PHILOSOPHICAL TRANSACTIONS.

February 19. 16%.
c^{c}

The C ONTENTS.

A Letter of Mr.Ilaac Newton, Mathematick Profefor in the $\mathrm{V}_{\text {niverf. }}$. ty of Cambridge; containing his New Theory about Light and Co. lors: Where Light is declared to be not Similar or Homogeneal, but confifing of difform rays, fome of whick are more refrangible than others: And Colors are affirm'd to be not $\mathfrak{Q u}^{2}$ lifications of Light, deriv'd from Refractions of natural Bodies, (as'tis generally believed;) but Original and Connate properties, wobich in divers rays are divers: Where feveral Obfervations and Experiments are alledged to prove the faid Tbeory. An Accompt of fome Books: I. A Defcription of the EAST-INDIAN COASTS, MALABAR, COROMANDEL, CEYLON, छ̛c. in Dutch, by Phil.Baldæus. II. Antonii le Grand INSTIIUTIO PHILOSOPHIE, lecundùm principia Renati Des-Cartes; novà methodo adornata ङ explicata. III. An Effay to the Advantement of MUSICK; by Thomas Salmon M. A. Advertifement about Thæon Smyriæus, An Index for the Tracts of the Year 167 I .

A Letter of Mr. Ifaac Newton, Profeffor of the Mathematicks in the Univerfity of Cambridge; containing bis New Theory about Light and Colors: Sent by the Author to the Publijber from Cambridge, Fcbr. 6 . $16 \frac{7 \pi}{72}$; in order to be communicated to the R. Society.

S I R,

TO perform my late promife to you, I fhall without further ceremony acquaint you, that in the beginning of the Year 1666 (at which rime I applyed my felf to the grinding of Optick glaffes of other figures than Spherical,) I procured mea Triangular glafs-Prifme, to try therewith the celebrated Plicnamena of

$$
G g g
$$

Colours.

Co:'urrs. And in order thereto having darkened my chamber,and made a fmall hole in my wiadow-dhuss, to let in a convenient quatity of the Suns light, I placed my Prifme at his entrafce, that it might be thereby reirected to the oppolite wall. It was at firf a very pleafig divertifement, to view the vivid and intenfe colours produced thereby; but atter a while applying my felf to confider them more circumpecty, I became furprifed to fee them ia an oblong form; which, according to the received laws of Refra. Ction, I expected finuld have been circular.

They were terminated at the fides with ftreight lines, but at the ends, the decay of light was lo gradual, that it was difficult to determine jufty, what was their figure; yet they feemed /emicircular.
Comparing the length of this coloured Spectrum with its breadith, I found it about five times greater; a difproportion fo extrava= gant, that it excired me to a more then ordinary curiofity of examining, from whence it might proceed. I could fcarce think, that the various Thickne/s of the glafs, or the termination with flas: dow or darknefs, could have any Influence on light to produce fuch an effect; yet I thought it not amifs, firft to examine thofe circumftances, and fo tryed, what would happen by tranfmitting light through parts of the glafs of divers thickneffes, or through holes in the window of divers bigneffes, or by fetting the Prifme without fo , that the light might pals through it, and be refracted before it was terminated by the hole: But I found none of thofe circumftances material The fafhion of the colours was in all thefe cafes the fame.

Then I fufpected, whether by any unevenne/s in the glafs, or other contingent irregularity, thefe colours might be thus dilated.' And to try this, I took another Prifme like the former, and fo placed it, that the light, paffing through them both, might be res fracted contrary ways, and fo by the latter returned into that courle, from which the former had diverted it. For, by this means I thought, the regular effects of the firft Prifme would be deftroyed by the fecond Prifme, but the irregular ones more augmented, by the multiplicity of refractions. The event was, that the light, which by the firt Prifme was diffufed into an oblong form, was by the fecond reduced into an orbicular one with as much regularity, as when it did not at all pafs through them. So that, what ever was the caufe of that length, twas not any contingent irregularity.

(3077)

I then proceeded to examin more critically, what might be effected by the difference of the incidence of Rays coming from divers parts of the Sun; and to that end, meafured the feveral lines and angles, belonging to the Image. Its diftance from the hole or Prifme was 22 foot; its utmoft length $13 \frac{1}{4}$ inches; its breadsh $2 \frac{5}{8}$; the diameter of the hole $\frac{1}{4}$ of an inch; the angle, with the Rays, tending towards the middle of the image, made with thofe lines, in which they would have proc eded without refraction, was 44 deg. 55°. And the vertical Angle of the Prifine, 63 deg. 12^{\prime}. Alfo the Refractions on both fides the Pritme, that is, of the Incident, and Emergent Rays, were as near, as I could make them, equal, and confequently about $54 \mathrm{deg} .4^{\prime}$. And the Rays fell perpendicularly upon the wall. Now fubducting the diameter of the hole from the tength and breadth of the Image, there remains 13 Inches the length, and $2 \frac{3}{8}$ the breadth, compreheaded by thote Rays, which paffed through the center of the faid bole, and con: fequently the angle of the hole, which that breadth fubtended, was about 31', anfwerable to the Suns Diameter; but the angle, which its length fubtended, was more then five fuch diameters, namely 2 deg. 49°.

Having made thefe obfervations, I firft computed from them the refractive power of that glafs, and found it meafured by the ratio of the fines, 20 to 31. And then, by that ratio, I compured the Refractions of two Rays flowing from oppofite parts of the Sun's difcus, fo as to differ 31' in their obliquity of Incidence, and found, that the emergent Rays fhould have comprehended an angle of about 31', as they did, before they were incident.

But becaufe this computation was founded on the Hypothefis of the proportionality of the fines of Incidence, and Refraction, which though by my own Experience I could not imagine to be fo erroneous, as to make that Angle but 3^{\prime} ', which in reality was 2 deg. 49^{\prime}; yet my curiofity caufed me again to take my Prifme. And having placed it at my window, as before, I obferved, hat by turning it a little about its axis to and $\mathrm{f} \circ$, fo as to vary its obl:quity to the light, more then an angle of 4 or 5 degrees, the Colours were not thereby fenfibly tranflated from their place on the wall, and confequently by that variation of Incidence, the quantity of Refraction was not fenfibly varied. By this Experiment therefore, as well as by the former computation, it was evident, that the difference of the Incidence of Rays, flowing from divers

(3098)

parts of the Sun, could not make them after decuffation diverge at a fenfibly greater angle, than that at which they before converged; which being, at moft, but about 31 or 32 minutes, there Itill remained fome other caufe to be found out, from whence it could be 2 degr. 49^{\prime}.

Then I began to fufpect, whether the Rays, after their trajectis on through the Prifme, did not move in curve lines, and according to their more or lefs curviry tend to divers parts of the wall. And it increafed my fulpition, when I remembred that I had of en feen a Tennis ball, ftruck with an oblique Racket, defcribe fuch a carve line. For, a circular as well as a progreffive motion being communicated to it by that froak, its parts on that fide, where the motions confpire, muft prefs and beat the contiguous Air more violently than on the other, and there excite a reluctancy and reaction of the Air proportionably greater. And for the fame reafor, if the Rays of light fhould poffibly be globular bodies, and by their oblique paffage out of one medium into another acquire a circulating motion, they ought to feel the greater refiftance from the ambient Æther, on that fide, where the motions cons fpire, and thence be continually bowed to the other. But not: withftanding this plaufible ground of fufpition, when I came to examine it, I could obferve no fuch curvity in them. And befides (which was enough for my purpofe) I obferved, that the difference 'twist the length of the Image, and diameter of the hole, through which the light was tranfmitted, was proportionable to their diftance.

The gradual removal of the fe fufpitions, at length led me to the Experimentum Crucis, which was this: I took two boards, and placed one of them clofe behind the Prifme at the window, fo that the light might pafs through a fmall hole, made in it for the purpofe, and fall on the other board, which I placed at about 12 feet diftance, having firft made a fmall hole in it alfo, for fome of that Incident light to pafs through. Then I placed anothery yifme ber hind this lecond board, fo that the light, trajected through beth the boards, might pafs through that alfo, and be again retrected before it arrived at the wall. This done, I took the firft Prifme in my hand, and turned it to and fro flowly about is $A x i s$, fo much as to make the feveral parts of the Image, caft un the fecond board, fucceffively pafs through the hole in it, that I might oblerve to what places on the wall the fecond Prifme would refract them.

(3079)

And I faw by the variation of thofe places, that the light, tending to that end of the Image, towards which the refraction of the firlt Prifme was made, did in the fecond Prifme fuffer a Refraction confiderably greater then the light tending to the other end. And fo the true caule of the length of that Image was detected to io no other, then that Ligbt confits of Rays differently refrangible, which, without any refpect to a difference in their incidence, were, according to their degrees of refrangibility, tranfmitted towards divers parts of the wall.

When I underftood this, I left off my aforefaid Glafs works; for I faw, that the perfection of Telefcopes was hitherto limited, not fo much for want of glaffes truly figured according to the prefcriptions of Optick Authors, (which all men have hitherto imagined,) as becaufe that Light it felf is a Heteroyeneous mixture of differently refrangible Rays. So that, were a glafs to exactly figured, as to collect any one fort of rays into one point, it could not cols lect thole alfo into the fame point, which having the fame lucidence upon the fame Medium are apt to fuffer a different refraction. Nay, I wondered, that fecing the difference of refrangibility was fo great, as I found it, Telefcopes fhould arrive to that per: fection they are now at. For, meafuring the refractions in one of my Prifmes, I found, that fuppofing the common fine of Incidence upon one of its planes was 44 parts, the fine of refraction of the utmoft Rays on the red end of the Colours, made out of the glafs into the Air, would be 63 parts, and the fine of refraction of the utmoft rays on the other end, 69 parts: So that the difference is about a $24^{\text {th }}$ or 25 th part of the whole refraction. And c mfequently, the object-glats of any Telefcope cannot collect all the rays, which come from one point of an objc ct, fo as to make them convene at its focus in lefs room then in a circular fpace, whofe diameter is the 5025 part of the Diameter of its Aperture; which is an irregularity, fome hundreds of times greater, then a circularly figured Lens, of fo fmall a fection as the Object glaffes of long Telefcopes are, would caufe by the unfmefs of its figure, were Light uniform.

This made me take Refiefions into confideration, and finding them regular, fo that the Angle of Reflection of all forts of Rays was equal to their Angle of Incidence; I underftood, that by their mediation Optick inftruments might be brought to any degree of perfection imaginable, provided a Reffecting fubftance could be
found, which would polifh as finely as Glafs, and reflct as much light, as glafs tran/mits, and the art of communicating to it a Parabolick figure be alfo attained. Put there feemed very great difficulties, and I have almoft thought them infuperable, when I further confidered, that every irregularity in a reflectung fuperficies makes the rays ftray 5 or 6 times more out of their due courfe, than the like irregularities in a refracting one: So that a much greater curiofity would be here requifite, than in figuring glaffis tor Refraction.

Amidft thefe thoughts I was forced from Cambridge by the Intervening Plague, and it was more then two years, betore I proceed. ed further. But then having thought on a tender way of polifhing, proper for metall, whereby, as I imagined, the figure alfo would be corrected to the laft ; I began to try, what might be effected in this kind, and by degrees fo far perfected an Inftrument (in the effential parts of it like that I fent to London,) by which I could difcern Jupiters 4 Concomitants, and fhewed them divers times to two others of my acquaintance. I could alfo difcern the Moon-like phafe of Venss, but not very diftinctly, nor without fome nicenefs in difpofing the Inftrument.

From that time I was interrupted till this laft Autumn, when I madethe other. And as that was fenfibly better then the firft (efpecially for Day-Objects,)fo I doubt not, but they will be ftill brought to a much greater perfection by their endeavours, who, as you inform me, are taking care about it at London.

I have fometimes thought to make a Microfoope, which in like manner fhould have, inftead of an Object-glais, a Reflecting piece of metall. And this I hope they will alfo take into confideration. For thofe Inftruments feem as capable of improvement as Telefcopes, and perhaps more, becaufe but one reflective piec of metall is requifite in them, as you may perceive by the annexe diagram, where AB reprefenteth the object metall, CD the eye glafs, F their common Focus, and O the other focus of the me. tall, in which the object is placed.

But to retura from chis digreffion, I told you, that Light is i: fimilar, or homogeneal, but confifts of difform Rays, fome of whin: are more refrangible than others: So that of thofe, whichare alike incident on the fame medium, fome fhall be more refracted than others, and that not by any virtue of the glafs, or other ex: ternal caufe, but from a predifpofition, which every particular Ray hath to fuffer a particular degree of Refraction.

I fhall now proceed to acquaint you with another more notable difformity in its Rays, wherein the Origin of Colours is untolded: Concerning which I thall lay down the Dottrine filt, and then, for its examination, give you an inftance or two of the Experiments, as 2 fpecimen of the reft.

The Doctrine you will find comprehended and illuatrated in the following propofitions.

1. As the Rays of light differ in degrees of Refrangibility, fo they alfo differ in their difpofition to exhibit this or that particu= lar colour. Colours are not Qualifications of Light, derived from Refractions, or Reflections of natural Bodies (as 'tis generally be: Heved,) but Original and connate propertier, which in divers Rays are divers. Some Rays are difpofed to exhibit a red colour and no other; fome a yellow and no other, fome a green and no other, and fo of the reft. Nor are there only Rays proper and particu. lar to the more eminent colours, but even to all their intermediate gradations.
2. To the fame degree of Refrangibility ever belongs the fame colour, and to the fame colour ever belongs the fame degree of Refrangibility. The leaft Refrangible Raysare all difpofed to exhibit a Red colour, and contrarily thofe Rays, which are difpofed to exhibit a Red colour, are all the leaft refrangible: So the mo/t refrangible Rays are all difpofed to exhibit a deep Volet. Co'our, and contrarily thofe which are apt to exhibit fuch a violet colour, are all the moft Refrangble. And fo to all the iatermediate colours in a continued feries belong intermediate degrees of refrang bility. And this Analogy 'twixt colours, and refrangibility, is very precife and frict; the Rays always either exactly agreeing in both, or proportionally difagreeing in both.
3. The fpecies of colour, and degree of Refrangibility proper to any particular fort of Rays, is not mutable by Refraction, ior by Reflection from natural bodies, nor by any other caute, that I cuuld yet obferve. When any one fort of Rayshath beca well

(3082)

parted from thofe of other kinds, it hath afterwards obitinately retained ics colour, notwithftanding my utmoft endeavours to change ir. I have refracted it with Prifmes, and reflected it with Bodees, which in Day-light were of other colours; I have intercepted it with the coloured film of Air interceding two compref: 1ed plates of glafs; tranfmitted it through coloured Mediums, and through Mediums irradiated with other forts of Rays, and diverly terminated it; and yet could never produce any new colour out of it. It would by contracting or dilating become more brisk, or faint, and by the lofs of many Rays, in fome cafes vary obfcure and dark; but I could never fee it changed in fpecie.

Yet feeming tranfmutations of Colours may be made, where there is any mixture of divers forts of Rays. For in fuch mixtures, the component colours appear not, but, by their mutual allaying each other, conftitute a midling colour. And therefore, if by refraction, or any other of the aforefaid caufes, the difform Rays, latent in fuch a mixture, be feparated, there fhall emerge colours different from the colour of the compofition. Which colours are not New generated,but only made Apparent by being parted; for if they be again intirely mix't and blended together, they will again compofe that colour, which they did before feparation. And for the fame reafon, Tranfmutations made by the convening of divers colours are not real; for when the difform Rays are again fevered, they will exhibit the very fame colours, which they did before they entered the compofition; as you fee, Blewo and Yeilono powders, wheri finely mixed, appear to the naked eye Green, and yet the Colours of the Component corpafcles are not thereby really tranfmuted, but only blended. For, when viewed with a gcod Microfoope, they ftill appear Blow and Yellowinterfperledly.
5. There are therefore two forts of Colours, The one original and finple, the other compounded of thefe. The Original or pri= mury coloursare, Red, Yellon, Green, Blers, and a Violet:purple, together with Orange, Indico, and an indefinite variety of $\mathrm{Inter}^{\text {- }}$ mediate gradations.
6. The fame colours in specie with thefe Pamary ones may be allo produced'sy compofition : For, a mixture of Cellow and Blew m kes Green; of Red and Yelloz makes Drange; of Orange and Yels lominagreen makes yellom. And ingeneral, if any two Colours be mised, which in the feries of thofe, generated by the Prifmeare
not too far diftant one from another, they by their mutuat alloy compound that colour, which in the faid feries appeareth in the mid-way between them. But thofe, which are fituated at too great a diftance, do not fo. Orange and Indico produce not the intermediate Green, nor Scarlet and Green the intermediate yellow.
7. But the moft furprifing, and wonderful compofition was that of Whitenefs. There is no one fort of Rays which alone can exhibit this. 'Tis ever compounded, and to its compofition are requifite all the aforefaid primary Colours, mixed in a due propor. tion. I have often with Admiration beheld, that all the Colours of the Prifme being made to converge, and thereby to be again mixed as they were in the light before it was Incident upon the Prifme, reproduced light, intirely and perfectly white, and not at all fenfibly differing from a direct Light of the Sun, unlefs when the glaffes, I uled, were not fufficiently clear; for then they would a little incline it to their colour.
8. Hence therefore it comes to pafs, that W bitene/s is the ufual colour of Light; for, Light is a confufed aggregate of Rays indued with all forts of Colors, as they are promifcuoully darted from the various parts of luminous bodies. And of fuch a confufed aggregate, as I faid, is generated Whitenefs, if there be a due proportion of the Ingredients; but if any one predominate, he Light mult incline to that colour; as it happens in the Blew flame of Brim. ftone; the yellow flame of a Candle ; and the various colours of the Fixed ftars.
9. Thefe things confidered, the manner, how colours are produced by the Prifine, is evident. For, of the Rays, conftituting the incident light, fince thofe which differ in Colour proportionally differ in Retrangibility, they by their unequall refractions mult be fevered and difperfed into an oblong form in an orderly fucceffion from the leaft refracted Scarlet to the moft refracted Violet. And for the fame realon it is, that objects, when looked upon through a Prifme, appear coloured. For, the difform Rays, by their unequal Refractions, are made to diverge towards feveral parts of the Retina, and there exprefs the Images of things coloured, as in the former cafe they did the Suns Image upona wall. And by this inequality of refractions they become not only coloured, but alfo very confufed and indifinct
10. Why the Colours of the Rainboro appear in falling drops Hhhh

(3084)

of Rain, is allo from hence evident. For,thofe drops, which refract the Rays, difpofed to appear purple, in greateft quantity to the Spectators eye, refract the Rays of other forts fo much lefs, as to make them pafs befide ir; and fuch are the drops on the infide of the Primary Bow, and on the outfide of the Secondary or Exteriour one. So thofe drops, which refract in greateft plenty the Rays, apt to appear red, toward the Spechators eye, refract thofe of other forts fo much more, as to make them pals befide it ; and fuch are the drops on the exteriour part of the Primary, and interiour part of the Secondary Bow.
II. The odd Phxuomena of an infufion of Lignum Nephriticum, Leaf gold, Fragments of coloured gla/s, and fome other tranfparently coloured bodies, appearing in one pofition of one colour, and of another in another, are on thefe grounds no longer riddles. For, thofe are fubftances apt to reflect one fort of light and tranfmit another; as may be feen in a dark room, by illuminating them with fimilar or uncompounded light. For, then they appear of that colour only, with which they are illuminated, but yet in one pofition more vivid and luminous than in another, accordingly as they are difpofed more or lefs to reflect or tranfmit the incident colour.
12. From hence alfo is manifeft the reafon of an unexpected Experiment, which Mr. Hook fomewhere in his Micrography relates to have made with two wedg-like tranfparent veffels, filld the one with a red, the other with a blew liquor: namely, that though they were feverally tranfparent enough, yet both together became opake; For, if one tranfmitted ouly red, and the other only blew, no rays could pafs through both.
13. I might add more inftances of this nature, but I fiall cone chude with this general one, that the Colours of all nataral Bodies have no other origin than this, that they are varioully qualified to refleat one fort of light in greater plenty then another. And this I have experimented in a dark Room by illuminating thofe bodies with uncompounded light of divers colours. For by that means any body may be made to appear of any colour. They have there no appropriate colour, but ever appear of the colour of the light caft upon them, but yet with this difference, that they are moft brisk and vivid in the light of their own day-light-colour. Minium appeareth there of any colour indifferently, with waich"tis illuftrated, but yet moft luminous in red, and fo

(3085)

$B i / e$ appeareth indifferently of any colour with which tis illuftrated, but yet moft luminous in blew. And therefore Minium reflecteth Rays of any colour, but moft copioully thofe indued with red; and confequently when illuftrated with day light, that is, with all forts of Rays promifcuoufly blended, thofe qualified with red hall abound moft in the reflected light, and by their prevalence caufe it to appear of that colour. And for the fame reafon Bife, reflecting blew moft copioully, fhall appear blew by the ex= cefs of thore Rays in its refected light ; and the like of other bo: dies. And that this is the intire and adequate caufe of their colours, is manifeft, beca fe they have no power to change or alter the colours of any fort of Rays incident apart, but put on all co. lours indifferently, with which they are inlightned.

Thefe things being fo, it can be no longer difputed, whether there be colours in the dark, nor whether they be the qualities of the objects we fee, no nor perhaps, whether Light be a Body* For, fince Colours are the qualities of Light, having its Rays for their intire and immediate labject, how can we think thofe Rays qualities alfo, unlef. one quality may be the fubject of and futtain another; which in effect is to call it subftance. We fhould not knowBodies for fubftances, were it not for their 保fible qualities, and the Principal of thofe being now found due to fomething elfe, we have as good reafon to believe that to be a Subftance alfo.

Befides; whoever thought any quality to be a beterogeneous aggregate, fuch as Light is difcovered to be. But, to determine more abfolutely, what Light is, after what manner refracted, and by what modes or actions it produceth in our minds the Phantafms of Colours, is not fo eafie. And I hall not mingle conjectures with certainties.

Reviewing what I have written, I fee the difcourfe it felf will lead to divers Experiments fufficient for its examination: And therefore I fhall not trouble you furthe r, than to defcribe one of thofe, which I have already infinuated.

Ia a darkened Room make a hole in the fout of a window, whofe diameter may conveniently be about a third part of an inch, to admit a convenient quantity of the Suns light : And there place aclear and colourlefs Prifme, to refract the entring light towards the further part of the Room, which, as I faid, will thereby be diffufed into an oblong colonred Image. Then place a Lens of

(3086)

about three foot radius (fuppole a broad Object-glafs of a three foot Telefcope, at the diftance of abour four or five foot from thence, through which ali thofe colours may at once be tranfmitted, and made by its Refraction to convene at a further diftance of about ten or twelve feet. If at that diftance youintercept this light with a fheet of white paper, you will fee the colours converted into whitenefs again by being mingled. But it is reguifite, that the Pri/me and Lens be placed iteddy, and that the paper, on which the colours are caft, be moved to and fro; for, by fuch motion, you will not only find, at what diftance the whitenefs is moft perfect, but alfo fee, how the colours gradually convene, and vanifh into whitenefs, and afterwards having crofled one another in that place where they compound Whisenels, are again diffipated, and levered, and in an inverted order retain the fame colours, which they had before they entered the compofition. Yous may alfo fee, that, if any of the Colours at the Lens be intercepted, the Whitenefs will be changed into the other colours. And therefore, that the compoftion of whitenefs be perfect, care mult be taken, that none of the colours fall befides the Lens.

In the annexed defign of this Experiment, A B C expreffeth the Prifm fet endwife to fight, clofe by the hole F of the window

E G. Its vertical Angle A C B may conveniently be about 60 cegrees: $M N$ defigneth the L ens. Its breadth $2 \frac{2}{2}$ or 3 inches. SF one of the ftreightlines, in which difform Rays may be conceived to flow fuccefively from the Sun. FP, and FR two of thofe Rays unequally refracted, which the Lens makes to converge towards Q, and after decuffation to diverge again. And AI the paper, at divers diftances, on which the colours are projected : which in Q contiture inbitene/s, but are Red and rellow in R, r , and \therefore and Dl mand Purple in P, P and π.

(3087)

If you proceed further to try the impoffibility of changing any uncompounded colour (khich I have afferted in the third and thirteenth Propofitions,) 'tis requifite that the Room be made ves ry dark, leaft any fattering light,mixing with the colour, difturb and allay it, and render it compound, contrary to the defign of the Experiment. 'Tis alfo requifite, that there be a perfecter feparation of the Colours, than, after the manner above defcribed, can be made by the Refraction of one fingle Prifme, and how to make fuch further feparations, will fcarce be difficuls to them, that confider the difcovered laws of Refractions. But if tryal hall be made with colours not throughly feparated, there muft be allowed changes proportionable to the mixture. Thus if compound Yellow light fall upon Blew Bi/e, the Bife will not appear perfectly yellow, but rather green, becaule there are in the yellow mixture many rays incued with green, and Green being lefs remote from the ufual blew colcur of Bife than yellow, is the more copioully reflected by it.

In like manner, if any one of the Prifmatick colours, fuppofe Red, be intercepted, on defignto try the afferted impofibility of reproducing that Colour out of the others which are pretermitted; "tis neceflary, either that ho colours be very well parted before the red be intercepted, or that together with the red the neighbouring colours, into which any red is fecretly difperfed, (that is, the yellow, and prhaps green too) be intercepied; or elfe, that allowance be made for the emerging of fo much red out of the yellow green, as may pofibly have been diffufed, and fcatteringly blended in thofe colours. Ard if the fe things be obferved, the new Production of Red, or any intercepted colour will be found impoffible.

This, I corceive, is enough for an Introduction to Experiments of this kind; which if any of the R. Society fhall be fo curious as to profecute, ifhould be very glad to be informed with what fuccefs: That, if any thing feem to be defective, or to thwart this relation, I may have an opportunity of giving further direction about it, or of acknowledging my errors, if I have committed any.

Sofar this Learned and very Ingenious Letter; whicl having been by that Jiafitious Company, before whom it was read, with much applaule committed to the confleration of fome of their Fellows, well verted in this argument, the Reader may poffibly in an other Tráa be informed of fome report given in ypon this Difs courle.

