continuations j ust spoken of, measures the number of positive terms in the Bezoutiant
When linearly transformed, soas to contain only positiveand negative squares, or in
other words, measures the inertia of the Bezoutiant,the constant integer Which

adheres to it under all its real linear transformations.
Art. (57.). This inertia is the same number as in the case of a homogeneous

quadratic function of three Variables, used to express a curve referred to trilinear
coordinates, serves to determine Whether such conic belongs to the impossible class

or to the possible class of conics, being 3 or 0 in the former case, and l or 2 in the
latter; or as in the case ofa homogeneous quadratic function of four variables used

to denote ,a,Surface referred to quadriplanar or tetrahedralcoordinates, serves to
determine Whether. such surface belongs to the impossible class or to the class cOn-

sisting of the ellipsoid and the hyperboloid of two sheets (Whichtare descriptively

indistinguishable), or to the hyperboloid of ‘ one sheet, being 0 or 4 in the first case,
MDCCCLIII. ¥ 3 x
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l or- 3 in the second, and 2 in the third. The most symmetrical (but least expeditious)

method of finding the inertia of any quadratic form is that Which corresponds to the

method of orthogonal transformations, and is, in fact, the usual method employed in

geometrical treatises on lines and surfaces of the second degree. If we apply this

method to the Bezoutiant B Considered as a homogeneous quadratic, function of the

(m) arbitrarily named variables u.” 71,2, 153, ...um in order to measure its inertia, that

is to say, the number of effective interpositions between the two systems of roots, we

must construct the determinant

r2432 .19... dQB. £3}:
duf ’ durdug’ du1.du3’ durdum

, dQB ' (1213 dQB dQB
[W 2a“; W dam”: V

D(?\)=<_.......t...y..v.>

 

ng ' dQBw . (£913 a???“ A

Ldumdu’,’ 'duwdug’ dum.du3’ dufn+ J‘

 

  
All the roots ofB(A) :0, as is well known, are real; the inertia of B, being measured by
the numbervof pOsitive roots of D(—7\), Will be equal to the number of continuations

of sign in D0) expressed as a function of A of the mth degree. a
If in far and gar we reverse the order of the coefficients, and fr and cm so transe

formed becomef1 (a7) and $1 (m), it is obvious that the roots offJl and 931 beingthe

reciprocals of the roots off and g0 respectively, the number of effective intercalations

tofi and g0! must be the same as forf and g0. Accordingly we find that the form of

the Bezoutiant tof and g0 is the same as that of the Bezoutiant t0 f1 and $1, the sole
difference (one only of names) being that B(ul, 71,2, um_1, um) for the one becomes

B(umvumml, um laul) for the other. The equation B(A), Which determinesthe inertia

of B,'1'emains prehisely the same as it ought to do for either of the two systemsf and:
go 01' f; and 90,.

V Art. (58.). The theory in the preceding articles of this section may he made to

embrace the caseinvolved in STURM’S theorem ; forif

fx=a0.w"+ a1.m”'“+ ...+am_l.mm”l+am.x’"

f'xgmaoan-Ifin—1)a,..rn*2+ ...+a,,,,_;,,

fiw=mfw~f’x

:a, .m”"‘+2a2.m”'2+ +m.am

the Bezoutian secondaries, or Which is the same thing, the simplified Sturmian resi—
dues tofw andfix, Will evidently be the same as those to fizz: and f’x. Accordingly,*if~
we form the signaletic series

and

~fxlflx: Bx: BeniBm—m
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where B1, Bg,.;Bm_1 are the Bezoutian secondaries tofix andf’ze, the number'ot’vari-

ations of' sign between consecutive terms in this series, when x is made +oo , will

measure the number of pairs of imaginary roots infx; andfit and f’x’forming always

a continuation, and the coefficient of f(x) being supposed positive, we see that the

terms of the rhizoristio series Will be 1, (Bl), (B2)...(Bm__,) consisting of positive unity,

and the successive ascending coaxal determinants of the Bezoutian matrix to f’ and
fix. Hence then the form of the Bezoutiant tof’tv andflze will serve to determine the

number of pairs of imaginary, and consequently also the number of real roots to fr.

It should'be remarked that the form of the Bezoutiant tof’a: andflm, considered as

a quadratic function of ul, urnumm1 and of the coefficients inflm), will remain unal-

tered when forfx we write fix, for this will change the signs throughout of fx and
flay, and consequently the coefficients in the Bez‘outiant, which contain in every term

one coefficient fromf’x, and one fromflm, will remain unaltered in sign.

. Art; (59.). It appears then from the preceding article, that for every function of :e'

of the degree m, there exists a homogeneous quadratic function of (972—1) variables,

the inertia of which augmented by unity will represent the number of real roots in
the given'function. Now this inertia itself may be measured ‘iy the number of posi-~

tive roots of a certain equation in A formed from the quadratic function (in fact the

well-known equation for the secular inequalities of the planets), all whose roots will

be real. Hence then we are led to the following remarkable statement. “ An alge~
bra‘ical equation of any degree being given, an equation whoSe degree is one unit lower

may beformed, all the roots of which shall be real: and of which the number quositz’ve

roots shall be one less than the total number of real roots of the given equation.”
Let us supposefit written in its most general form, the first and last as well as all

the intermediate coefficients being anything whatever: by reversing the order of the

coefficientsf’w will becOmeflm andflm will becomef’x; the Bezoutiant tofiw and fa:
(which we may term the Bezoutoid to fit) will remain unaltered except in sign, and
the equation of the (m—l)th degree in A formed from the Bezoutoid remain un-

changed, consequently the equation in A enables us to substitute, for the purpose of

calculating the total number of real roots in fix) in lieu of STURM’S auxiliary func—

tions to.f(w), another set of functions which remain unaltered when the order at the

coefficients is completely reversed, 2'. e. in effect, when we consider the number of real

roots off(i) in lieu of those off(.-z'). And of course more generally the equation of

the mth degree in ?g formed from the Bezoutiant to any two functions fit and m: of

the mth degree each in .51", supplies a set of functions for determining the total number

of elTective intercalations between the roots off(x) and o(w), which do not alter when
. ¥ . 1 12 . . ‘ .

we consider in heu of these, the roots off(:93) and 40 (E) This substitution of func-

tions symmetrically formed in respect to the two ends of an equation for the puepose

of assigning the total number of real roots in lieu of the unsymmetrical ones furnished?

3 x 2
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by the ordinary method of M. STURM, had been long felt by me to be a desideratum,

and as an object the accomplishment of which was indispensable to the ulterior deve~
Iopment of the theory, and it is certain that I did not in anticipation exaggerate the
imp01tanCe 0f the result to be attained.

Art. (60”) It may happen that the Bezoutiant tof and g0 (each of the mth deg1ee)
may become a quadratic function of less than 7711 independent variables, or the. Bezou—

toid tof (a function in a: of the mth degree) of less than (m—- 1) independent variables.

This Will take place Whenever f and (p have roots in common, or Whenever F has

equal roots. The number of independent relations of equality between the roots of

f and go, and the amount of multiplicity, however distributed, among the roots of F,

will be indicated by the number of orders thus disappearing out of the general form

of the Bezoutiant and Bezoutoid in the reSpective cases*. In What particular mode

the form of each would be affected according to the manner of the distribution of the

equalities and the multiplicity requires a specific discussion, which I must reserve for

some future occasion.

Art. (61.). I shall devote the remainder of this memoir to a consideration of the
properties and affinities of Bezoutiants 01' Bezoutoids, regarded from the point

of view of the Calculus of Invariants. For this purpose it Will'b-e more convenient

hereafter to convert all the functions Which we are concerned With into homogeneous

forms, and I shall accordingly for the future usef and g0 to denote functions each of

212 and y, Which I shall write under the form

f==a2xm+ma Hmmmky+m.Um«22.222.3/+ .2+a.2

¢=bo.$m+bl £m“1-y'+m.flg162.xm-2.g2+ + bm.w’".

In What follows a knowledge of the general principles of the Method of Invariants is
pmsupposed, but a perusal of my two papers on the Calculus of Forms in the Cam—

bridge and Dublin Mathematical Journal, February and May 1852, Will furnish

nearly all the information that is strictly necessary for the present purpose. The first

point to be established is, that B, the Bezoutian of fin and @512, is a Covariant t0 the
system]; <p ; the variables in B being in compound relation of cogredience With the

combinations of powers of x and y;
mm-—1;mm-fi‘y;wm-«3”tymm-l

"I‘hat18 to say, Ip10pose to show that if f, g, h, k be any fou1 quantities, taken f01

g1eate1 simplicity subject to the 1elationflc~gh= 1, and if 011 substitutingfac+gy f01
217 and hm+ky for y,f(2zf, y) beComes

Ao.mm+mA1.xm“l.y    $.x7n‘2.y2+Am.3/m, say G(Jv, y),

* I have elsewhere defined howthis word 'order, as here employed, is to be understood. If F, a homoge-
neous functionof .231, 2129, . . . "r22, can be expressed :as a function of u}, 212, . . 3122-2: (all linear functions of .111, $9,. "22"”),
F is said to be a function of nwi'orders, or to have lost 1' of the orders belonging to the complete form.
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and c (x, y) becomes

BWm+B.m’”‘.y+m.m21B2xm"’"2.y2 +Bm.’”y, Say T(Jc, y),

and if BT11}, 21;... um) be the Bezoutiant to G and T;B(u1, 262.. .um) being that tof and go,

then, on making ul, urnum, the same linear functions of ul, 21;...um

as (fw+gy)’"; (fm+gy)m"(hw+ky); ...... (fm+gy) (hx+ky)”‘“‘; (th—l—kyV’l

are respectively of I
mfimmm”,‘ ...y’ ..acym“; y“,

B Will become identical With B’. I was led to suspect the high p1obability of the

t1uth of this proposition concerning the1nvariance of the Bezoutiant from the follow—
ing conside1ations: 1st. That for the particular case whelefand go we the differential

derivatives in respeCt to :12 and y respectively of the same function F(x, y), the
Bezoutiant of f and c, which then becomes the Bezoutoid of F, determines the,

number of real factors in F, which obviously remains the same for all linear trans—
formations of F. 2ndly. That takingf and gain their most general form, the invariant.

to their Bezoutiant, i. e. the determinant of’ theii‘ Bezoutiant is an invariant off and g0,

being in fact the resultantof these two functions; now as every concomitant (an in-
variantive form of the most general kind) to a concomitant is itself a concomitant to

the primitive, so it appeared to me, and is I believe true (although awaiting strict

proof), that any form satisfying certain necessary and tolerably obvious conditions of

homogeneity and isobarism, a concomitant to which is also a concomitant to a given

form, will be itself a concomitant to such form; this principle,if admitted, would
be of course at once conclusive as to the Bezoutiant being an invariantive cOncomi-
tant to the functions from which it is derived.

Art. (61*). Since the publication of the two papers above referred to on the Calculus

of Forms; I have made the important observation that every species of conVCOmitant,
however complex, to a given system of functions, may be treated as a simple invariant

of a system including the given system together with an appropriate superadded

system of absolute functions; thus an ordinary covariant involving only one system

of variables, as u, v,w cogredient with m, y, z the variables of a system S, is in fact

an invariant of the system S combined with the system ux—vy, z—wy, wx—uz, &c.,
u, v, w being treated as constants; so again a simple contravariant of S is. an

invariant of S combined With the equation um+vy+w.z+&c. ;_ so again, to meetthe

case before us, a covariant to the binary system f and (p expressed as a function of.-

111, u2.. sum, whe1e ul, 712.. .um a1e cogredient with a: 1, mm‘2.‘y...ym“, may be regarded

as an inva1iant of the te1na1y systemf, go, 0, whe1e

m“ —1 V m—l m—~1fl=u1.ym“’-—mu2.y 25134-772..Tuay ...-—+(-—) 14.,” 1.3: ,

(ul, 11,2, tow1 being here to be treated as constants), and aetiordinglythe differential

equations which serve to' define in the most. general and. absoluteiman‘ner such cova-L
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riant off; g0, 01' invariant tof 90, (2, say I, will take the form
1010.“?35%..d§)+2(ad1'an—————+b..d—;)+3(a..dda3+b2..75)-+-.+m(am-Iadi+5...rd?)1

~<uldu2+2212.‘ugdi+3u3.du+" .+(m—l)um._ld:7)} . )1

1:13

L
r“ d d d ' d
{am,m+bm.m}+2{am~1 ~dam~2+l7m—1.g'b';:;}

+3{:m~2-:_da“3%-2db,,._”ij'}+:m(a..dduo”+5111” 1:0'A

  d
“(u“-171 l.duZ-m~~~2+221”.” du:_3+3um-3(Zn: -°°""‘+(m ”02-3.;‘1

k...

These equations may be proved to be satisfied When I is taken :8, the Bezoutiant t0

f, (0, and thus B may be proved to be a covariant to f, go, but the demonstration is

long and tedious. An admirable suggestion, well worthy of' its keen-Witted author,

for which I am indebted to Mr. CAYLEY, Will enable us to prove the invariantive

character of B by a. much more expeditious method.

Art. (62.). For greater simplicity begin with considering functions of a single
variable x; and in order to fix the ideas, suppose (m) to be taken 5, and write

fhyzax5+bx4+cw3+dm2+ew+l

$.12: wm5+fi3x4+7x3+5w2+ex+L

and let 3-:M; this is of course an integral function of .r and ar’, since the

numeratm vanishes When xzx’; and we have by performing the actual operations,

I $3,:[(013-boc)x4.m4+(a7+0a)x3 .x’3(x+x')+(aB—- d“)x2x12(x2+mm+m2)+(ae-—ea)1
1 m<m3+x2x'+m'2+w'3)+(a1—le)(x4+m+1»m’2+mm's+m'4) J
(57—c§)m3353+ (53——dfi)x2m’2(x+x')+ (be—efi)xm’(m2 +.23m' +x’2)1

{4'+(b7w-l13)((.713'3—I—x2x’+mx'2+x3) J

+—-((CB,—d7)x2w'2+ (cs ~67)xx’(13+m') + (cA— Ivy) '. (.122+.12.:1:’+m'2))

+((d2 —— 65)xw'+ (dA—18) (x+w'))

+(671. -— ls);

» and if we arrange 3 under the form

A4,4 m4.w’4+A4,‘3 x4.x'3+A4,2 x‘m'2+A4,, m4.x'+A4,o .x“

+1313,4 w3x'4+A3, 3 mix"; +A3,2 mgx’2—I—A3, 1 watt" +1413,0 1'3

+A2, 4 x2‘.a}'4+A2,‘ 3 a;'2.w’3—|—A2,21x2m'2+A2,‘1 m2x’ +A2, o .ch

+A,,4x.:1:" +AL3 39.553 +A,,2 mm” +A1,o smr' +A,s, o :1:

+Am .1?“ +Ao,3 :12'3 ‘+AM 32’“. +Ao,', cc” +AM ;,
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it will readily be perceived that the matrix formed by the twenty-five ceeflicients,
viz.-—-—-

.AM A“, Aw A4,; A4,0
A3,4 A3,3 A3,, A3,! A3”,
AM Am AM Aw AM
AN AW Am, Am A;,.,

AM Ao,'3 Ao,2'.Ao,1' 'Ao,'o,

will be symmetrical‘about its dexterdiagonal (that one, namely, which passes through
A4 4 and AO, 0), and Will be identical with the Bezoutian squa1e cowesponding t0 the

systemf, CD; in fact, using the notation previously employed in the first section, it

becomes ’

”(0,1) (0, 2) (0 3) (0, 4) (0 5)
(0 2) [(0%43)} “0+4)}f“(O+5)1 (1 5)

’ lam io+3> H04”

i0{M(0,+4)1)k
(03.) (0,3) { «1,4 {(141}(2 5)

<fi3fl lJg} id

me 0;»
WA){%—}{+ }é{fl+3»

1L3 em 34
~ (0: 5) ‘ (1, 5) (2, 5) (3: 5) (4: 5),

(73.3) being usedin general to denoteithe difference between, the cross products of the
eoeflicients of 335“" and $5” in f and gb. A Restoring now to m its general val11e, and
takingf and go homogeneous functions Of a: and y, and making

s_flw, y)¢(w’, y”) -f(3’fy’)e(33 y) ,
— ’ ny—‘wly 9

we see Without difficulty that

31.214893 31(1)? .ym-l-lh—g‘rx’s oymu-lj—s},

where A, s is the te1m’ in the rth line and sth column of the Bezoutiant matrix to f

and go. This is the identification, the idea of which as bef01e observed, is due to

~M1. CAYLEY.

Art. (63.) If, now, we consider the system of functions

f(w, 3/):anmm+malurm“y+ ........ ; ................+amLy“

Mm,y):-bo.x”_”+mb .xm‘ y+....i‘. ......+6.y’“ ‘

0(m, y)=um_, .ym" —(m—1)um._24/"2+ ...........+(-—)m.‘ ...3233,
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evidently f(x, y)¢(x’,y’) -—-f(a:’, y')cp(x,fiy)is a covariant With f and go, and therefore
(Which is a mere truism) With the entire system. f, q), 0.. So also is agy’—-x’y,land
therefore 3, the quotient Of these two, is a covariant to the system. Hence, therefore,
by virtue of a general theorem given in my Calculus of Forms,

“(5%: 793 *
is a covariant to the system ; and again, therefore,

03 d d ' d

“(225% ‘33-‘26? ‘25)3‘
is a Covariant thereto. Now 3 is of (m— 1) dimensions in x, y and also of the same
in w’, y’. Consequently this latter form Will contain only the quantities uh'ug, um,

and the coefficients off and go, so that the powers of x, y ; x’, y’ will not appear in it.

NOW ’ 3:332m133wAr,${x".ym“".w”.ym‘1*8}

(ammo? _%)=um-, (2.2% ““‘+<m—1>um-2(g—:)m*2g§+...+ul(5;)
m__ d d d m"! d 771—20] d m~1

(-) 10(8313 -W):um-I(EEI +(m—I)um~2(3§7) w+...+ul<g§,) , 9

1 d d d d
"I.2.3...(m—1)2'Q(?i§]’ "72?) .9679, ‘22} S

22;-1<A,.,,..ui)+22t_12t..1(Ar,s-ur-us):
r and 8 being excluded in the latter sum from being made equal; but this latter
expression is the Bezoutiant to j; @. Hence the Bezoutiant off, o is an invariant to.

f, go, 0, i.6. a covariant to the system f, q), as Was to he proved. The mode of
Obtaining the covariant'S, used in this and the preceding article, is very remarkable.

I believe that the true suggestive View of the process for finding it, is to consider

f(w, y) @(w’, y')-f(w’, y’) 400% y)
as a concomitant capable of being expressed under the form of a function of 3 and" cu,

to standing for the universal covariant xy—x’y; S is then to she considered, not pro-
perly as a quotient, but rather as an invariant of the form 34:, a function of w of the
first degree, Where S is treated as constant.

Art. (64.). ,B isnot an ordinary covariant off and go, it belongs to that specialand

most important family of invariants to a system to which I have given the name of"
Combinants 3*, viz. Invariants, Which, besides the ordinary character ofinvarianee, When
linear substitutions are impressed upon the variables, possess the same character of
invariance When linear substitutions are impressed upon the functions themselves

containing the variables; combinants being, as it were, invariants to a system of

m~R

 

* For some remarks on the Classification 'of Combinants, ‘see Cambridge and Dublin Mathematical Journal,

November, 1853.
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functions in their corporate. combined capacity qm’t system. That the Bezoutiant
possesses this property is evident; for if instead offand go we write kf+i¢> and kff+i’¢,§

any Such quantity as 11.12—61.12. (am [7 being coefficients in f, and as, b the come-
spending ones in (:5) becomes

(ka7.+z'6,.) (k’as+i’bs)—-—(kas+ibs) (k'a,.+i'b,.), 1'. e. (ki’~k’i)(a,..bs—as.br),

so that B, the Bezoutiant, becomes increased in the ratio of (ki’—-k’i)m, z'. 6. remains

always unaltered in point of form and absolutely immutable, provided that ki’—-k’z‘ be

taken, as we may always suppoSe toibe the ease, equal to) 1.

We derive immediately from this observation, the somewhat remarkable geometrical

proposition, that the intersections With the axis of a: madebyany two curves 0f the;

family of curves u=7f(x)+{,ogo(x), (f and g0 being functions of a: of the same degree).

give rise to a constant number of effective intercalations, Whatever values be given
to A or {A f01 the two curves so selected. -

Art. (65.). B(ul, 112, um) being a covariant 0f the systemfand go, and 711, 152, um ‘
cogredient with W“, xm‘2.y0 ym", it follows from a general piinciple1n the theory

of invariants, that on making ul, 7,12,- ..." um respectively equal to the quantities With

Which they are eogredient, B Will become an ordinary covariant tof and gr). By this.

transformation B becomes a function of x and y of the degree 2(m—1) in a: and'y

conjointly, and linear in respect to the coeflicients off, and also in respect to those

of go. The only covariant capable of answering this description is what I am in the

habit of calling the Jacebian (after the name of the late but ever-illustrious JACOBI),

a term capable 0E applieationto any number of homogeneous functions of as many

variables. In the case before us, Where we have two functions of two variables, the

Jacobian ,
€25 '. €59:

1 day ’ dw d d d d

JO: 9)): df d3 2d];d3"— 716d:
617/ ’ dy

We have then the interesting proposition 3*, that the Bezoutiant to two functions, When
the variables in the former are replaced by the combinations of the variables in the

latter, With Which they are cogredient,rbecemesi the Jaedbianf So in the ease of a

singlefunction F "of the degree m, the Bezoutiant, 2'. e. the Bezoutoid to (2%, 9%, on

making the (m— 1) variables Which it contains identical with mm”; _a9"”"3.y; ym‘2
dF dF

respectively, becomes identical With the Jacobian to-—-~dm , dy, 2’. e. the Hessian ofF viz.

1121‘ cm?
dizzy ’ M

dQF 1121‘ '

m 127
*I have subsequently found that this proposition is contained under another mode of statement, at the

end of Section 2 of the Memoir of JACOBI “ De Eliminatione,” above referred to

T For a strict proof of this proposition see Supplement to Third Section of this memoir.

MDCCCLIII. 3 Y
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As an example of this property of the Bezoutiant, suppose

fz:am3+ Zawfiy+emf+(if

¢=ocx3+16w2y+7wy2+5y3. '

The Bezoutiant matrix becomes

V 03—1705; ay—Cw; 613—6106.

(13 -— doc
07—005; -I- ; by—Cfi

‘ 57","013 '
aE—doc; bry-q8; 05—6277.

The Bezoutiant accordingly will be the quadratic function

(0345“)7134-(615—da+byecfi)u§+Mu§

+2(a7—- 006)u1 .u2+2(a5~dw)u3.u1+2(by—c@)u2.u3,

 

which on making
' ul:w2 262:wa u3=y2,

becomes '
‘ Lw4+Mm3y+Nw2y2+Pwy3+Qy4, . . . . . .k . . . .- (6.)

Where L, M, N, P, Q respectively Will be the sum of the terms lying in the successive

bands drawn parallel to the sinister diagonal of the Bezoutiant matrix, 2'. e.

L =afi—bw

M=2(a7-—cw) ,

N=3(a5—(Zw)+(by-—éfi)

1’ =°(57-043)
Q =CB—dry.

The biquadratic function in .22 and y (6.) above written Wi” be found on computa—

tion to be identical in point of form with the Jacobian tof, go, Viz.

(3am2+21mg+ 0y?) (@w2+ nyy—l—Bhyz) —— (3ww2+ 32me+792) (bw2+20wy+ dy”),

this latter being in fact V
’ . 3Lm4+3Mm3y+3Nm2y2+3ny3+3Qy4.

The remark is not Without some interest, that in. fact the Bezoutiant, Which is capable
(as has been shown already) of being mechanically.constructed, gives the best and

readiest means of calculating the Jacobian; for in summing the sinister‘bands trans-

verse to the axis of symmetry the only numerical operation to be performed is that

of addition of positive integers,'whereas the direct method involves the necessity of

numerical subtractions as well as additions, inasmuch as the same terms Will be

repeated with different signso Thus if

f2: @5125+ bx?+ 0.293312+dm2y3+exy“+If ‘

go :-_ oar"+(8x431+7w3y2+Bx2y3+ewy4+W5,

using (r, s) in the ordinarysense that has been consideredthrdughout,We Obtain by
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taking the sum of the sinister bands in (a.)* for the value of B.- when we write
.274, w3y,m2y2, ’xy3, y“ in place of ul, M2, 2&3, 2&4, us, ’

(O, 1)m8+2(0, 2)a27y+(3(0, 3)+(1, 2))mfiy2+(4(0, 4)+2(1, 3))m5y3

+(5(o, 5>+s<1, 4>+<2, 3))w4y4+(4<1, 5>+2<2, 4))m3y5+(3<2, 5)+<3, 4))wsy6
+2(3, 5)w3/7+(4, 511/8-

The direct process requires the calculation of

(5ax4+4bx3y+3cx2y2+2dmy°+ey4) (,Gx“+27x3y+33x2y2+4sxjy3+5ky4)

-— (5ax4+ 4Bxfy+37x2y2+2Bxy3+gy“) (6x4+20x3y+ 3dx2y2+4exy3+ 5ly“) ,

each coefficient of which will contain thenumerical factor 5 ; so that to reduce the

Jacobian to its simplest form each coefficient will necessitate the employment of

additions, subtractions, and a division, instead of additions merely, as when the

Bezoutic square is employed. For instance, to find the coeflicient of 334.3; from the

above expression (06.), we have to calculate

§(25-(0: 5)+16(l, 4)+9(2, 3)+4(3, 2)+(42 1)):

5.6. §(25(0, 5)+(l6—l)(1,z4)+(9—4)(2, 3)),

which is 5(0, 5)+3(1, 4)+(2, 3), agreeing with what has been found above for the

value of such coefficient, by a simple process of counting. The same remark will, of
course, also apply to the computation of the Hessian of F by means of its Bezoutoid‘

(Art. 66.). This relation between the Bezoutiant and the Jacobian led me to

inquire whether, as would at first sight appear probable, the Bezoutiant were the
only lineo-linear quadratic function of (m) variables covariantive toj and go (the word

lineo-linear being used to denote the form of coefficients, such as those in the

Bezoutiant, linear in respect of the coefficients in f and the coefficients of go). If so,

then there would have existed a method of performing the inverse process of recover—

ing the Bezoutiant from the Jacobian, almost as simple as that of deriving the
Jacobian from the Bezoutiant. On investigating the matter, however, I found that

such is by no means the easevf, butthatthere exists a whole family of independent lineo-

* Vida art. 62.

1- This might have been concluded immediately from the following observation. Let J, the Jacobian of

f and gb, be expressed under the form

 

A0w2m‘2+(2m——2)A1.w2m‘1.y+(2m——2) 2m;3A2m2m‘2._1/9 + . . . + A2m__2 .y2m—2,

then‘ we know from the Calculus of Forms. that, D being taken to represent the persymmetrical Determinant

A0; A1 ; A2 ; ...... ; Am._1

A1 ; A2 ; A3 ; ...... ; Am

A2; A3; A4: ......; Am+1

Ain—ls Am ;_ Am+13 , ------ ; A2m-32; ,

3Y2
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linear quadratic covariants of m variables to every two homogeneous functions of m and

y‘of the mth degree. I have, moreover, I believe, succeeded in determining the number

Of such lineo-linear quadratic forms for any value of (m), of which all the rest, in,

Whatever manner obtained, may be expressed as linear functions, the coefficients of the

linear relations moreover being abstract numbers; in other werds, l have succeeded in

forming the fundamental or constituent scale oflineo—linear quadratic forms of m vari—

ables covariantive tofand e; a result of too great interest, as exhibiting the aflinities’of

the Bezoutiant to its cognate forms, to be altogether passed over in silence. Supposing

the number of linearly independent forms of the kind to be y, then speaking a priori

any of the forms taken at random might seem to be equally eligible to form one of

the :2 included in the fundamental scale, combined with any. (v— 1) others independent

inter se, and of which the selected one is also independent. In fact, however, this is
not so ; for it will alwaysbe more satisfactory to contemplate the fundamental scale of

forms as generated successively or simultaneously by a uniform process; and in the

case before us, the process which I have hit upon, and which I believe is the simplest that

can be employed for generating the fundamental scale, will be found not to include

directly the Bezoutiant among the number. There will thus arise two subjects of

inquiry; lst, the mode of forming the fundamental scale, and proving its fundamental

D20 is the condition to be satisfied in order that J may be representable under the form of the sum of the

squares of (772—1) linear functions of a: and 3/, and D itself is an invariant to J , and consequently an invariant

. and (as is obvious from its form) a combinantive invariant to f and ¢- Moreover, which is more immediately

to the point, we know that the quadratic form Q

(A0“? + 2A1(u1 . (m— 1M2) +A2{((m—- D1152)2 + 2251 .(W)2&3 } + 810. + A2m—2ufn)

will be an invariant to f, q) and S2. (this last quantity fl being defined as in p. 524), and a combinantive covariant ’

tof and go in the same sense precisely as the Bezoutiant is a covariant to the same, and like the Bezoutiant

is lineo-linear in respect of the coefficients off and e. If we operate with the symbol E, where E represents

 

d d d t ’
mvi‘hgfllwlve'i” (E(Ug'l‘ 291-“3)+ &C' +dA3m_2.U72n’

upon K any invariant off and cp, we shall obtain E . K, a quadratic function of 12102 . . . um, which by the rules of the

Calculus of Forms we knowwill be a contravariant tofand g0, and the matrix corresponding to which must evidently

be persymmetrical'. ’ It is an interesting subject of inquiry, which I reserve for some future occasion, to determine

the C‘o-bezoutiant, the Discriminant of Which must be employed for K, so that When this discriminant is operated.

upon by E, the matrix corresponding to E .K may become identical (term for term) with the matrix which is

the inverse to the Bezoutiantmatrix, which inverse, as JACQBI has so simply and beautifully demonstrated,

possesses this persymmetrical character. Vida the “ De Eliminatione,” section 5. The investigation of the

arithmetical connexion between the Q of this note and the fundamental Co-bezoutiants must be also similarly

reserved. I believe it to 'be generally true, and have verified the fact for the case of two cubic functions, that

E.Q gives a quadratic form such that the corresponding matrix is the inverse to. the matrix oftQ. The. calcu-

lations necessary for extending the verification of this remarkable proposition for functions of x, y exceeding

the third degree (notwithstanding that they are much abbreviated by the application of the rules of the cal-

culus) still remain excessively laborious. The abbreviation alluded to'consists in confining the verification in

question to the comparison of either one of the two unreiterated terms at opposite corners of the matrix to

E. Q with the corresponding term in the inverse matrix of Q ;' if these coincide, it is easy to prove that every

other pair of corresponding terms in the- two matrices must also coincide respectively with one another.
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character; 2ndly, determining the numerical relations Which connect that very im-
portant form, perhaps of all of its kind, the most importantWith the forms comprised

in the fundamental or constituent scale. These; questions IZ-propose to consider more

fully at a future period. For the present I shall content myself With giving a method of

forming the constituent scale (without, however, seeking the proof of all the forms
extra to such assumed scale being linear functions of these comprised Within it), and

With determining the numerical relations between the forms in this scale and the

Bezoutiant for a limited number of values of m. All the forms Which we are seeking,

besides being linep—linear quadratics; must also be combinantive invariants to f and
1p, remaining(as forms) unaltered for any linear substitutions impressed either upon

the variables 01' upon the functions containing the variables.
Art. (67.). I must here premise that if there be any two forms of the same degree

(and that degree odd) in a: ‘and y, a combinant may be formed from them, which Will

be linear in respect to each set of coeflicients*. Thus calling the two functions

2
a0.m2n+1+(2n+1)a1.x2”,y+(2n+1),;ga2.m2n—1oy2+m+a2n+py2n+1

2022”+‘+(2n+ 1)wi-m2”-y+(2n+1)—g—‘a2.x22~1.y2+...+a,2,,+,.y2n+l,

the lineo—linear combinant in question Will be

_ ' 2n+l 2n 2n—-1 '
T={ao.oa2n+1-—(2n+1).a1.oo2,2+(2n+1)2n a2.ocg,2_1+( $21; )aaocgn-2&c.~-—a2,,+l.oco8L0} 

Which, using our customary notation, Will be of the form

2 1 2 (2 1 2 2 -—1 2(0 2n+1>~<2n+11<1 2n1+L-~w”+2 ”(2 2n~1)+&c+<—-—m)' “+ 2‘ 222,222"”+ )(n, 2+1)
As a cowllary to this propositioh (Which, as Well as the proposition itself, Will be

needed for the purposes of the ensuing deter1ninati0n),ta1;ing any function of an even

 

dF dF
degree1n 29,91, F(x, y), there Will exist a combinant t0 clan and w, by virtue of What

has been stated above, which Will be Mr. CAYLEYs well-known yquadrivariant to F,

viz. if F=a0.x2”+a1.x2"‘1+..+.a2,2.w%, this Will be '

2n(2n—1) n 292'271—1 n+1
a0a2n‘2na1“292+?“2-'a'2n—2+" -2+1—(—)- i 1. 2):”( )2

 

The proposition itself is easily proved; first,.the expression T being expressed entirely

in te1ms of quantities of the form (r, s) remains unalteied for linear substitutions

impressed uponthe formsf and (p, it remains then only to shoW that T satisfies the
differential equations to T treated as a mereinvariant, viz.~~-

* I may add here incidentally (although not wanted for our present purposes) that as a combinant111 Which

each set of coefficients enters linearly can always be formed to a system of functions 2 in number of as many

variables and of any odd degree, so reciprocally can a combinant1n Which each set of coefficients enters linearly

be alWays formed to a. system of functions each of the degree 2, of Which and of the variables contained in

them, the number18 any odd integer. -
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d d , d
(10..dali+2al '@+3a2’32;+"'+(2n+1)a2“'m T—O

—. 3t d d d
+050.g;l'+2061, .T+3062._“+ . .. +(2n+1)w2n.m

and
d

a2n+1-m+2a27% dd:-1”+ +(2n+1)a1ddo

d0
+“2n+1-2de++2“271?“:+-_- +(2n+l)“107010

From the hemihedral symmetry of T, which only changes its sign when the order of

thecoeflieients inf and go is simultaneously reversed, it is obvious that one of these

equations cannot be satisfied without the other being so too. Looking then exclu—

sively at the first ofthem we see that this is satisfied by virtue of the equations

{ a0..da—H+(2n+1)a2nB—-‘1}T=o

d ,
{2a3.3%2+2n.0&2n_1.m} F20

{(272+1)a2nda2d+10‘+0‘-o ddUFF

Hence then the differential equations to T being satisfied proves that it is an inva-
riant, and, as above observed, its form shows upon its face that it is a combinant.

Precisely in the same way it may be demonstrated, that to two functions each of

the same even degree (2m) as
2m.(2m— 1)a2

 

azalm2m+2ma .m2m1y+ $2m”23/--2+ --3/+a2m

2972—1
and w0.m2’2+2mw1.m2m“‘.y+2m.(2 2 )o:2.:c2m“‘2.3/2+...+oa2m.:2’2

there will be a quantity

 

m.(2m-—- 1)
GzaO' “Enz—Qmal' 052m-1+2 2 a2'a27n—2i&c' _2mwla2m-l+“0'a2ma

 

which, although. not a combinant, Will satisfy the differential equations necessary to
prove it to be an ordinary invariant to the two given. functions.

Art. (68.). Now let us consider the three formsf, g0 and the subsidiary form

f=aoxm+mal.wm'l.y+...+am.ym

=b.wmm+llmb .m ‘1.y+.. .m+b.ym

 

0:my —-.(m—-—I)u2g/’22.x+&c. +(— )a’” 1w301““,

Where ul, 2&2, um are to be 131eated as constants.
(2i(+1) 2i+1 ,

I Make ‘ E22“ f=m(m—-”)... -22')(de+”(73) '10

 . 1.2.. .(2z+l) 22'“

Em“’ib'mmhn—m1)..(m—-—2z)(galacfluln77d?)'2!J



VIEWED WITH RELATION TO THE METHOD OF INVARIANTS. 525

2" being any integer such that 2i+1 does not exceed 772, and now consider

132,-“.f, E2i+1.¢ as tWo functions of the degree 2i+l in E, 27 (x and 3/ being regarded

as constants) ; and by virtue of the formula in the last article, form Ti, the lineo-linear

combinant 0f E2141.f and E2i+1.gb; T,- will then be lineo-linear in respect to the

coeflicients in f and go, and 0f the degree 2(m—(2i+l)) in respect to a: and y.
Again, let

1.2...22‘ d d 22‘
Ei'0=m(m——1)...(m—2i+1)'(EEE+”@> "Q”

Emu!) treated as a function of ‘g’ and 77 0f the degree 227 Will furnish a quadrinvariant

Q- of the degree 2(m—1—2i) in respect of x and y, and quadratic in respect of the

system ul, 2&2, um. We have thus two forms, Ti and Q5, each of the same even

 

degree (2m—(2i+1)) in respect of as, y. Forming between these the lineo-linear

invariant G5, Gi Will be a function lineo-linear in respect of the Coefficients of

f and g0, and quadratic in respect of the system u], 2&2, um. Moreover, Gz- Will

(by the general principle of successive concOmitance) be an invariant in resPect t0

the system f, p, Q, and. eomhinantive in respect to f and go. Thus then Gz- for all

admissible values ofz' Will belong to the family offorms to which the Bezoutiant is
to be referred. ‘

It requires to be noticed, that When i is taken (0), so that T; and Gi are of the

degree 2(m—1), E for this case must be taken equal to $22, which evidently fulfills

the required conditions of being of the degree 2(m—l) in (m,y), and quadratic in

respect of the coefficients of Q. If, now, m be even, we may take for 2i+l suc-

cessively all the odd numbers from 1 t0 (m—l) inclusively, and there Will be

”-5 forms G5; When m is odd We may take for 2i+l successively all the odd numbers

w
2

When m is odd and 2i+1=m, Ta. Will become identical With the lineo-linear combinant

tof and go and Q with the quadrinvariant to Q ; and no power ofw 0r ywill enterinto

either, so that Gm Will‘become simply meQW I am now able to enunciate the

proposition, that G0, G1, Grm__l , When m is even, and G0, G1, Gm...” When m is odd,
2 2

from 1 to m, and the number of farms of Gi Will be . It should he observed, that

form the constituent scale of forms, of Which the Bezoutiant and all other lineo-linear

quadratic functions of m variables, Which are combinants 0f the system f, e, Will be
numerically-linear functions. I propose'to term the members of this scale Co-bezou-
tiants. '

As regards the present memoir, I shallcontent myself With exhibiting a partial

verification of this law as regards the connection of the Bezoutiant with the G scale

of Cwbezoutiants, and a complete determination of the numerical multipliers Which
express‘this connection for the cases comprised between m=2 and 77226 taken in-

elasively. It is impossible to predict for What UlteI'iOI' purposes in the development

of the Calculus of-Invariants these numbers may or may not be required, and it seems
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to me desirable that a Commencement of a table containing them should be made.

.and placed 011 record. The remaining pages of this memoir Will accordingly be:
devoted tothe ascertainment of them.

The theoryef the Bezoutoid being included Within that of the Bezoutiant, need

not hereafter call for any Special attention,- I may merely notice that the3Bezoutoid

39f the G’s

 

to a function of the"degIee (in) Will be a numerico~linea1 funCtion ofm

 

if m be odd, andm 40f the G’s if m be even.

It Will be more convenient hereafter to denote the G’s as G1, G3, G5 respectively,

in lieu of G0,‘ G1, G2, &c., and to continue at the same time to give to the T’s and

Q’s the same subscripts as the 001respondlng G’s.

Art (69.). lst. Suppose 313:2,

fzafl +2ZJ.:193/+c3/2

gazaxg +2§xy+7y2

'Qzuly—ugw.

£1er (am+by)§+(bx+cy)7z

Ex-¢=(m+fiy)i+(fiw+7wv
T1: (ax+ by) (way)— (bw+cy) (m+fly)
=(aK3-bw)w2+(a7~cw)$y+(57~06W

leflzzzuiyz—2ul.ugwy+u§.m2

and“ l G1:(afi——bo¢)u§+(a7~—cm)ulu2+(bym cmug.

Let us now form? in the usual manner the Bezoutiant to f, 90; this is the
quadratic function Which corresponds to the matrix

(1206—21203) ; (ary— 006)

(07- 003) ; (257- 06) J 3
2'. 6. $3: (aB—‘bw)u§+ (a7 — coo)u1.u2+ (by-- 0‘8)u§:: G1 01' B 22°C»

Then

2nd. Suppose m=3. ‘
f:am3+35x2y+3cmy2+dy3

¢=mx3+36m2y+37my2+5y3

Q =u1y2~ 2112 .ym+ug.m2
We have then '

E1.(f) := (am2+2bmy+cy2)i+(bw2+20xy+dy2)n

E1 (<0)=(ww2+2fiwy+o<y2)i+(fix2+27wy+5yz)v
TV:(am2+26xy+c3/2)(Bm2+2yxy+8y2)—- (511924—chJ+dyg)(wx’+2fixy+yy)

—-(a,65m)w4+2(ay—-cw)wy+(3(137-403)+(aB—WWW+2<bB—-dmw“y+(c3-——d7)3/
leflgmulyi‘~40}?7.12 .y3u+(4u§+2u,.1193/2m2~4u2.uayx°+u§.x.
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Supplying for facility of computation the reciprocals of the binomial coefficients to

the index 4, viz.——-

we obtain

G12: (afi—~ ba)u?+2(ay—- ca)u, .u3+ (2(b7-~ 0,8) +§(a5 f- doa))u§

+((by~—c{3)+%(aB-—doa))u,.u3+2(bE--dfi)u3.u3+(cB-—dry)u§.

It will here and henceforth be more useful to employ [r, s] to denote, not the

difl‘erence 0f the cross products of the (r+1)t.h and (s+l)th entire coefficients in

f and go, but the difference of the cross products of these coefficients divided each by
its appmpriate binomial coefficient. We may then write '

1 2
G,::[0, l]u§"+2[0, 2] u,.u3+([1, 21+§[0, 3])u,.u3+(2[l, 23+§[0, 3]).253

+2[1, 3]u3.u3+ [2, Bjui.

Again,

G3={(aB-doc) -- 3(57— 03) } +(u,.u3——u§) = ([0, 3] ~3[1, 2])(u1u3) -— ([0, 3] ~33 [1, 2])24‘3.

Elence V ,. , .

G,——%G3= [0, l]u?+2[0, 2]u .u3+2[1, 2]u,.u3+([0, 3] + [-1, 2])u§+2[l, 3]u3.u3+ [2, 3]u§.

But, again, the Bezoutiant off, [0 corresponds to the matrix.

3[0, 1] , « 3[0, 2]; [0, 3]
3[0, 2]; . [0, 3]+9[1, 2]; 3,[1, 3]

[0, 3]; 3[1, 3]; [3, 4].

Hence summing the Sinister bands to form the coeflicients,we have

B=3[0,l]u§+6[0,2]u1.u3+ (3[0,3]+9[1, 2])u3+6[l, 3]u3.u,+[2, 3]u§=3G ——G3.

31d. Suppose m=4, 3

fzax4+4bx3y+6cx2y23+4daz’y+ey

¢=wtv4+4fimy+67w2zy+45%+2.?
Q:u,y3—-3u3y2m+3u3yx2——u4.5193.

Then

E3.f:: (ax+by)53+3(bm+cy)52n+3(cx+dy)in2+‘(dm+ey)n’,

Tf:[(aw+by)(3m+ey) 1__3{<bm+cy>m+ay> }
3 L-— (osx+8y)(dx+ey)J (6w+7y)(cw+dy)

and 2([0131'7’3Da 2])w2+([0, 4]"2D: 3])xy+([l, 4]"3[29 3])?!

Q3 :2 (“I '9 ““2‘”) (”By“”4” "" (u2y ~u3m‘)2
= (u1 . 213—— u§)y2(u, . u4—u3u3)my+ (u3.u,-— 203M”.

MDCCCLIII. 3 z
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Hence supplying the binomial reciprocals

we have _

G3=([0, 3]-—-3[1, 2])(u,.u3—u§)+-§1,-([0, 4]-—-2[l, 3])(u,.u4~u2;u3)

. +41, 41-42, 3144-4—14)-
Agam,

T32: (am3+ 317m?+Sciyg-F dy3) (fim3+3ym2y+33x1y2+ sya)

—- (mm3+3,8199+37my2+EyS) (6x3+3cm2y+ 3dxy2+63/3) *

= [0, 13x6+3 [0, 2]m5y+ (3 [0, 3] +6[1, 2])m4y2+ ([0, 4] +8[l, 3])m3y3

+ (3 [1, 4] +6[2, 3] )x2y4+3 [2, 4]xg5+ [3, 4]y“,

and Q1: (22 . . .

:u?.y6——6u, .u, .mfy—l— (9143+ 6n, .u3)y4a:2—-v(2u, 144+ 18u, .u,)a:9y3

+(9713+ 62,42 .u,)y2m4— 6a, . u4 .yaf‘ +242 .mfi.

Hence, supplying the reciprocal binomial coefficients,

1 1 1 1
l;—g,+ig;—§5sfg;-

0
3
1
*
“

H

We find

G1: [0, l]u¥+3[0, 2]u,.u2+(-;—[O, 3]+§-[1, 2]) (9u§+6u1.u3)

+6653): 4] +—]%[1, 3])(u,.u4+9u2.u3)+(~;~[1, 4] +§[2, 3]) x (9u§+6u2.u4)

+3[2, 4]u3.u4+ [3, @142.

Now the Bezoutic square, taking account of the binomial factors inf and g0, may be

written under the form

4[0,1]; f 6[o,2];~ ’ 4[0,3]; [0,4]
’“ 4[0,'3] “5 . [0,4]

6m" 2] ;‘ “+24[1, 2]_J ’ [+16[1, 3]} 4D’ 4]

4[0, 3] ;   
”‘ 0, 4 - " 1, 4 ‘1

_+E6[l,]3]_]; [+g4[233][- 6[2’ 4]

[0, 4] ; 4[1, 4] ; 6[2, 4]; [3, 4].

Hence the Bezoutiant B becomes

4[0, 1]u‘;‘+12[0, 2]_u,.~u,+(4 [0, 3] +24 [1, 2])u§+2[0, 4]u,u,

[+(2[0, 4]+32[1, 3])u,.u,+8[1, 4]u,.u,+([l, 4]+24[2, 3])ug

+12[2, 4]u,.u,+ [3, 4]u:.
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And we ought to have B=cGl+eG3, to satisfy Which equation We must manifestly

have 024 ; to find (6), compare the coefficients of ug, this gives

4[0, 3]+24[1, 2] =??[0, 3]+7—§—[1, 2] +e(3[1, 2]-[0, 3]);

accordingly we ought to be able to satisfy the two equations

36 72 ‘_
E;-—8::4 Er4-56——24,

. . . . . 16
eaehof Whlch accordingly we find 18 satlsfied by the equality 8:3“.

Substituting in the equation for B above written, We thus obtain

B=4G] +1_5§G39

which Will be found to be identically true.

Art (70.). We may now see. our way to a more concise mode of obtaining the
numerical coefficients [by which they may in fact be computed and verified With

comparatively little labour] , connecting the Bezoutiant With the co-bezoutiant forms of

the constituent scale. It will not fail to have been remarked, that throughout the pre—'

ceding determinations I have presumed the truth of the formulae Which admits of an

immediate verification, that for all values of m and an we have the identical equation

m—ld . d 'w 1 I m—2 m-—l m(Egg‘hfigg) -{coxm+mclxm”y+m. 2 02a: y2+...+mcm_1ym +cm.m }

 

=(m'm_11).'2':.(.7:_w+ 1){LO.E“’+wL1 .Em" .77+w.-03:2:-1~L2.E""2 .772—i- .. .+Lw.77‘°}, 

Where

m— —-1 W
L0=00.xm‘“’+(m—w)cl.xm7‘“"‘1.y+(m—w)m-g--c2.wm‘“’“2.y2.. . +cm_m .y’”

m—w—l
L1=cl.mm"“’+(m—w)c2.wm"“’"‘.y+(m—w) 2 02.xm““‘2.y2+...+Cm__w+1.ym

 

' . m—w—l ’ mi
Lw=cw.xm"“’+(m—w)cw+lmm““’“.y+(m—w) 2 c2.wm"“"2.y2...+cm.y

 

 
Let us now proceed to determine by an abridged method the linear relations corre-

sponding to the cases 0fm=5, m=6, and first for 712:5.

Let

f2am5+ 5 bm‘fy+ 1 00512092+ l 6dx2y3+5erg“+ 123/5

90= ax5+ 518m?+ 10yx3y2+ 103x2y3+ 5mg“+ 273/5

0:251.y4—4u2.y3m+6u3.y2m2—4u4.yx3+u5 .y“.

In forming G5, G3, G1, let us confine our attention to the terms u?; aims; urur

3 z 2
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.7 A comparison of the coefficients of these With those in the Bezoutiant (B) Will he

suflicient for assigning the three numerical quantities Which connect B with G1, G3, G5.

I omit 111.11,, because G, is the only one of the G’s for any value of (m) which con-

tains u? 01' 211.112, and in G, the terms containing 11? and 111.112 are

[0, l]u?+(m— 1) [0, 2] .u1.u2,

and the corresponding part of the Bezoutiant is

m[0, l]u?+m.(m—l)[0, 2]ul.u,;

’so that if we Write '

B='C1- G1+C3-G3+C5- Gs‘i" 850-:

the tWo terms a? and 211.11, will only enable us to form one equation With the 0’s, viz.

c::.m Again, instead of considering the enti1e coefficients of 111.213 and 111. 214, it Will

be sufficient to take a single argument of either of these coefficients (in the founs to

be compa1ed), as fo1 instance [0, 3] and [1,3]. Then 0, being known, (:3, c5 Will be

determined; but for the purposes of verification I shall further'mme compute the
Whole of the coefficient of 211.11,.

Accordineg [calculating the G system in reverse order] we have

G5: { [0, 5] +5[1, 4] +10[2, 3] } {al.u5—4u2.u,+ .3213}

.__.{[o, 5]— 5[1, 4]+10[2, 3]}111. 115+”

E-f=(0832+2bxy+cy2)%3+3(b'v2+2wy+dyg)égn+3(cwz+2dwy+ey21512+(dx2+2exy+fg2),,.;
E34): 810. &c.;

T3= {(aw2+251g +cy2) (5332+ 2éwy+1y2)— (0512+?flwyflf) (dw?+ 294‘? +1192) }

-- {3(bw2+2cwy+dyg)(7w2+25wy+23/2)-(5832+2va+592)(012+2dwy+eyi)}

=[0, 3]x4+(2[0, 4]+.. .)x3y+{[0, 5]+[1, 4]— 8[2, 3]}xgyg+&c.

[The number — 8 1esults from the calculation1—3(4— 1):: —8.]

Again,

E20 :: (uly2-‘2u2ym-l—u3 .x2)E2—2(u2.y2—2u3 .yx+u4x2)527+ (u3y2—2u4.ym+u5x2)n2,

Q3: (11, .y2— 2u2yx+ 113332) (u3y2—2u4yx+ 11,5122) — (11232—4 2113 .ym+u, .x2)2

=u1. u,.y4'—2u,.u4.y3m+ul. 2153/2119+ 8w, ‘ ’

all the terms and parts of terms unexpressed being free of 11,, and therefore not

necessary for our p111'.pose Hence supplying the reciprocal factors

1 1
1;-1;g;---2_

we have

G3: [0, 3]u,.u,+([o, 4]+)u,.u4+~é1;-{[0, 5]+[1, 41+ [2, 3]}u,.u5+&c.

Again, expressing Elf and E149 in the usUal way, We obtain
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T,= (am4+4bx3y+ 605132312+ 4dxy3+ey4) ((3,204 +49/33?+63m2y2+ 4232f+ny‘)

—(wx4+448m3y+67m2y2+43wy3+2y4)(bw4+4cx3y+6dm2y2+4exy3-l—hy4)

= [0, 1’]m8+4[0, 2]a37y+(6[0, 3]+):cfiy2+(4 [0, 4]+)m5y3+([0, 5]

+15[1, 4]+20[2, 3])w4y4+ 8w.

(Where it may be observed that the numbers 15 and 20 in the coefficient of 5044/“

arise from the quantities 42—1 ; 62—42).

Again, Q1=Q2=u§.m8+8u,.u2m7y+12u,.u3m6y2—8u,.u4x5y3+2u,.u,.m4y4+ &c.

Hence supplying the multipliers '

—-1 1
1; ”g“; 5&2); ~53“; +75;&C.

we have '
18 , 4

G1: [0, l]u?+4[0, 2]u1.u2+7[0,3]u,.u3+7[0, 4]u,.u,

+§1-5-([0,5]+15[1, 4]+20[2,31)u,.u,.

Again, the Bezoutiant ,

B=5[o,1]u3+2.10[0, 2]u,.u,+2.10L0, 3]u1.u3+2.5[0, 4]u,.u4+2.[0, 5]u,.vu,+ 8w.

Accordingly, if we write B=c,.G,+c,.G,+c5.G5, We have, as above remarked, 01:5 ;

and to determine cs, 0,, We have, by comparing the coefficients of u,.u,, u,.-u, in

B, (3,, G3, G5,

20:2,7(-)+c3

210=—,;-)+c3.

These two equations, then, as it turns‘out, are not independent, but are satisfied
simultaneously by

50
C3“— 7 0

Finally, equating thecoefficients of the several arguments in u,.u5, we have

1 5 1 ’
0:5 x§3+79><~é+c5 from the argument [0, 5]

15 5O 1 ' ‘ '
0::5 X§5+7Xg+505 from the argument [1, 4]

20 5 8
07:5 )<—3—5+~,;-))<—é+1005 from the argument [2, ‘3].

The lst of Which equations gives

1 25 14 2
05=2~7-'2‘1=§1‘=§;

the 2nd gives '
3 5 2

€5=7+§i=§9
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and the 3rd gives

. 05=§I+7=§
We have thu‘s'abundantly verified the accuracy of the calculation, and there results
the relation .

. B=5Gl+—5-79G3+§G5.
Lastly, let 772:6,

f:cm?“+6bm5y+ 15cm4y2+20dx3y3+ l 5ea72y4+6hxy5+ [3/5

go:am6+ 6Bac8y+ 15ym4y2+ 205m3y3+ 152m2y4+6mg+Ay5

Q=u1.y5—5u2.y4m+10u3.y3w2—10u4y2m3+50yx4—u5.x6.

I shall here confine myself to the determination of a, single argument in each of

the terms u? ; ul.u2; ul.u3; ul-.u4; u1.u5; 101.216; this will be ample for the purpose of

verification, as the equation to be assigned is of the form

B=cs.Gl+c3.G3+c5.G5.

The arguments Which I select as the most simple, Will be those expressed by the

symbols (0, 1); (0, 2); (053); (O, 4); (O, 5); (0,) 6) respectively, then We have

> T5: (ax+by) (27m+?\y) :F&0.— (hw+ly) (wm+,8y)

=([0, 5] + ...)a:2+([0, 6]+ ...)my+(...)y2
Q5: (ul .y —— ugac) (my ——- ufix) ?&c.

=(u1.u5+...)y2—(ul.u5+...)yac+(...)a72.

Hence supplying the binomial reciprocals

1
1; —"2'; 1,

G5==([0, 5] + ...)ul.u5+;12—([o, 6] + ...)u1.u5+ 8w.
Again, - ‘

T3: (aar3+ . . .) (8x3+32x2y+3nxy2+7\y3) ?&c. -- (dm3+3em2y+3/zxy2+ (ya) (ax3+ .. .)

= ([0, 3] + . ..);v6+(3 [0, 4] + )m5y+ (3[0, 5] + . ..)m4y2+([0,. 6] + . . .)a:3y3+ &0.

Q3: (ul .ya$&c.) (u3y3i3u4y2+3u57m2¥ u6m3) -—- 8:0.

=(ul.u3+ ...)3/6—- (3u1.u4+ ...)y5a:+(3u1.u5+ ...)y4a:2—— (u1.u6+ ...)y3m3+&c.,

and the reciprocal binomial multipliers will be

:i +1. -1

1; 6’ "1'5“; Eassm
Hence

G3==[O, 3]u1.u3+%[0, 4]u1.u4+—§[0, 5]u1.u5+-2-16[O, 6]u1.u5 &c. &c.
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Finally,

T1: (cur:5+ 8:0.) (fix5+57x4y+ 105x3y2+ 105x2y3+5nxy4+7g5) —- &c.

_—_-.([0, 1:] + ...)a21°+5([0, 2:] + ...):v9y+(10[0, 3] + ...)m3y2+(10[0, 4] + .l.)w7y3

+ (5[0, 51+ ...)a?6y4+([0, 6] +...)x595+ &c.

Q1=Q2=uiy1°+(10ul .u2+ . ..)y9.x+ (2Ou1.u3+ ...)y“af2+ (2021,, .u4+)y7a:3

+ (10u1.u5+ ...)y6m4+(2u1.u6+ .v..)y5a:5+ &c.;

and supplying the numerical series

1 »1 --l 1 4—1

1; "‘16;zi’5‘; 12753 216; 555; &c.,

we have .

G1=[0, l]u“f+5[0, 2]u1u2+%9[0, 3ju1u3+§[0, 4] urn“

5 1
+§i[0’ 5]u1.u5+-1—~2~é[0, 6]u1.u6+ &c.

Again, the Bezoutiant

=6[0, lju¥+30[0, 2]u1.u2+40[0, 3]u1.u3+30[0, 4]u1;u4

+12[0, 5]u1.u5+2[0, 6:]u1.u6+ &c. &c.=B.

Hence making
B=c,.G2+c3.G3+cs.G5,

from u“: and u1.u'2 we obtain respectively

01:6

561:30;

hence from u,.u3 and u1.u4 we obtain respectively

- 240
7+ 63:40

30 3 0r 03=§;
“§- +§c3=30

hence from 211.215 and u1.u6.we obtain respectively

5 4O 3 . '
6X§i+§~r5~+cs=l2, 2.6. 05:12—8—~—~—-

1 . 4o 1 1 . 1
————-—- ._.._. ...__ ._ nn-I-I ..__ ~n0_—.__ =‘-

6X126+ 31°20+265—2’z'6+205—“ ' 21 7.:O
J

hence
. __18
05""27:

and the equation sought for is

' B=6G1+§§G3+1§G5.

Art. (71.). The following table exhibits the relations between the Bezoutiant and
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[the correspondent system of Co~bezoutiants for all values of m between 1 and 6

under a synoptical form. _
m==1 B=G1

m==2 B=2Gl

712:3 B=3G1—4G3

m=4 B=4o1+3§e3

712:5 B=5Gl+§§gG3+§G5

772226 B=6G1+%9G3+}7§G5.

These series could if wanted be easily extended, and the calculation of the coefiieiente
reduced to a mere mechanical procedure.

If we suppose m to be 22' or 2i—-— 1, we have the equation

BZCI-G1+03'G3+"-+02i~1 G25~15

and it appears from the foregoing instances that the comparison of the coefficients,
either of 24?, or of uruz on. the two sides of the equation, Will serve to give 01 and 01

(Which is always m being known), 03 may he found by a comparison of the coefli~
eients either of 251.153, 01' of 251.2% and so on for 05...c2.,;____1; all the coefficients in the
equation for B above given, thus admitting of being found separately and successively
and in two modes, so that there is a check at each step upon the correctness of the
computations: the only exception to this last remark is (when m is odd) for the last

coefficient of Which the abovecondensed method affords only a single determination.
I need hardly add the remark, that in substituting mm”, mm"2.y; ...w.ym"2...ym"1 in
place of ul, 2/52, ...um_1, um reSpectively, all the G’s become (to a numerical factor
pres) identical with one another and With the Jacobian to the system (fe).

Art. (72.). The foregoing theory took its origin (as Will have been readily imagined)

in meditations growing out of the celebrated theorem of M. STURM. There appear

to be several directions in which a development or extension of the subject matter of
that theorem may be sought for. Thus a theory may be constructed relative to a.
single function of one or more variables, viewed in all cases as representing a geome-

trical locus. - In the: limiting case, when this locus becomes; a system of points in a
right line,we have the theorem of STURM; generally the theory Will be that of con—
tours. Or, again, a. theory may be formed in Which the number of functions is
always kept equal to that of the variables. We have then a theory of discreet points

correSponding to roots, the number of real ones ofWhich comprised Within given limits
it is the object of such theory to determine. M. HERMITE, in a memoir recently pre-

sented to the French Institute, appears to have made a valuable addition to the
Sturmian theory extended in this direction, to Which the beautiful researches of
M. CAUCHY and the joint labours of MM. LIOUVILLE and STURM, With reference to



VIEWED WITH RELATION TO THE METHOD OF INVARIANTS. 535

the disposition of the imaginary roots of equations appear to have led the way.
Finally, the number of variables may be supposed to be arbitrarily increased, but

made always inferior by axunit to the number of the functions in which they are

contained, or which comes to the same thing, we may construct the theory of a
system of homogeneous functions equal in number to the variables in them, which

in its simplest case becOmes the theory of Intercalations which has been here par-
tially considered, and which (as has been shown) embraces (not as a particular case,

but as an implied consequence and easily extricated result) the theorem of M. STURM.

London, June 25, 1853.

General and Concluding Supplement.

Art. (8.). The expressions given in'art. (72.) for the partial quotients of the con-

tinued fraction represented by%, are restricted to the supposition of all these partial

quotients (except the first.) being linear in m; when the first partial quotient is linear
the formula (B.) of that article continues applicable on replacing (Dz- h9)by l. I was

forciblystruck by the peculiarity of these formulae not ceasing to be true in conse~

quence of the first partial quotient being supposed non-linear; and reflecting upon
this, I was soon led to perceive that all the partial quotients might be supposed to be

arbitrary integral functions of m, and the formulm Would still continue to apply to
any snch of them as might happen to be linear, although, as it were, imbedded among

a group of other non-linear partial quotients. From this it was but an easy step to
perceive that the formulae A and B must admit of extension to the representation of

partial quotients of any form, and that the dimorphism of the representation of the

linear partial quotients could only be a consequence of the equation in integers u+v:l

' having two solutions u:0, 12:] and uzl, 12:0. I now proceed to enunciate the very
remarkable general theorem (or as it may perhaps not inappropriately be termed

Algebraical Porism), by virtue of which any partial quotient of a given degree in x

belonging to an infinite continued fraction, all of whose partial quotients are algex

braical functions of 3“, may be expressed to a constant factor prés, by means of the

numerator and denominator (or if we please either one of these) of the convergent

immediately antecedent to and of the numerator and denominator of any convergent
not antecedent to the partial quotient which is to be determined.

Art. (3.). Theorem. Let Q1, Q2, ...Qi Qi+1....Qn, &c., each of an arbitrary degree in

m, be the 72 first partial quotients of an algebraical continued fraction; let Qm be,

the partial quotient to be determined and of the given degree wi; let
1 1 1 1 @(w
 

1 1 1 , 1 1 (17(58)
and Q1__ Q2.— Q3.— (35— Qi+1""a:.: F(w) ;

let u and v be any couple of integers of the wi+1+l couples which satisfy the equation

u+v=wi+1; then, as usual, denoting the product of the differences of each of one set

MDCCCLIII. ' 4 A ‘
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of terms from each of another set, by Writing the former under the latter, and calling

:7“ 772...27M the (z, roots of (Dav), and kl hg....hm them roots of F(m), (CD and F being sup-

posed respectively of {A and mdimensions in ac), and forming the disjunctive equations

91, (92, 63 ..., 6M: 1', 2, 3, ..... {1;

t1, t2, t3 ..., tafizl, 2, 3, ..... m,

we have the following equation,

Q5“: K25, v X 2{(@’Iel-¢’792- ' - $71992 X (fizz:1 zflltg- -- fhtuy

 

’76! 7792 ..... 279,, I2.“ 12:2 ..... ht;
X L_ht’w+l litu+q ..... ht“; X 779V+1 779v+2. .37. .779“ (( . )( ' ) (. ))( h )( h )

_ t: 30*” tv--77 13—- JU-- 33- .
”61 7792 ..... 779v hi1 ht.) ooooo ht.“ 91 92 ’79” ( t1 t2

X h h h
779v+1 7J9v+2"°°°‘779a tu+1 ”lu+2””' tm; 

and moreover the different values of KM depending upon the different modes of

breaking up wi into two parts u and v are all (to a numerical factor pres) equal to one

another. Thus then the theorem pointed at in art. (p.) is discovered, and the way

laid open (by an unexpectedchannel) for a complete discussion of the theory of the

singular cases which may occur in the expansion of any rational algebraical fraction

under the form of a continued fraction.

Art. (3.). In the above expression, if we suppose 505:], we have 25:], and y=0, 01'

u=:0 and 12:21, and remembering that

h n
[m 772”Hm].._<1)h and [hi kg....hm]_Fh

1 : F’h, d 1 . :- (P’h,
[htg hta a I 0 him] an 7762 7793 o o a Ina”.

QM becomes by virtue of the general formula representable under either of the equi~
valent forms F

K0, 1 EfiW-WGYEZ‘g‘E“ ’79)} and K1, 0 3i{(f7lt)2%%(w~ ht)}a

K0,, and KM, being either equal, or differingonly in the sign agreeably t0 the formulae
A and B. . e '

Art. (1.). It may be worth while to notice, that, although (of course) these formulw

and the general formulae of (art. 3,), when supposed converted into functions of a: and

0f the coefficients of F and of (I) by the reduction, integration and summation of the

symmetrical functions of the roots Which enter into them remain universally valid,

and subject to no cases of exception, yet antecedently to these processes being per-

formed the formulae as they stand may become illusory when any relations of equality

exist between the roots of <1) inter se, or between the roots of Pinter 33. Thus in the

case before us,.if (I) have equal roots the formulae commencing with K0,} is illusory,

and if F have equal roots the other of the two formulae becomes illusory.
: «Let us take the second of these and suppose that F(m) has

. k, roots cl, k2 roots c2, ...«.kp reots cp,

...(:c--/lm))}a
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we may pass to the actual case from any case where the roots are infinitesimally

near to the actual roots of F(k); and all infinitesimally different from one another.
Moreover the choice of the infinitesimal variations being arbitrary, let the In roots

01 be replaced by a group of roots
014—3; 01+3g1; 014—553 ....Cl+Bg"1"'1,

where g1 is a prime root of the‘equation g’flzzO, and 8IS an infinitesimal qtiantity,and

suppose each of the other groups to be varied in an analogous manner. Then. it
may easily be shown from this that the one of the formulae in question will become

d k—1 ,KEN) «fctreDctxx—cm
d k i

(575;) Fat

and similarly, the twin formula becomes
d ~—-11 (3;) «warmygxxm»

K222?" t ea

(0370”)(1)79

Corresponding modifications will admit of being made by aid of a like method in

the general formulae of art’. (3.) upon a similar supposition as to equalities springing

up between the roots of fa: per se and of p(m) per se, or between the roots offa: and

90:1: inter 88.

Art. (n). If1n (alt. :1.) we take 520, the formula for Qi+l will become

[7701 7792 ...779v]x [ha 1% ‘1

. h‘uH htu+2mhtu w ”0V+]’79V+2.u’70”“h1i.((x—n9)u-(x"‘779))((x-—-ht)-u($“—ht l),
"’ [2791 7792 ...ngv]x[htl 1% "lat“? ‘ ’ 1 “

Ln9u+1779u+2 ' "77% htu+1htu+2 "'12th

u, and 22 being any two integers whose sum is ml, which is identical (as it ought to be)

with the expression virtually contained in the formulae of Section II. for the syzygetic

multiplier of CD(as) in the syzygetie equation connecting F33 and (Da? with their first

residue when (Dar is supposed to be wl dimensions in a: lower than Fm identical,

 

 

Q1:K

 

. . . . . . . F ml
videlzcet, 1n other words, Wlth the 1nteger part of the algebralcal fraction 5%.

* For in general if p is a prime root of the equation pw=1, and if fa: have w roots all equal to c and \l/rc is

any other function of x and if 3is an infinitesimal quantity, then rejecting all powers of (3‘ higher than the

(w—1)th degree, . .

¢(0+3)+¢(c+93)
f’(0+5) f’(0+P3)1 ,

—W‘{¢(c+®+p¢(c+r’5)+PQ¢(C+PQ‘D+
Hw—lflcflwdwi

*(ilwfi¢cw5w-—1 (g; “"Kpc.
:IH

(25)foam 1 (dclfc

+¢<¢+P95)+m IL(0+P“"'15)
f’(0+P93) f’(0+P‘°"3)
 

4A2
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Art. (1.). When (I)(:c)=-_F’(x),

¢<hl>®<h2>um<ht+l> . . . _D. .
[h] 122 h 1 becomes Identleal With (—-)‘2‘ 1+1 2+14(h1h2...hwi+l),

wi+1

h h2+wi+2...hm

and‘we may consequently (using an extreme term in the forms inthe polymorphic

scale of forms representing QM), write

Qi+l:(—)§(wi+l“1)‘”i+1KMHIEZMIh2...hwi+l)(fi h1)2(fi [12)2. .. (f; hwi+l)2(m—hl)(m—h2)...(x—hwi+l).

Art. (7.). The following observations'will serve to complete the theory of the

singular cases in the expansion of an algeb‘raieal continued fraction.

Preserving the notation of art. (3.), let

a’izm—(wl+w2+ ....+w-_,+l),

Then (calling the roots of Far, l2] 112...}Lm) the (i)th simplified residue to 1%, in accord-

 

1+wi+1

ance with the general formulae for the residues in the second section (for greater

simplicity selecting an extreme term of the polymorphic scale), Will be represented by

(phi (13/22 (panama)

th+ai h2+¢i h3+¢¢‘ ' 'hm

 (x— hl)(m—h2)(m——h3) .:. .(m—hq),

Which Will be of the form Lim’i‘“i+1+ &c., all the terms containing powers ofa: superior
to a,. vanishing by the coefficients becoming zero. If in the above expression we

should use 0;. in lieu of 03-, Where 0;. is 0'2. diminished by any integer inferior to 0J5, we should

get other forms of the same residue, butgthese Will all be of higher dimensions in the
roots or coefficients than the one just given, and in fact the forms thus obtained

corresponding to the values 0i, ari—l, 03—2, ....o*’i-wz-+l substituted for 0'2. in succes-

sion, would by aid of the relations 'of condition between the coefficients of Chi and
Fa: implied in the value of mi admit of being eXhibited as a scale in Which each form

Would be an exact algebraical product of the form Which precedes it, multiplied by a
function of the coefiicients,and did space permit thereof it would be perfectly easy to

give the forms of these multiplicators. ~ But I pass on to the representation of what
is more material, Viz. the form of the complete residue in the case supposed, merely

Observing (as an obiter dictum) that the existence of each singular partial quotient

(meaning thereby a quotient non-linear in :8) only affects the form of the single

simplified residue in immediate connexion with itself, and not at all the form of the
other residues antecedent or subsequent to that one.

Art. (FL). Let the ith simplified residue be called R; and the corresponding eom~

plete residue [RJg then applyinga method similar to the method given in Section 1.,
We shall find that

Lg’j;1+1.L;f’j;4+l.&c.
I (m)? [R1] =Lyi§1+l ~Lfi§3+l .&C. R5,
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L. representing the leading coefficient in the (ith) simplified residue, and the sign of

interrogation (P) denoting some function of w] w2...w,- (possibly a constant) remaining
to be determined. And reverting to art. (3.), the quantity that would be called K0,“.

according to the notation employed in the formulae expressing Qm in that article, Will

(abstraction being made of the algebraical sign and using for greater brevity (1),
(1—1), &c. to express 1+wi, 1—1-4054, 8:0.) come to be represented by

‘ L353“) .Ljff'a‘” . L38?) &0.

Lg” Lgfg2).L§E;4l&c.’
 

a similar conventiun being supposed to be made respecting the numerator and denoe
minator of each convergent as was made respecting them in the particular case

treated of in art. (f), page 473.

Art. (10.). I will merely add a very few words in generalization of the method of

limiting the roots offiv given in the Supplement to the fourth Section. As an inferior
limit tofx is identical With a superior limit to f(—-a2), we may confine our attention
to superior limits alone. Suppose then that

ff 1 1 1 1 1 l 1 1 1
M

f¢‘=m——Ql— Q'2_ .HQi" QII" Q;_oooQ::oo>oon(Q)]-— (Q)g—....(Qr)i’
 

where the partial quotients Q are each of any arbitrary degree in an, and have all one
algebraical sign in the coefficients of the highest powers of w from Ql to Q5, and all
the same sign (contrary to the former), in the coefficients of the highest powers ofx

from Q; to 62;, and so on alternately, then 1°, a superior limit to the superior limits of

the cumulants [Q1Q2...Qi], [Q'U Q'2...Q,~,], ...[(Q)1(Q)2...(Q)(i)] will be a superior

limit to fir, so that it remains only to give a rule for finding a superior limit to a
cumulant [QU Q2, Q3...Qi], which, 2°, is to be found by making f

(21— lVIl=O, Q2— M220, Q3—-M3=O.. .Qi—Mi20,

1, . 1 1 L
whete Ml—lwl M2_lw2+l;l' M3_{‘b3+‘;¢;'°'Mi—I1.i_l’

pol, a2, . ..poz.._1 being any quantities entirely independent and arbitrary exceptin regard

to their being all of the same sign as the leading coefficient in the element Q1, Q2...Q;.
We may then find L1, L2, ...Lz- any superior limits to the roots 0f m in these 2'

equations respectively; L, the greatest 0fthese, will be a superior limit to the proposed

cumulant [Q1Q2...Qi]; and it may be observed that Ml M2...Mi are the general values

which satisfy the equation

1 1M1———-——--—-

 

'1
Mg“ N13— o--'M::Qn.

subject to the condition that for all values of e

1 1 1 1
M5— Me; Me:2'"M,
 

shall have a given invariable sign. The first part of the process, as just shown, con-

sists in separating the type of the total cumulant which represents fit into partial
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types,’ the point for each fracture Of the total type being matked by a change of sign

in the elements of the type for the value x=+oo ; it is easily seen therefme f1om this,

that ifq)7? is the generatIix 0f the cumulant1n question the number of such f1actures

(i. e. the number one less than the number of partial eumulants) Will be the number

of changes of algebraical sign in the signaletic series, consisting of the leading coeffi—

cients in Fa: and in each of the odd-placed completeresidues respectively, together

With the number of changes of sign in the signaletic series, consisting of the leading

coefficients in (DJ: and in each of the even-placed complete residues respectively.

The sy'zygetic theory of two algebraical functions, and the allied theory of alge—
braical continued fractions With their principal applications, may, I think, now be said

to be completely made out, as well for the singular cases as for the general hypo-

thesis.

A1t.(’..) I Will conclude With observing that the the01y within developed gives the

means of t1ansf01m1ng (explicitly and Without the aid of symmetrical functions) into

' an algebraical continued fraction, any giVen sum of algebraical fractions of the form

01
.‘L’w-itl

0n

+w—“+33215475179
 

where each 0 and h are supposed known. For let the above sum be calledq)F(x33, then

if 129, cg, be used to denote any pair of corresponding terms of the h series and the c

series, we have 12%== cg, as is well known and easily proved. Again, if Dim represent

the simplified denominator of the ith convergent to the continued fraction equal to

($723 Which is to be found, say

1 1 1 1 a

, (A1x+B1)-—- (Agx+Bg)— ""Anzv+Bn’

(Dill (1)122...(Dhi

Ill be .../1,-

hi+l hi+2 "'hn

 

 we have Dix=2 (x—Izl)(m—h2) .(w— h”),

  

(_i_-l)

=2(_)—2 w91/113333]:?Ziumhi(m_hl)(x_h2)”'(w_h‘)

=—_(-)z‘i'i‘izmcw..c,.:(hlh2...hi)(m—129919—112)...(m.—h,.)}.
Therefore (Dih1)2= {2(0203. ..c,-H)?;(h2h3.uhm)(lL1—}12)(lz1 - h3) ...(h1-— hm) }2

={2(c2c2...ci+l)Z%(hlh2...hi+l)§%(h2lz3. .sz) };
and the simplified (i+1)th quotient, 2'. e. the value of Amx—l-Bm, When divested of

the allotrious factor, has been proved to be equal to

 

(13/2
E(Dihl)2ml;(w— Ill) ;
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it is? therefore now known asa rational and integral function of m; h1h2...hn; 0102...c,,.

The allotrious factor itself is made‘up of the product of squares of quantities all of”

the same formas the leading coefficient in Dim,_which, from what has been shown

above, is seen to be equal to

(—)7E{(0102...Ci)§(h1h2...hi)}.

Hence each term in the continued fraction

1 1 1

(Alx + B1) " (Aew + B2):' . ' (Aux + En),

which is to be made equal to

 

c c 0,,

(53:51) + ($3h2)+ . ' (517—7172),

 

is completely assigned in terms of a2 and the given quantities c and h.

Art. (3.). The number of effective intercalations between the roots of (Day, Fm is easily

seen to be equal to the excess of the number of positive real numerators over the

number of negatlve real numerators 1n the partlal fractions of. Wthh FE IS the sum,

and hence we see a priori, as an obvious consequence of a simple extension of the
reasoning in art. (47.), that the inertia of the quadratic function

?{cg(ul+h0u2+h§u3+ . +/L”f‘.un)2mihe},

 

(13/2 . _ . . ' .
Where cgzirh: W111 represent the value .of the Index 1n question. So too we may

see that the formulae given for the residues to fx,f’m in art. (46.) continue to apply

to the residues Fm, (bx. That is to say, these residues when divided out by Fa: will be

respectively represented by the successive principal coaxal determinants t0 the matrix

SOS1 $2 ...Sm_l

SIS2 83 ...Sm

828383 c o . Sm+ 1

. Sm—lsm Sm+1"'S2m-—2)

. . __ c1 7, c9 1, on 9_ .
where in general Sr_$_filhl+x_hzh2+...+x-——-__/lnhn ,

  

and using the same matrix as above written with S’ substituted for S,’ where in general

S;=cl(m—h)§+c2(m—h2)h’;+ +cn(x—-hm)h; ;,

the successive principal coaxal determinants of the new matrix represent the succes-

. . . . . . (Dar
swe denominators to the convergents 0f the continued fraction whlch expresses FE

The expression for the numerators t0 the convergents may also, there is no doubt,
be obtained. by some Simple modification (dependent on introducing the quantities
clc'2...cn) of the formula in art. (41.), p. 465.

I annex, more with the hope of suggesting than (in all instances) of conVeying a



542' MR. SYLVES'I‘ER ON' PARTIAL AND CONTINUED FRACTIONS.

full conception of the force of the definitions, a Glossary, 01' rather a Repertory of.

the principal terms of art employed in the preceding pages, which might otherwise

be apt to occasion some difficulty to persons unfamiliar with the subject.

 

ERRATA AND ADDENDA.

Page 408, 410, 412, 414, in running head to page, for Conjugate read Syzygetic.

408, line 16 from foot, for above read about. '

~----- 409, line 4 from top, for continual read continued.

 

----- 429, line 12 from foot, for the same 7' new, read the same number r of new.

--—-430, line 3 fromfoot, qfter simplicity insert a comma.

  

__ read
n~l n—l

-— 432, line 3 under (15.), a_zfter fraction dale ---

......... 434, at end of the equation nearest the foot, for (x ’79..) read x—yq‘,

......... 436, in equation (21.),f0r (w—yfn) read (muggy).

--——— 436, line 2 under (21.), for km read kn. '

-—--- 438, line 10 from foot,for (A0) (A1) (An_1) read A0 A, An_1.

-------~- 439, line 3 from t0p, after the words “ solution of ” insert “ the equation.”

--- 439, line 10 from top,for and therefore read then.

—.———— 444‘, line 2 frotn top, for or read i. e.

~——-—. 448, Art. 28, line 3, for s—xm read exm.

-—--- 452, line 1,f0r but' read for.‘

-—--——- 454, lines 5 and 14, for fm read fn.

458, line 4 in Art. 37,for fx read f’x.

-—-—- 459, line 7' in Art. 38,for —3 read +3.

---—-- 464, line 15 from foot,for klzkgu—k5 read kl=kg=k5.

~-------- 467, line 6 from foot, for Latin and Greek read Latin, Greek and Hebrew.

~-------- ‘479, Art. p, line 2,for 2;” and 2;, read 271" and 2;.

——-—-—~ 479, last 1ine,for subscrolet read subscript.

-— 481, in the value of 3/, near foot of page,f01‘ the sign “'7 read +

M M
---—482, 'ddl fth , _._...m1 e o e page for dxg read dx§

-—-- 432, line 2 above (15.),f0r

 

---------~ 485, line 10, for p read x.

._.._...._. 497, Art. ,8,for Now read Also.

—---—-- 504, line 12, dale ’wl.

--— 514, Art. (61.), lines 7 and '8, for am.xm and bm xm read am.ym, b,,, y”.

—--‘-- 515,11ne 4,for utl, 11’2...um read u'l, u'2...u’

  

m'.

-—-—-——~ 518, near middle of a e, or 1 d 1 .P g f 1.2.3...(m——1)g m (1.2.3...(m———1))g
--— 524, near middle of page, for 050. iread mowi-

da1 doc,
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Glossary 9/“ new or unusual Terms, 0r of Terms used in a new or unusual sense in the

preceding Memoir.

Allotrious.——The allotrious factor to a residue or quotient in the process of common measure ap-

plied to two algebraical functions is the constant factor of Which such residue or quotient must be

divested in order to become an integral and irreducible function.

Apocopated.——Applied to a type in the Theory of Cumulants, denotes a type the final or initial

element of Which has been taken away. If both are taken away, the type is said to be doubly
apocopated.

Bezoutic.——For definition of Primary and Secondary Bezoutics see first Section. Bezoutiant to

two functions, each of degree n, is a homogeneous quadratic invariantive function of 72 variables,

the form of Which serves to assign the index of the scale of the effective intercalations of the real

roots of the two given functions. i

Bezoutoid.—~The Bezoutiant to two homogeneous functions obtained by differentiation from one

homogeneous function of two variables. The Bezoutoid to a given function of m dimensions in the

variables is accordingly a quadratic function of (972—1) variables, the form of Which is sufficient for

determining the number of real roots in the given function.

Characteristic.—The employment of this word has been avoided in the preCeding memoir; but as it

contains an idea of capital importance in analysis, and especially in all inquiries of the kind here

treated of, I subjoin the definition of its meaning. The characteristic of a simple condition of any

kind is the rational integral function (in its lowest terms) whose evanescence necessarily and uni-

versally implies and is implied by the satisfaction of such condition. A simple condition has always

a single characteristic, abstraction being made of the algebraical sign, Which remains indeterminate.

In like manner, a multiple condition, or a system of conditions, Will have for its characteristic a

plexus of rational integral functions, Whose evanescence necessarily and universally implies and is

implied by the satisfaction of such multiple condition or system of conditions. The number Of

functions in the characteristic plexus Will however in general greatly exceed the index of the

multiplicity of the conditions, and need not always be a unique system. There are however excep-

tions to this: thus the duplex condition, that a biquadratic function of 56 shall contain a cubic factor,

or that a curve of the third degree shall have a cusp, Will each be definitely characterized by a

plexus of two functions, and no more. ‘

The spirit of the higher analysis resides, and is to be sought for, in the logic of characteristics.

Co-bezoutéant.—-Any homogeneous quadratic function similar in form and in its property of

invariance t0 the Bezoutiant.

Cogredz'ent and Contragredz'ent.—A system of variables is cogredient to another system whenit is

subject to undergo simultaneously therewith linear substitutions of a like kind, and contragredient

when it is subject to undergo linear substitutions simultaneously therewith but of a contrary kind.

Combinant.——A function of the quantities appearing in a given set of functions Which remains

unaltered as well for linear substitutions impressed upon the variables as for linear combinations of

the functions themselves. .

Concomitant.——Nomen generalissz'mum for a form invariantively connected with a given form or

system of forms.

Conjunctive.——-A syzygetic function of a given set of functions. Any function which universally,

MDCCCLIII. 4 B
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and subject to no cases of exception, vanishes when a certain number of other functions all vanish
together must be a conjunctive (z. e. a syzygetic function), or a root of a conjunctive of such functions.

But if its vanishing is subject to cases of exception, then all that can be predicated of it is that it is

Syzy‘getically related to such functions, but it may, and usually does happen, that it Will be syzy—

‘getically relatedito them in more than one way. I

Uontmvariant.——A function which stands in the same relation to the primitive function from which

‘it is derived as any of its linear transforms to an inversely derived transform of its primitive.

Covariant.-—A function Which stands in the same relation to the primitive function from which it

is derived as any of its linear transforms to a similarly derived transform of its primitive.

Cumulant.-—The denominator of the simple algebraical fraction which expresses the value of an

improper continued fraction. See Type, infra.

Determinant.——This word is used throughout in the single sense, after which it denotes the alter—

nate or hemihedral function the vanishing of which is the condition of the possibility of the coexist-

ence of a system of a certain number of homogeneous linear equations of as many variables.

Dialytz'c.—-—If there be a system of functions containing in each term different combinations of the

powers of the variables in number equal to the number of the functions, a resultant may be formed

from these functions by, as it were, dissolving the relations which connect together the different

combinations of the powers of the variables, and treating them as simple independent quantities

linearly involved in the functions. The resultant so formed is called the Dialytic Resultant of the

functions supposed ; and any method by Which the elimination between two or more equations can

be made to depend on the formation of such a resultant is called a dialytic method of elimination.

In such method accordingly the process of elimination between equations of a higher degree than

the first is always reduced to a question of elimination between equations which are of the first

degree only.

Déscm’minant.——The resultant of" the a differential coefficients of a homogeneous function of n vari—
ables. See Resultant, infra.

Disjunctz've.——A disjunctive equation is a relation between two sets of quantities such that each

one of either set is equal according to some unspecified order of connexion with some one of the

other set.

Efiecfive scale of intercalations is the series of the real roots of two functions of w written in

order of magnitude after repeated processes of removing pairs of roots, belonging to either the

same function (when not separated by roots of the other function) : the roots of the two functions
follow each other alternately.

Efiuent.——From every homogeneous function of any number of variables 2' of the degree mm’,
where mm’ are any two integers, may be formed (as shown in the Calculus of Forms, Section I.) a

covariantive function of the degree 9% and of pa variables [where p. is the number of permutations
that can be obtained by dividing m‘ into '5 parts (zeros admissible)], in which all the coefficients are
numerical multiples of the given coefficients; covariants so formed may be termed effluents of their
primitive, fl An example of this occurs in the foot note to Section V. p. 522, where the quantity there
called Q is a quadratic effluent of the Jacobian.

_ ‘ Elementt—wA simple component of the typeto a cumulant. See Cumulant, supra.
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Emanantw—The result of operating any number of times (suppose'z'times) upon a given homo-

geneous function of any number of variables x, y, 2’. . .t with the operative 'symbol

(’5-+2/'d“+232 +--Ht)
is called the ith emanant of' the function operated upon. Every emanant is a covariant to its primi-
tive, the new variables x’, 3/, z',...t’ being cogradient with the variables x, 3/, 2.. .t with ”whiCh they

are respectively associated. E2i+z~fi Em”), page 522, are emanants of f and go. The process of

emanation is one of incessant occurrence in the theory of invariants. When the order of the emana-

tion is the same as the degree of the function (supposed to be rational and integral) from which

the emanation proceeds, the form of the original function is reproduced in the final emanant, the

names only of the variables being changed.

Endoscopic, Exoscopic.—When the coefiicients of the functions concerned in any investigation are

regarded as integral indecomposable monads, the method is called exoscopic, and endoscopic when

the coefficients are treated with reference to their internal constitution as composed of roots or other
elements.

In addition to the examples in the foot note to Section ] , these words have a marked and most

important application in the theory of Invariants, especially of two variables.

Form.——-—Any function may be regarded as an opus operatum; the matter operated upon being the

variables, and the substance of the operations being the form, which resides in the function as the

soul in the body. A form is always common to an infinity of functions, but for greater brevity may

be and frequently is called by the name of some specified function in which it is. contained.

Fundamental.~—The fundamental scale of a system of Invariants or Concomitants is a set of the

same, whereof every other is a Rational Integral Function.

Hessian 0r Hessean, named after Dr. OTTO HESSE, of Konigsherg (the worthy pupil of his illus-

trious master, JACOBI, but who, to the scandal of the mathematical world, remains still without a

Chair in the University which he adorns with his presence and his name),'is the Jacobian ‘to the
differential coefficients of a homogeneous function of any number of variables. It is to a Jacobian

what a Bezoutoid is to a 'Bezoutiant, or a Discriminant to a Resultant.

Hyperdeterménants.—See Memoir of Mr. CAYLEY, Cambridge and Dublin Mathematical

Journal, May 1845, and CRELLE’S Journal of about the same date“.

Improper, continued fraction is a continued fraction differing only from an ordinary one in the

circumstance of negative signs being substituted for positive signs to connect the terms;

Inertia.———The unchangeahle number of integers in the excess of positive over negative signs which
adheres to a quadratic form expressed as the sum of positive and negative squares, notwithstanding

‘ any real linear transformations impressed upon such form.

Intercalations.—The theory of intercalations is the theory of the relative distribution of the real

roots, or .point-roots, of two or more equations, but in this theory the number of roots mutually

interposed is to be taken only with reference to the number 2 as a modulus.

1nvam'ance.——The property (under prescribed or implied conditions) of remaining invariable.

Invariant.—A function of the coefficients of one or more forms which remains unaltered When

these undergo suitable linear transformations.

4 B 2 ‘
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Inverse.—-—-The inverse to a2 given square matrix is formed by selecting in its turn each component

of the given matrix, substituting unity in its place, making all the other components in the same

line and column therewith zero, and finally writing the value of the determinant corresponding to

the matrix thus modified in lieu of the selected component. If the determinant to the matrix be

equal to unity, its second inverse, 2'. e. the inverse to its inverse, Will, be identical, term for term,

with the original matrix.

Jacobian.——The .Jacobian to n homogeneous functions of 92 variables is the determinant repre-

sented by the symmetrical collocation in a square of the n differential coefficients of each of the n

funCtions.

Kenoz‘lzeme.——A finite system of discrete points defined by one or more homogeneous equations

in number one less than the number of variables contained therein.

Limiting Series.-—One set of quantities whose extreme values are exterior to the extreme values

of a second set is set to limit the latter.

Matriw.-—A square or rectangular arrangement of terms in lines and columns.

Minor Determindnt.——Any determinant retained represented by a square group of terms arbi-

trarily chosen out of a matrix is a minor determinant thereto. The simple terms of the matrix are

the last minors, and of course if the matrix is a square, it will itself in its totality represent a single

complete determinant.

M0notheme.-—-A line, or finite system of lines, defined by one or more homogeneous equations two

less in number than the numbers of the variables contained therein.

0rder.——The orders of a homogeneous function are the linear functions of the variables the least

in number by aid of Which the function admits of being expressed.

Persymmetrécal.—A symmetrical matrix, in Which all the terms in the diagonal bands transverse

to the axis of symmetry are identical, is said to be persymmetrical. Em. An addition table.

Quadrinvariant.—~An invariant of which the terms are quadratic functions of the coefficients of

the primitive.

Relation (simple and compound). Vide Substitution, infra.

Resultant.——The resultant of n homogeneous general functions of n variables is that function

of their coefficients Which, equalled to zero, expresses in the simplest terms the condition of the

possibility of their coexistence.

Rkizoristic.~—»A rhizoristic series is a series of disconnected functions Which serve to fix the

number. of real roots of a given function lying between any assigned limits.

Signaletic.——A signaletic or Semaphoretz’c series is a sequence of disjunctive terms, considered

solely With reference to the algebraical signs ofplus and minus Which they respectively carry.

Singular.—A proper algebraical function of a given degree, n, in one variable in its most general

form, Will, in respect to that variable, be of the nth degree in the denominator and the (n—-1~)th

degree in‘ the numerator, and will admit of being represented by a continued algebraical fraction of

n terms, all of them linear.

‘ But for particular values of, or relations among, the coefficients entering into the given fraction

this mode of representation fails, and the continued fraction, instead of consisting of linear terms
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min number, will consist of terms, some of them at least, non-linear, and fewer than n in number.

These then are the singular cases (or cases of singularity) in the theory of the development of an

algebraical fraction under the continued fraction form; and it Will be seen that according to this

definition the case of the development of any proper algebraical fraction in which the degree of the

numerator is more than one unit below that of the denominator, belongs (strictly speaking) to the

class of singular cases; and this View of the case supposed is perfectly correct and conformable to

the analogies of the subject.

Substitution (linear, similar or contrary) .-—-A1inear substitution is said to be impressed upon a system

of variables When each variable is replaced by a linear conjunctive of' all the variables. The matrix

formed by the coefficients of substitution arranged in regular order is called the Matrix of Substitu-

tion, and is of course a square. When two substitutions (impressed in two systems of variables)

have the same matrix, they are said to be similar and contrary when their matrices are contrary,

i. e. mutually inverse to each other. When two systems of variables are supposed to be subject to

the condition that their substitutions are always similar or always contrary, they are said to be

related or in simple relation, the relation being of cogredience in the one case and of contragreé-

dience in the other. _

When a linear'substitution is impressed upon a system of independent variables, a corresponding

linear substitution is necessarily impressed at the same time upon every complete system of homo-

geneous combinations (13.6. products and powers and products of poWers) of these variables, the

matrix to Which latter substitution Will consist of terms Which Will be functions (depending upon

the degree of the homogeneous combinations) of the terms of the matrix to the primitive substitu-

tion. This matrix may be termed a compound matrix, having the primitive matrix for its base.
If, now, two systems of independent variables are subjectato be synchronously impressed With

substitutions, the matrices to Which (not being both of them simple matrices) have for their bases

matrices Which are either similar or contrary, these two systems Will be said to be in comgpound

relation of cogredience in the one case, and of contragredience in the other.

Syrrhizoristic.——A syrrhizoristic series is a series of disconnected functions Which serve to deter-

mine the effective intercalations of the real roots of two functions lying between any assigned limits.

Syzygetic.—A syzygetic function or conjunctive of a number of given rational integral functions

is the sum of these affected respectively With arbitrary functional multipliers, which are termed

the syzygetic multipliers. When a syzygetic function of a given set of functions can be made to

vanish, they are said to be syzygetically related.

Tranyorma-Equivalent to the French noun substantive “ tmnsforme’e.”

Type.—~The type of a cumulant is the series of the simple elements (or quotients), arranged in a

fixed order, of Which the cumulant is composed.

Umbral.——The umbral notation is a notation according to Which simple quantities are denoted by

syllables, instead of by single letters (the composition of these syllables being g0verned by the mode

in which the quantities which they express are obtained); and the single letters of such Syllables

are termed umbral quantities or umbrfi.

Weight.—In this memoir (throughout the earlier sections) the Weight of any quantity composed

of the product of the coefficients of any given function or functions'of x is used to denote the

number of roots of a? appertaining to the given function or functions Which must be employed

to express such quantity. More generally, When dealing with a system of homogeneous functions,
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the weight of a quantity may be defined with respect to any selected variable therein as the sum

of the weights in respect to such variable of the several coefficients of which the quantity is come-

posed (the weight of each several coefficient meaning the index of the power of the selected variable

in that term of the given function or functions which is affected with such coefficient). These two

definitions of weightrmay be perfectly well reconciled with each other by understanding the weight

of a quantity formed from the coefficients of a function or system of functions of w to mean the weight,

in respect to unity, of such quantity when the given functions are treated as homogeneous functions

of .z‘ and 1.

Zeta.——The symbol {7 (preceding a row of bracketed terms) is used to denote the product of the

squared differences of the terms which it affects.

[ j. A bracket of this form, when inclosing a superior and an inferior row of terms m and 72 in

number respectively, indicates the am products of the diti‘erences obtained by subtracting each term

in the second row from each term in the first row 3 when enclosing an arrangement of terms in a single

line, it is used to denote the cumulant of which such an arrangement is the type.
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