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The only theory of correlation at present available for practical
use is based on the normal law of‘ frequency, but, unfortunately, this

law is not valid in a great many cases which are both common and
important. It does not hold good, to take examples from biology,
for statistics of fertility in man, for measurements on flowers, or for
weight measurements even on adults. In economic statistics, on the
other hand, normal distributions appear to be highly exceptional:
variation of wages, prices, valuations, pauperism, and so forth, are

always skew. In cases like these we have at'present no means of
measuring the correlation by one or more “ correlation coefficients ”
such as are afiorded by the normal theory.

It seems worth while noting, under these circumstances, that in
ordinary practice statisticians never concern themselves with the
form of the correlation, normal or otherwise, but yet obtain results of
interest-—though always lacking in numerical exactness and fre-

quently in certainty. Suppose the case to he one in which two
variables are varying together in time, curves are drawn exhibiting

the history of the two. If these tWo curves appear, generally
speaking, to rise and fall together, the variables are held to he corre-
lated. If on the other hand it is not a case of variation with time,
the associated pairs may be tabulated in order according to the
magnitude of one variable, and then it may be seen. whether the
entries of the other variable also occur in order. Both methods are
of course very rough, and .will only indicate very close correlation,
but they contain, it seems to me, the point of prime importance at

all events with regard to economic statistics. In all— the classical
examples of statistical correlation (6.9., marriage-rate and imports,
corn prices and vagrancy, out-relief and wages) we are only
primarily concerned with the question is a large a: usuallyassociated
With alarge y (or small 3/); the further question as to the form of
this association and the relative frequency of difierent pairs of the
variables is, at any rate on a first investigation; of comparatively
seconoary importance,

. Let 09:, (lg be the axes of a three dimensional frequenoy-surface

drawn through the mean 0 of the surface parallel to the axes of
measurement, and let the points marked @ be the means of succes-

sive az-arrays, lying on some curve that may be called the curve of
regression of w on y. Now let a line, RR, be fitted to this curve,
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subjecting the distances of the means from the liner to some minimai
condition. If the slope of BB is positive we'may say that large
values of ac are on the Whole associated With large values of y, if it is
negative large values of a; are associated With small values of 3/.

Further, if the slope of RR t0 the vertical be given we shall have a,
measure of a. rough practical kind of the shift of the mean of an
aé-array when its type 3/ is altered. The equation to RR conse»
quently gives a, concise and definite answer to two most important
statistical questions. It is also evident that if the ‘ means "of the
arrays actually he in EL straight line (as in normal correlation), the
equation to RR must he the equation to the line of regression.

Let n be the number of observations in any m-array, and let d he
the horizontal distance of the mean of this array from the line RR,
I propose to subject the line to the condition that the sum of all

quantities like 9de shall he a minimum, 6.8., I shall use the condition

of least squares. I do this solely for convenience of analysis; I do
not claim for the method adopted any peculiar advantage as regards
the probability of its results. It would, in fact, he absurd. to do so,
for I am postulating at the very outset that the curve of regression is
only exceptionally a straight line; there can consequently be no-
meaning in seeking for the most p9°obable straight line to represent

the regression. '
Let :8, y be a pair of associated deviations, let a he the standarci

deviation of any array about its own mean, and let
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X :2 co+bY

be the equation to RR. Then for any one array

S{a:—~(a+by) }2 :2 S{a}-—(Cb+bY) }2 :: 1z62+7zd3.

Hence, extending the meaning of S to summation over the Whole

Surface
S(nd'z) :2 S{w-—-(a+by) }2-§—S7z02.

But in this expression S(nafl) is independent of a and I), it is, in fact,
a characteristic of the surface. Therefore, making S(nd?) a minimum
is equivalent to making

S{w*(w+by)}2
a minimum. That is to say, we may regard our method in another“
light. We may say that we form a single-valued relation

m=a+by

between a pair of associated deviations, such that the sum of the
squares of our errors in estimating any one at from its y by the
relation is a minimum. rPhis single-valued relation, Which 'We may
call the characteristic relation, is simply the equation to the line of
regression RR. There Will be two such equations to he formed
corresponding to the two lines of regression. ’

The idea of the method "may at once be extended to the ease of

correlation between several variables m1, 332, 5:33, 850. Let n he the

number of observations in an array of zvl’s associated With fixed ’
values X2, X3, 'X4, &C., of the remaining variables, let 0-1 be the

standard deviation of this array, and let d be the difference of its.
mean from the value given by a regression equation

X1 = a12X2+015X3+a14X4+ - . - - - .

Then, as before, we shall determine the coefficients am, am (1,”, &e., so

as to make 8-7ch2 a minimum. But this is again equivalent to
making

S{w1 —(a/125L°2 + 0213533 + ”11934 + - . . . ”>2

a minimum for

S{.cc1- (@1ng + a13w3 + a14w4+. . . . )}2 :2 S(nalg)‘ + S(ndg).

Hence, we may say that we solve for a single-valued relation

5131 = 012332 + ab13933.+ a514534 + . . . .

between our variables; the relation being such that the sum' of ' the
squares of the errors made in estimating :01 from its associated

values m2, erg, &c., is the least possible. In the case. of normal eorrela»
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tion this “Characteristic relation ” must become the “ equation of

regression ” which gives the means of any scl-array, as only in this
way can Smi2 be made a minimum, z'.e., zero.

It might be said that it would he more natural to form a “ charac-
teristic relation ” between the absolute values of the variables and
not their deviations from the mean. This may, however, be most

conveniently done by working With the mean as origin until the
characteristic is obtained, and then transferring the equation to zero
as origin. It would be much more laborious and would only lead to

the same result if. zero were used ab initio as origin.

We may now proceed to the discussion of the special cases of two,
three, or more variables. The actual formulw obtained are not, it
will be found, novel in, themselves, but throw an unexpected light

on the meaning of the expressions previously given by Bravaisle for
the ease of normal correlation.

(1) Case of Two Va9~iables.—-—Sinee 223 and y represent deviations
from their respective means, we have, using S to denote summation

over the whole surface,

so) = so) = o.
The characteristic or regression equations which we have to find are
of the form _

313 : al-th/ L .yzafibm ......... (1).

1 . . .
T1 aking the equation for as first, the normal equations for 051 and 111

are
8(a)) :: Nal +blS(y)

S(wy) =alS(y) +bls<y2) ' . """""""" (2):

N being the total number of correlated pairs. From the first of
these equations we have at once

0:1 2 O.

From the second

b1 : S(azz/l

E(y")

To simplify our notation let us write

S(ébg) :: N012. Syn: N012?

S(wy) : N71510'2.

51 and 02 are then the two standard—deviations or errors of mean

‘1" “Me’moires par divers Savants,” 1846,13. 255, and Professor Pearson’s paper

on “ Regressmn, Heredity, &c.” ‘ Phil. Trans.,’ A, vol. 187 (1896), p. 26162? seq.
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square. 9' is Bravais’ value of the coefficient of correlation. Re:
writing I); in terms of these symbols, we have

61:7?00000000000100.0000. (3).

2

Similarly, a220, § b2=a~§E (4).
1 .

But the expressions on the right of (3) and (4:) are the values
obtained by Bravais 0n the assumption of netmal correlation for the

regression of m on y, and. the regression of 3/ on w. That is to say,
the ‘Bravais values for the regressions are simply those values of bl

and 132, which make

S(m-—bly)2 and S(m—bgy)2 L

respectively minima, whatever he the form of the eorrelattbn between the
two variables. Again, whatever the form of the correlation, if the
regression be really linear, the equations to the lines of regression are“
those given above (as we pointed out in the introduction). This
theorem admits of a very simple and. direct geometrical proof, L
Let n be the number of correlated pairs in any one array taken

parallel to the» axis of, a2, and. let 9 he the angle that the line of
regression makes with the axis of y. Then, for a single array,

S(wy) == yS(m) = ny2 tan 0,

0r extending the significance of S' to summation over the whole
surface,

S(azy) = N tan 90-22:,

that is,

tan 9 == 7* El .
0'2

In any case, then, where the regression appears to be linear, Bravaz's’
formulae may be used at once without troubling to investigate the
natmaltty of the distribution. The exponential characteé‘ 0f the smfaoe
appears to have nothing whatever, to do with the result.
To return, again, to the most general case, we see that both

coefficients of regression must have the same sign; namely, the sign
of 9'. Hence, either regression will serve to indicate whether‘there is
correlation or no, for there is no reason, [t priort, why the values of

b1 and 132, as determined above, should he positive rather than

negative. But, nevertheless, the regressions are not convenient
measures of correlation, for, on comparing two similar cases, we may
find, say,

b1 > b,“ 52 < H2!

VOL. LX. 2 o



482 Mr. G. U. Yule. 0n the Significance of Bmvais’ Formulae

where b162, b'lb'z are the regressions in the two cases. To which

distribution are we, in such a case, to attribute 'the greater cerre-
lation? Bravais’ coefficient solves the difficulty, we may say, in
one way, by taking the geometrical mean of the two regressions as ~
the measure of correlation. It will still remain valid for non-normal
cerrelation. But there are other and less arbitrary interpretations
even in the general case.

Suppose that instead of measuring a: and yin arbitrary units we
measure each in terms of its own standard deviation. Then let us

write
(’13
“2:2wa 00.130300000000090... (5),

0'1 0-2

and solve for p by the method of least squares. We have omitted a
constant on the right-hand side, since it would vanish as before. We

have, at once,

zsiggngz’r ooouboutooIO‘OO'. (6)7

That is to say, if we measure a: and y each in terms of its own
standard deviation, 7' becomes at once the regression of 'a: on y, and
the regression of y on m. The regressions “being, in'fact, the funda-

mental physical quantities, 'r is a coefficient of correlation because it
is a coefficient of regression. 3“

Again,1et us form the sums of the squares of residuals1n equations
(1) and (5). Inserting the values of 61, 62, and p, we have-

S(w—bly)2= Nalz(1—~a~~) 1
S(y—bza’)? = Nafll—fi) L (7)

':0__.2_/_2__. y... 01sz -2 I ' ° '
S(O'l P02) 8(02 [001/ (1 7).)

Any one of these quantities, being the sum of a series of squares,
must be positive. Hence '1' cannot be greater than unity. If 0* be
equal to unity, or if the correlation be perfect, all the above three

sums become zero. But

' a 2s '33:. 1‘1.)
(“11:02

€13

Ulmfig

can only vanish if

in every case, or if the relation hold good,

3“ That the regression becomes the "coefficient of correlation when each deflation
is measured in terms of its standard—deviation in the case of normal Correlation has
been pointed out by Mr. Francis Galton. Vida Pearson ‘ Phil. Trans.,’ A, vol. 187,
p. 307, note.
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x 33 523‘ ‘0' ‘
J=‘J=-§'=....=:&:“‘110900oao‘00¢0 (8),

2/1 3/2 2/3 0'2

the sign of the last term depending on the sign of 7*. Hence the
statement that Tt‘wo variables are “ perfectly re’orrela'ted ” implies that
relation (8) holds good, or that all pairs ofx deviations bear the same
ratio to One another. It follows that in correlation, Where the means

of arrays are not collinear, or the deviation of the mean of. the array
is not a linear function .of the deviation of the type, ’r can never be
unity, though we knflow from experience that it can approach pretty

closely to that value. If the regression be very far from linear, some
caution must evidently be used in employing r to compare two diife-

rent distributions.
In the case of normal correlation, 61¢1W—w33 is the standard‘devia-

tion of any array of the ta: variables, corresponding to a single type of
y’s. 031/1»?2 is similarly the standard deviation of any array of
the y variables, corresponding to a single type of w’s. In the general
case, the first expression may be interpreted as the mean standard
deviation ‘of the xgarrays from the line of regression, and the second
expression as the mean standard deviation of the y-arrays from the

line of regression. Otherwise .We may regard

 

:as the standard error made in estimating a: from the relation

as := bly,
and,

:as the standard; error made in estimating y from the relatioh

’y : b233,

these interpretations being independent of the form of the correla-
tion.

(2) Case of Thw'ee Variables.

Let theethree correlated variables be X1, X2, X3, and letwl,mg, .1123
«denote deviations of these variables from their respective means. Let
us write, for brevity,

S(mlg) = N012, S(xz") :2 N022

S(azf) = N032

S(wla’g) = N'rmalaz

S ($2.733) = "N'r23azag

S(mafil‘l) 7-: ‘N7310'30'1'

2 o 2
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Our characteristic or regression-equation will now he of the form

$1:blgmg+b13w3.cocoonooocococcao (9)9

1212 and 613 being the unknowns to be determined from the observations

by the method of least squares. I have omitted a constant term on
the right-hand side, since its least-square value would be zero as

before. The two normal equations are now—-«-

S (mlwg) = 5128 (51322) + 5138602333)

801315133) 3: 5128(332033) + [has ($32)}

or replacing the sums by the Symbols defined above, and simplify-

ing-—-

=b+b} (10)
71361 = 51272302 + [91303 °°°°°°°°°°° ' ° ,

whence

7.12—7'137‘23 0'11

7:12:52 :7;

  

_ 7'13—‘7'127'23 0’1 l
13““

1*T232 O'gJ

That is, the characteristic relation between £131 and $2503 ism

7’12 "" 7'137'23 0’1 ’7‘13 "‘ 7'127'23 0’1
2 l. a 2 N Q33 ........ (12) s

1 "" 7'23 02 1 —" T23 0’3

   

1131 = " ‘"‘ 2

N0w Bravais showed that 2f the cowelatz'on were ?zov'mal, and we
selected a group or array of Xl’s with regard to special values kg and
723 of 5122 and $3, then hl being the deviation of the mean of the selected

Xl’s from the Xl-mean of the whole material,

kl = 5127124” b13733,

where I912 and 513 have the values given in (11). But evidently the
telation is of much greater generality; it holds good so long as kl is
a linear function of 712 and 723, whatever be the law off/reguency.

Further, the values of 1112 and 613 above determined, are, under any
circumstances, such that

8’02 -‘"-“- S [5131 "" (b12532 + Z’13933” 2:

is a minimum. If we insert in this expression the values of Z712 and

613” from (11), we have, after some reduction,

2 2
'r 7' -—27' ’r 7"8(7):) ______ N012{1— 12 + 13 12 23 .41}

1 "" 7.232

 

:Nafll—Rfi}. ..... (13),
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say. In normal correlation 0'1 «/1—-—R12 is the standard deviation of

an Xl-array, correspOnding to any given types of X2 and X3. In
general correlation it may be regarded as the mean standard deviation
of the Xl-arrays from the plane

331 : 512,932+ 513333:

or as the standard error made in estimating x; from {132 and 5:33 ‘hy
relation (12).
The quantity R is of some interest, as it exactly takes the place of

9~ in the residual expressions (7). It; may, in fact, be regarded as a.
cbefficient of correlation betWeen m1 and (5122933) ; it can only be unity
if the linear relation (9) or (12) hold good in every case.

The quantities 12,2, hm, &c. (the others may be written down by
symmetry), may be termed the net regressions of m1 011 2132, as; on 933,

(350. If we write 2 for 1 and l. for 2 in the‘value of 1112, we have

b 12"‘7'13T23 “e
21 -W ._ a

1121 being the the net regression of :02 on 331. In normal correlation,
1912 and bu are the regressions for any grOUp of Xl’s or X2,S associated

With a fixed type of X3’s. Hence, in this case (normal correlation),
the coefficient of correlation for such a group is the geometrical mean
of the two regressions, or

I

9’12“ 7’137'23.
J = fl 1”"

[12 \/(1“7'132) (1“9'23")

a quantity that may be called the net coefficient of correlation
between $1 and mask The similar net coefficients between ml and 033,

m2 and x3, may be written down by interchanging the suffixes.

In normal correlation p12 is quite strictly the coefficient of correla-
tion for any sub-group of X;s and X;s, Whatever the associated type
of X;s. In generalised correlation this will not be so, and p12 can
only retain an average significance.

The method does not appear to be capable of investigating changes
in the net coefficient as we pass from one type to another, but it may
be noted that whatever the form of the correlation, p12 retains three
of the chief properties of the ordinary coefficients: (1) it can only) be

 

5* My quantities, 1212, I213, 850., were termed by Professor Pearson (“ Regression

8w,” ‘ Phil. Trans”’ A, vol. 187 (1896), p. 287), “Coefieients of double regression,”

and quantities like 512:“m ,6135—3,1 &c., “ coefficients of double correlation.” My

quantities p he did not ulse. Elaving named the p’s “' net correlation? it seemed
most natural to rename the 12’s “ net 1egressions,” as the 12’s and. p’ :1 are corresponch
ing quantities.

Some of my results given above were quoted by Professor Pearson in his paper
(Zoe. 01219.,11otes on pp. 268 and 287).
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zero if both net regressions are zero; (2) 1t18 a symmetrical fu~110~
131011 of the variables; (3) it cannot be greater thanunity; for,

by (13),
7‘122 + 7'132— 27‘127'239'31 < 1 "" 72325

or adding 741321232 to both sides, and transferring 71132 to the right-hand

side
(9'12 “9'13’1'2392 < (1 —7‘132)(1 “" T232) .

If any two coefficients, say 9329113, be supposed known, the inequality

We. have Used above Will give us limits for the value of the third.
ThrciWing "it into the form'

51(9‘23~—"l'12’l‘13)2 < 1+9°1229‘132-—9'122—-9'132,

We have 933 must lie between the limits
 

’ ‘2 d . 2 . 2
7127'13 i «/”'12 9130*"? 12 “-713 +1.

The values of these 111nits for some special cases are collected in

the following table 2——

Values of r o and. r .1. 13 Limits of 123.

 

?'12’ 1: 9‘13 =3: 0 0

7'12 =‘- 7‘13 = i1 +.1

7'12 = +1, 7’13: *‘1 “'1
7‘12 = O, T13 = +1" 0

7'12—. O, 913—-«— +1 i M???

”1'12 =7‘13—-— +1 , 1 and 212—1

7‘12 = +7“, 713—.— —1' 212—1 and -1

112 = 1'13 = i MW: 0'707 O and 1

‘7'12=1‘1"«/6~g 7'12:I"‘7«/6~5« 0 n “5'1

One is rather prone to argue “that if A be correlated with B,»a,11d B-
With C, A will be correlated With C. Evidently this is not necessary.:
A-may be pesitively correlated With B, and B positively correlated
with CA, but yet A may, in general, be negatively correlated With 0.
Only, if the coefficients (AB) and (BC) are both numerically greater
than0'7-O7, can One even ascribe the correct sign to the._(AC) corre--
lation.
ItIS evident that one W0111d,1n_ general,eXpectto make a, smaller
standard error 111 estimating m; from the two associated variables 932

31161 33, than in estimating it from one only, say 5112. But it seems
desirable to p1ove this specifically, and to 1nvest1gate 1111der What
condit1ons it Will hold good. The necess'aay cendition13—-

T12+T132“27'127'239’13 '
2 > 7122)

1 "" 7'23
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that is,
2 2 2 . 2

’7‘12 +7"13 “2712713733 > 7‘12 ”'7 1227‘13 a

0]?

- - )2 > 0(’7 13 7’12”"23 .4 *

But (9'13—9'129‘23) is the numerator of p13, the net coefficient of corre-

lation between 2121 and 5133. Hence the standard error in the second

case will be. always less than in the first, so long as p13 is not zero.
The condition is somewhat interesting.

To take an arithmetical example, suppose one had in some actual

case

9'12 2 +0'8

7‘23 2-" +O'5 7'13 2 +04.

.One might very naturally imagine that the introduction of the third

variable With a fairly high correlation coefficient (0‘4) would con-

siderably lessen the standard deviation of the ml-array ;. but this is
not so, far

0-4— (0'5 x 0‘8)
P13 _-'-"'- W“=

¢0'75 x 0'36
 

3

so the third variable would be of noassistance.

III. Case of Four Variables.

This case is, perhaps, of sufficient practical importance to Warrant

our developing the results at length as in the last.
If ml, 932, mg, $4, be the associated deviations of the four variables

from their respective means, the characteristic equation Will be of the

form

531.: b12$2+b13333+b14$4o . 9 . . . . . - o. - . . - (141)-

The normal equations for the 6’s are,_ in our previous notation,

7'130'1 =3 5127'230‘24‘6130'34' 514734574

7‘14“1 =‘- 17129‘240'2 + Z?13’1‘3439‘3 + b11104

971201 -"'-'-' 512024“5137‘230'3+b147‘2404 }

Hence. » 7'12 ' 7‘23 7‘24

7'13 1 7'31,‘

W734 7'34 1 ‘71 (1r),,w.__._._....-._...__fi V ~ g . . o o o o o o ,

12 — l 7‘23 . 7‘24 0'9

7‘23 1 T34  7‘24 ’1‘34 1

and so 011 for the- others, 1312, 613, &c., we may call the net regressions

of 1131 on 332, :31 on mg, 650., as before. By parity of notation, we have
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7'12 9‘23 7'24

9‘13 1 7‘34

TM 9‘34 1 62
1921 = . ”’

1 9 13 9‘14 01

 

7'13 1 7‘3;  9‘14 7'34 1

and We may again call

P12 = “512521:

the net coefficient of correlation between £231 and 332. Expanding the
determinants, we have, in fact, ‘

7'12(1 "' 7'34?) + 7'23(7'347'24 ~* 723) 4‘ ?'140'237’34 "' 7'24)

4/[(1 *T342) + ?‘2a(7’349‘24 " 7‘23) + 7’24(7’237‘34 " 7‘24”“ 1 "‘7‘342) + 4‘13(7‘34714" 9’13) + 9‘14 9139124 ”T101

-(16).
There are six such net coefficients, {112, P13: p14, p23, [)24, p34. The

above values of the regressions are again these usually obtained on
the assumption of normal correlation.* The net correlation p12

becomes, On that assumption, the coefficient of correlation for any

group of the {.131 {v2 variables associated With fixed types of :233 and am.
If we write

 

 

u. = £131 - (512332 + Z913933 + b14334)?

we have, after some rather lengthy reduction,

tam = afie—Rfi),

 

where
2 .2 .2__.2,.2._.2.2__ 2 2{ rm +713 +714 712734 723714 7'13 7‘24 }

R 2 - 2('?134‘14?‘34 + 7‘127'147‘24 + 9‘12?“13”"233 + 2(7'12714V237‘34 + 7'137'147'237’24 + 7'129‘137‘247‘34)
3 ,. 2___ . 2,_ 3

1 1*“?23 934 7‘24 +29‘237'34V24

In normal correlation, 01/T3R? is theistandard deviation of all as]-

arrays associated With fixed types of 5:32, ms, and $4. In general corre-

lation, it is most easily interpreted as the standard error made in

estimating ml, by equation (let), from its associated values of 5122, 2:3,

and 584.

As in the case of three variables, the quantity B may be considered
as a coefficient of correlation. It can range between i1, and can

only become unity if the linear relation (14) hold good in each indi-

vidual instance.

We showed at the end of the last section that the standard error
made in estimating $1 from the relation

7

901 : 512$2+013333

’3‘: Professor Pearson, “Regression, Heredity, and Panmixia.” c Phil. Trans.,’

A, vol. 187 (1896), p. 294.
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was always less than the standard error When only :02 was taken into
account, unless

[313 = 0-

We may now prove the similarg theorem that when we use three
variables, m2, 933, $4, on Which to base the estimate, the standard error
Will be again decreased, unless

[’14 = 0-

The condition that S(u2), ineur present case, shall be less than
S(rz) in the last, is, in fact,

"" 2 (7‘13T14‘7'34 + 712713723+ 7'127'14’1'24)

+2 (7124’149’23’1‘34 +‘7'149‘137'249'23+ T12713T249’34) .
r)

> (““122+ 9'132 "' 2712T137‘23) (1 "‘T232 "7'24“ “"9342+ 2T23T24?'34) -

. 2 2 2 e 2, :2 c 2. 2-— 2 2

K712 +733 +9”14 "“7 12 ”34 “9 23 714 T13 7'24 .

(1"7‘232)

This may be'finally reduced to-——-

2 . . ‘2.
(9‘1457'139‘34”7‘127°24"‘7"14?‘23 +7137237524't'7‘12’1‘237'34) ? 0,

that is p142 > 0.

The treatment of the general case of 92 variables, so far as regards
obtaining the regressions, is obvious, and it is unnecessary to give it
at length. L
we can now see that the use of normal regressien formulae is quite

legitimate in all cases, so‘ long as the necessary limitations of inter-

pretation are recognised. Bravais’ 0' always remains a coefficient of
eorrelation. These results 1 must plead as justificatien for my use of
normal formulae in two eases* Where the correlation was markedly
non~normaL

“ Mathematical Contributions to the Theory of Evolution.——~—0n
a Form of Spurious Correlation Which may arise When
Indices are used in the Measurement of Organs.” By
KARL PEARSON, F.R.S., University College, London. Re-
ceived December 29, 1896,—-Read February 18, 1897.

(1) If the ratio of two absolute measurements on the same '01“

different organs be taken it is convenient to term this ratio an index,

If a :2 f1(w,ry) and e zf2(z, y) be two functions of the three variables
a}, y, z, and these variables be selected at random so that there exists

no correlation between azgy, 31,27, or 3,93, there will still be found to

’* ‘ Economic Jeurnal,’ Dee, 1895, and ~‘Dec.,'1896, “ On the Correlation of Total
Pauperism With Proportion of Out-relief.”


