(40)

IV. A Contrivance to avoid the Irregularities in a Clock's Motion, occafion'd by the Action of Heat and Cold upon the Rod of the Pendulum. By Mr. George Graham, Watch-Maker, F. R.S.

WHereas feveral, who have been curious in meafuring of Time, have taken Notice, that the Vibrations of a Pendulum are flower in Sumer than in Winter; and have very juftly fuppofed this Alteration has proceeded from a Change of Length in the Pendulum itfelf, by the Infiuences of Heat and Cold upon it, in the different Seafons of the Year; with a View therefore of correcting, in fome degree, this Defect of the Pendulum, I made feveral Trials, about the Year 1715. to difcover whether there was any confiderable Difference of Expanfion between Brafs, Steel, Iron, Copper, Silver, erc. when expofed to the fame Degrees of Heat, as nearly as I could determine; conceiving it would not be very difficult, by making ufe of two Sorts of Metals, differing confiderably in their Degrees of Expanfion and Contraction, to remedy, in great meafure, the Irregularities to which common Pendulums are fubject. But altho' it is eafily difcoverable, that all thefe Metals fuffer a fenfible Alteration of their Dimenfions by Heat and Cold; yet I found their Differences, in Quantity from one another, were fo fmall, as gave me no Hopes of fucceeding this Way, and made me leave off profecuting this $A f$ fair any farther at that Time. In the Beginning of December, 1721. having Occafion for an exact Level, befides other Materials I made Trial of, Quickfilver was one; which, although I found it was by no Means proper for a Level, yet the extraordinary D :-
gree of Expanfion, that I obferved in it, when placed near the Fire, beyond what I had conceived to be in fo denfe a Fluid, immediately fuggefted to me the Ufe that might be made of it, by applying it to a Iendulum. In a few Days after, I made the Experiment, but with mucil too long a Column of Quickfilver the Clock going liower with an increafe of Cold, contrary to the common Pendulum ; however, it was a greater Confirmation of the Advantage to be expected from it, fince it was eafy to fhorten the Co'umn in any Degree required. The only Doubt I enter ained, was, left there fhould not be a proportional Expanfion and Contraction between the Quickfilver, and the Rod of the Pendulum; through the various Degrees of Heat and Cold, fr m the one Extreme to the other. To make this Experiment the more convincing, I placed the Clock in a Part of the Houfe, the moft expofed of any to the Changes of Heat and Cold, the Room having no Fire in it in the Winter, and expofed to a South Sun, with Leads above it, which, in the Summer, made it extremely hot. I hung a Thermometer by it, and had likewife another Clock at no greater Diftance from it, than was neceffary to keep the Cafes from touching one another. This Clock had been made fome Years before, with extraordinary Care, having a Pendulum about 60 Pounds in Weight, and not vibrating above one Degree and half from the Perpendicular; and which, in a more temperate Situation, had not alter'd above 12 or $14^{\prime \prime}$ in 24 Hours, between Winter and Summer; but in this Place it altered $30^{\prime \prime}$ a Day, between the hotteft and coldeft Weather, in the Year 1722 , a Year no way remarkable for either Extremes. But this great Alteration was owing to the Situation I mentioned above, and which I made Choice of for the fake of making the Experiment the more fenfible.

(42)

The two Clocks being firmly skrewed to a PartyWall, I began to make the tirlt Irial of this Kind of Pendulum, December 18. 172 I. and by fanuary the third, perceiving the Pillar of Quickfilver contiderably too long, I procured a fhorter Glafs, which I got ready by the cighth, and made ufe of, until the Beginning of fune following: By which Cime i was well ftisfied of the Advantage of the Contrivance, notwithftanding both thefe Pendulums were but rudely executed, and thit laft had the Piilar of Quickfilver too fhort, but much nearer the true Length than the firft. This encouraged me to provide another Glafs, a little longer than the laft, and to beftow more Care upon all the Parts of the Pendulum that required Exactnefs. This being finifhed, by the 9 th of fune, I began then to obferve the Motion of the Clock, by the Tranfits of the fixed Stars, as ofte: as the Weather permitted, making ufe of a Telefcope which moved in the Plane of the Meridian; with this Inflrument I could be fure of not erring above two Seconds in Time. The Clock was kept conftantly going, without having either the Hands or Pendulum alter'd, from the gth of 'fune, 1722. to the 14th of OEtober, 1725 . being three Ycars and four Months.

For the firf Year, I wrote down evcry Day, the Difference between the two Clocks, with the Heighth of the Thermometer, not omitting the Tranfits of the Stars, as often as it was clear. The Refult of all the Obfervations was this, That the Irregularity of the Clock, with the Quickfilver Pendulum, compared wih the Tranfits of the Stars, exceeded not, when greateft, a fixth Part of that of the other Clock with the common Pendulum ; but for the greateft Part of the Year, not above an eighth or ninth Part; and even this Quantity would have been leffened, had the Pillar of

(43)

Mercury been a littl: fhorter; for it differed a little the contrary Way from the other Clock, going fatter with Hear, and flower with Cold; but I made no Alteration in the Length, to avoid an Interruption of the Obler. varions. To confirm this Experiment the more, about the Beginning of $\mathfrak{F u l y}, \mathbf{1 7 2 3}$, I took off the heavy Pendulum from the other Cock, and made atother with Quickfilver, but with this Difference, that inftead of a Glafs Tube, I made ufe of Brafs, and varnitied the infide, to fecure it from being injured by the Mercury. This Pendulum I have made ufe of ever fince, and find it about the fame Degree of Exactnefs as the other. The Reafon, why this kind of Yendulum is more exact than the common Sort, will be evident to any one, who confiders, that as Heat lengthens the Rod of the Pendulum, at the fame Time it increafes the Length of the Pillar of Quickfilver, and its Center of Gravity is moved upwards: And when by Cold, the Rod of the Pendulum is fhortened, the Pillar of Quickfilver is likewife fortened, and its Center of Gravity carried downwards; by this Means, if the Column of Quicklilver be of a proper Lengrh, the Ditance, between the Point of Sulpenfion and the Center of Ofcillation of the Pendulum, will be always nearly the fame upon which the exact Motion of a Clock principally depends. Were the Pendulum of a Clock to remain invariably of the fane Length, yet fome little Inequalities would appear in its Motion, from the Difference of Friction arifing from the Imperfeaions of the Materials, as well as different Degrees of Foulnefs; upon which iccount, the Force communicated to the Pendulum, would not be conftantly equal, which would caufe fome finall Alteration. But when the Pendulum is very heavy, and vibrates in a mall Arch, and the Workmanhip of all the Parts is well per-

(44)

formed, there will be very little Inequality in the Motion, hefides what proceeds from Heat and Cold. In making ufe of Quickfilver for a Pendulum, by varying the Diameter of the Veffel thet contains it, or the Thicknefs of the Rod of the Pendulum, whether it be of Erais or Steel, they may be reduced nearly to an Equality as to the receiving, or retaining the Impreflions of Heat or Cold, upon which the greater Regulanity of the Motion depends; and particular Care ought to be ufed to free the Mercury from all Blebs of Air, otherwife their great and fudden Expanfion, or Contraction, may caufe a confiderable Diforder; but the Air may as eafily be excluded in this Way, as in a Barometer, and the great \{pecifick Gravity of Quickfilver, renders it a proper Material for the Weight of a Pendulum.

$F I N I S$.

$\angle O N D O N$, Printed for W. and J. Innys, Printers to the Royal Society, at the Weft End of St. Paul's CburchFiard. 1726.

