TABLES FOR TESTING THE GOODNESS OF FIT OF THEORY TO OBSERVATION.

By W. PALIN ELDERTON, Actuary.

[Received October 18, 1901.]

On the Test for Random Sampling.

Any theoretical description by means of curve or series is ceteris paribus admissible as a graduation of a given set of frequency observations, provided the observed values do not differ from the values provided by this theory by more than the reasonable deviations due to random sampling. There may be utilitarian reasons (e.g. relative fewness of descriptive constants, or their easy calculation) or philosophical reasons (e.g. general theories as to the nature and distribution of causes producing frequency phenomena) why we should adopt one theoretical description rather than nnother, but apart from such reasons that theoretical description is best, which describes the observed frequencies with the "greatest probability." By "describing the observed frequencies with the greatest probability" we understand a good although conventional test of fitness. Suppose the theoretical description of the frequencies to be the actual distribution of the whole population; we ask in how many cases per 100 in a series of random samplings should we differ from the theoretical distribution by as wide a system of deviations as that observed, or by a still wider system? In other words we want to find out the probability P that in random sampling deviation-systems as great as or greater than that actually observed will arise. This point has beeu dealt with in a paper by Professor K. Pearson published in the Philosophical Magasine*, and it is there shown that if there be $n^{\prime}=n+1$ frequency groups in the series, and m_{T} and m_{r} ' be the theoretical and observed frequencies in any group, it is necessary to find

$$
\chi^{2}=S\left\{\frac{\left(m_{r}-m_{r}\right)^{2}}{m_{r}}\right\}=\operatorname{sum}\left(\frac{\left\{\begin{array}{c}
\text { squares of differences of theoretical } \\
\text { and observed frequencies }
\end{array}\right\}}{\text { theoretical frequency }}\right),
$$

* On the Criterion that a given System of Deviatione from the Probable in the case of a Correlated Syatem of Variables is saeh that it can be reasonably rupposed to have arisen from Random Sampling, Vol. Le pp. 157-175, July, 1800.
and that P will then be calculated from:

$$
P=\sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-k x^{\prime}} d x+\sqrt{\frac{2}{\pi}} e^{-6 x^{\prime}}\left(\frac{\chi}{1}+\frac{\chi^{3}}{1.3}+\frac{\chi^{3}}{1.3 .5}+\ldots+\frac{\chi^{n^{\prime}-0}}{1.3 .5 \ldots\left(n^{\prime}-3\right)}\right)
$$

if n^{\prime} be even, and from:
if n^{\prime} be odd.

$$
P=e^{-6 x^{2}}\left(1+\frac{\chi^{2}}{2}+\frac{\chi^{4}}{2.4}+\frac{\chi^{\prime}}{2.4 .6}+\ldots+\frac{\chi^{n^{\prime}-8}}{2.4 .6 \ldots\left(n^{\prime}-3\right)}\right)
$$

Now although χ^{2} can be found quite easily without any special mathematical knowledge, the calculation of P from the above formula is very troublesome. But it is quite clear that some test of the above kind is absolutely needful in all biometric enquiries in which we wish to test theory against observation. In the paper referred to a small table for P in terms of n^{\prime} and χ^{3} was given, but this table beside being far from extensive enough for actual practice, was based in some entries on values of the probability integral which had not been calculated by the use of higher differences. The present Table L is an attempt to provide a more extensive and accurate system of values for P. It gives the values of P for $n^{\prime}=3$ to 30 and from $\chi^{2}=1$ to 30 by units and from $\chi^{3}=30$ to 70 by tens.

Method of Calculating Tables.

In order to simplify the work of calculating P for values lying outside the range of this table, or in cases where interpolation would not give sufficiently accurate results a series of additional tables are given which were used in the calculation of Table I. Thus Table II. gives the values of $\log \left(x \sqrt{\frac{Y}{\pi}} e^{-i x^{\prime}}\right)$ and $\log \left(e^{-i d x^{3}}\right)$ to eight figures Table V. gives $\log \theta^{-1}$ and $\log \sqrt{\frac{2}{\pi}}$ to ten figares*. Table III. gives the cologarithms of $n(n-2)(n-4) \ldots 1$ (or 2) needed for the coefficients of the powers of \boldsymbol{x} to eight figures. Table IV. gives the values of $\sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-i x^{3}} d \chi$ for $\chi^{3}=1$ to 30 to eight figures, ie. as long as it is practically sensible. Further values of this integral may be deduced from the tables for $\frac{2}{\sqrt{\pi}} \int_{0}^{t} \sigma^{-n} d t$, which are given for $t=0$ to 480 to eleven places of decimals for the higher values in Czuber's Theorie der Beobachtungsfehler, Leipzig, 1891.

In calculating the tables Erskine Scott's 10-Figure Logarithms and Filipowski's 7-Figure Antilogarithms were used. The method of calculation was, briefly, as follows. Tables were first made of $\log \left(\sqrt{\frac{2}{\pi}}-1 x^{2}\right)$ and $\log e^{-i x x^{4}}$ by continuous
*Thus incidentally the ordinstes of the normal probability corre, $y=\frac{1}{1} \sqrt{\frac{8}{9}} e^{-t a s}$, wre given for the equares of the absolsere.
addition and after adding $\log \chi$ to the former, the resulting figures were reduced from ten to eight places of decimals so as to avoid the error that would arise from the accumulation of amall differences in the eleventh place in the value of $\log e^{-1}$. These tables were carefully checked by addition and by eramining every tenth value in the continuous work. The table of colog $[n]\left(=\log \frac{1}{n(n-2)(n-4) \ldots .}\right)$ was originally calculated to ten places. The only other auxiliary table required was for $\sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-1} x^{3} d \chi$, and these values were calculated to seven places of decimals by second differences from a table of values of $\frac{2}{\sqrt{\pi}} \int_{0}^{t} d t^{*}$. It was quite safe to omit third differences. The values of P were then calculated from formula (i) and (ii) given above. In making the table, to find χ^{m}, a column of $s \log \chi^{2}$ was first set up, and then by means of four moveable slips of paper (two for n^{\prime} even and two for n^{\prime} odd) a second column calculated giving the sum of $s \log \chi^{2}, \operatorname{colog}(2 s+1)$ and $\log \left(\sqrt{\frac{2}{\pi}} \chi^{-i x^{2}}\right)$. These figures were checked by addition. The use of alips with colog (n) written on them saved a very large amount of copying. The antilogarithms of the items of the second column were then put in a third column and the values of $\sqrt{\frac{2}{\pi}} \int_{x}^{\infty} \sigma x^{2} d \chi$ having been written at the top of it, the figures given in Table I. were found by continuous addition. The values for n^{\prime} even were calculated in like manner. The numbers obtained were tested when possible against those originally published in the Phil. Mag. and against a few additional values calculated by Miss M. A. Lewenz. The work was of course checked at every stage, but when the table was completed the second differences in each column were examined and found to run smoothly. The like method of differences was appealed to in the case of discrepancies between the short table and the present table, which were not due to the approximate value taken for the probability integral. It is hoped that the table as it now stands is substantially free from error.

In using the present method of testing goodness of fit it is essential to bear in mind a warning given in the paper in the Phil. Mag. referred to above (footnote, p. 164): "A theoretical probability curve without limited range will never at the extreme tails exactly fit observation. The difficulty is obvious where the observations go by units and the theory by fractions. We ought to take our final theoretical groups to cover as much of the tail area as amounts to at least a unit of frequency in such cases."

Further we ought to be careful to read the corresponding areas of the frequency curve and not merely the mid-ordinates, when we have not a great number of groups, or when, although the groups are numerous, the frequency is very skew.

[^0]
Illustration of use of Tables.

In the table below we have the distribution of the cephalic index in 900 skulls of modern Bavarian peasants. The frequency is given in the second column. In the third column we have the distribution as indicated by the normal curve of errors. Is this a reasonable description of the series of measurements? In the fourth column are given the values of $m_{T}-m_{r}^{\prime}$ and in the fifth those of ($\left.m_{r}-m_{r}\right)^{2} / m_{r}$. The resulting value of χ^{2} is 18.36 and $n^{\prime} \infty 24$. Table I. gives us: $n^{\prime}=24, \chi^{2}=18, P=757489$, and $\chi^{2}=19, P=701224$. Hence the required probability is nearly 737 , or roughly in every three cases out of four a random sampling would lead to a system of deviations diverging more widely from theory. Thus the fit may be considered a good one.

Cephalio Index of Bavarian'Skulls.

Index	Obserred	Caloulated*		$\frac{\left(m_{r}-m_{r}{ }^{2}\right)^{2} \dagger}{m_{r}}$
Under 71.5	2	1	- 1	1
78	0	1	$+1$	1
73	8.5	$1 \cdot 5$	-1	67
74	$1 \cdot 5$	3.5	+ 2	1-14
75	$3 \cdot 5$	$7 \cdot 5$	+ 4	$9 \cdot 13$
76	$12 \cdot 5$	$13 \cdot 5$	+1	07
77	17	23	$+6$	1.57
78	37	35.5	-1.5	08
78	55	58.5	- 2.5	-18
80	71.5	69.5	- 2	06
81	82	88	$+4$	-19
88	116	98.5	-17.5	8.11
83	88	103	$+5$	24
84	107	$89 \cdot 5$	-7.5	$\cdot 57$
85	88	$88 \cdot 5$	$+6.5$	-48
86	74	78	- 2	08
87	58	54	- 4	-30
88	$34 \cdot 6$	$37 \cdot 5$	+ 3	24
89	19	23.5	+ 4.5	-88
90	10	14	$+4$	$1 \cdot 14$
91	8	$7 \cdot 5$	- 0.5	03
82	3	$3 \cdot 5$	+ 0.5	07
83	1.5	2	+ 0.5	-125
Over 93.5	$4 \cdot 5$	2	- 2.5	$3 \cdot 125$
Totals	800	900	0	$x^{2}=18 \cdot 36$

[^1]TABLE I.

x^{4}	$\mathrm{s}^{\prime}=8$	$n^{\prime}=4$	$=5$	$\mathrm{n}^{\prime}=6$	$k^{\prime}=7$	${ }^{\prime}=8$	$n^{\prime}=9$	$\mathrm{B}^{\prime}=10$	$n^{\prime}=$
1	+085	-801253	-909798	${ }^{962568}$	985618	P94889	9982	-999438	-998828
2	-387878	. 578	735759	84914	919699	958840	981018	991468	-996340
s	-223130	-391625	-557885	¢09888	-808847	885008	-934857	964898	881484
4	-136335	281464	-409008	-54941	-78687	-779778	-8571	911418	34
5	088085	-171797	287298	41	- 543813	-	-57578	308	78
6	049787	- 111810	-199148	30681	-423180	-589750	847838	739918	815283
7	-030197	071897	1358	220640	- 380847	-288880	. 536888	1837119	725444
8	01831	04601	091578	-15683	238103	2325	433	-534148	628837
9	-011109	029891	081098	-109064	-173578	2526	348298	374	104
10	000	186	040488	07	-124	-188	265	-	440483
11	-004087	01172	02856	05138	08	-1381	201	-275709	-357518
12	004479	007383	0173	034787	061869	-100	- 151	813308	-285057
13	001503	${ }^{0} 04637$	011276	023378	043036	07810	-111850	-162607	223672
14	000912	002805	00	-15609	638	051181	081765	-122325	2992
15	000653	-0181	0047	010383	02025	03600	-059145	0908	132081
16	00033	0011	00	0088	01	02	042380	068881	099638
17	000803	0007	00193	004500	009883	017396	030109	048716	074364
18	000193	000440	0012	00294	006332	011970	081228	035174	064984
19	000075	000873.	000786	001828	004164	0081	01480	025193	0408e3
20	00004	-000170	-000499	001850	008769	008570	010338	017913	028253
21	-0000	0001	000317	000810	0	003770	007147	018950	93
2	000017	-000065	000200	000584	0019	00854	00491	008880	015105
2	000010	0	00	000338	-00078	001705	003364	0818	010747
24	-000006	-000025	000080	000817	000322	001138	008292	004301	007800
25	-0000	-0001	-000050	0001	000341	000759	001554	00887	005345
26	000002	000010	000032	00008	000	0005	001050	002	003740
27	-0000	-000008	-000020	000037	0001	000333	00070	001399	008804
28	000001	000004	000018	000037	000094	-000220	000474	000854	-01805
29	000001	000002	000008	0000	000	000	00031	00064	001846
so	000000	-000001	000005	000015	000039	000095	000911	000438	000887
40	000000	000000	000000	000000	000001	000001	000003	-000008	000017
50	000000	000000	000000	000000	000000	-000000	000000	000000	000000
co	000000	.00000	00000	000	.00000	00000	000000	00000	000000
70	000000	000000	000000	000000	000000	000000	000000	000000	000000

TABLE I.-continued

x^{2}	$n^{\prime}=12$	$\mathrm{n}^{\prime}=18$	$\mathrm{n}^{\prime}=14$	$\mathrm{n}^{\prime}=15$	$n^{\prime}=18$	$x^{\prime}=17$	$x^{\prime}=18$	$x^{\prime}=19$	$x^{\prime}=20$
1	999950	999986	999997	-209098	1.			1.	
2	-998498	P99408	1899774	-899917	989970	-998990	999997	899999	1.
s	990786	996544	997934	-999074	-999598	1898830	999931	-999978	299889
4	268917	-883436	891191	-996468	-97737	-988803	-999483	-899763	-999894
5	931167	-957979	975193	-985813	992187	-995754	99771	998860	-990481
6	-87336	918088	-946163	-968491	97974	-888095	-93187	-998197	-987029
7	7799073	887613	902101	-934711	957850	973880	*83549	-990125	-994813
8	71330	7881	-8438	889397	-983783	948887.	-86547	-978837	086671
9	621898	702931	.772943	. 831051	877517	913414	-40261	-959743	973479
10	-530387	815980	-983934	-62183	- 819739	-880688	803610	931800	-952948
11	-44320	-588919	610817	-68603	752594	-809485	-8565	-894357	983839
12	362648	-445680	- 687643	-806303	879088	743980	-800138	-847237	-885694
13	-293326	389041	4478	. 5265	6022	878758	738188	791573	-838571
14	-232993	-300708	-373844	$\cdot 449711$	- 525829	-598714	. 687102	729091	783691
15	-182498	241438	307354	-378154	51418	-524638	-595482	881907	722588
16	$\cdot 141130$	-191236	249129	-313374	388081	-452981	. 523834	-698547	-657877
17	-107878	-149597	-199304	256178	318864	-385897	- 454380	-523105	. 688888
18	081681	-115691	-187580	209781	262686	-323897	-388841	-455663	-524438
19	081094	088529	-183104	-164949	-213734	-288683	-388532	-391883	-456836
20	0483	067088	93910	-130141	32	220	274229	-338819	-394578
21	- 233371	-050380	072929	-101638	-136830	- 178810	-226891	- 278413	236801
28	084374	037590	055362	078814	-107804	-143191	- 184719	-231085	-284256
25	017678	027728	041677	060970	084140	-113735	-148251	-190580	342
24	018733	080341	03113	045882	085093	089504	-119435	-165028	- 198152
25	009117	014822	023084	034868	049943	-099884	094710	-124015	-18054
26	006480	010734	017001	025887	038023	-054028	074461	099758	-180189
27	-004595	-077	-01244	019254	028736	041483	058088	078985	- 104633
28	003238	005538	-099050	014828	021569	031620	044938	06835	083488
29	. 002770	003940	006546	010450	018085	023936	034586	048379	085985
so	001585	008792	004710	007632	011981	018002	026345	037446	051798
40	-00038	000072	000138	-000255	000463	000778	001294	002087	003778
50	-00001	-00001	-000003	000006	000012	000023	000042	-000075	-000131
60	.000000	000000	000000	000000	000000	000001	000001	000002	000004
70	000000	000000	000000	000000	000000	000000	000000	000000	000000

TABLE I.-continued.

$\boldsymbol{x}^{\mathbf{1}}$	$\mathrm{n}^{\prime}=91$	$\mathrm{n}^{\prime} \times 18$	$x^{\prime}=88$	$\mathrm{n}^{\prime}=24$	$n^{\prime}=28$	$x^{\prime}=28$	$n^{\prime}=97$	$\mathrm{m}^{\prime}=28$	$x^{\prime}=29$	${ }^{\prime}=30$
1	$1 \cdot$	1.	1.	1.	1.	1.	$1 \cdot$	1.	$1 \cdot$	1.
\boldsymbol{L}	1.	1		1		1.		1.	1.	1.
3	-999896	-999988	-999998	1	1	1	1.	1	$1 \cdot$	
4	1899954	299990	998908	-999997	299999	1.	1.	1.	$1 \cdot$	
5	999729	-98986	989939	299978	299887	1989094	-999898	-899899	1.	1.
6	998898	-999487	989708	P99855	-898929	-909688	999984	-999993	-999897	998989
7	-996885	998148	998980	4999458	999711	-998851	1999084	-890989	-999081	989991
8	991868	-995143	997160	-998371	98908	909494	699788	299853	-999924	-989960
9	988897	988214	993331	295957	997695	-988598	899194	-999546	999748	1999863
10	-988171	978912	988304	991877	894.64	-986853	997881	-998803	-999302	-999599
11	646823	968787	974749	883189	-889012	292948	-995549	-997839	-988315	-998888
18	- 016076	-880817	987379	971470	-970908	986567	-991173	-994994	-998372	997788
19	-877384	908624	933161	-951990	986121	-976501	-883974	989847	-993900	-995384
14	. 830498	889898	901479	928871	946650	961738	973000	981254	987189	991377
15	-776408	-888958	-863838	-894634	920759	-941383	-957334	-969432	978436	988015
16	716894	769650	-810886	-855388	-88807	914898	-936803	258947	285819	975538
17	658974	711106	-763368	809251	84886	-881793	909083	93118	948589	968181
18	-587408	848004	705088	757488	- 803008	848380	-875773	-903519	-928149	944872
19	-521826	. 585140	645328	701824	751890	797180	-836430	870001	-898136	981288
20	-457930	. 58128	-583040	641918	698776	746895	-791558	-830756	-864464	-892027
21	-397132	- 45894	580738	- 881087	638785	692609	741864	786888	-825349	-859149
28	340511	-398510	-459888	-520259	-579267	635744	-888697	737377	-781891	-820189
28	-288795	343979	- 401730	-460771	-518798	-577564	632947	486013	-733041	-76543
24	248398	-293058	-3478z9	- 403808	-461597	. 510373	. 575965	630316	-681535	-728838
25	201431	-247164	-297075	-350285	-405760	$\cdot 468373$	- 518975	- 874468	687838	678248
26	-165818	208448	251688	-300868	. 353165	- 407588	-463105	. 518600	- 573045	685491
27	-135884	-17085	-211220	285987	. 304453	355884	-409333	-463794	-518847	- 571705
28	-109389	$\cdot 140151$	-17568	215781	-280040	-307853	-358458	-410973	-464447	- 517913
29	087759	-114002	$\cdot 144881$	-180310	-280131	-263916	. 311088	-360899	-412598	-485068
50	089854	091888	-118464	$\cdot 149402$	-184762	-284289	267811	-314154	-383818	-414004
40	004995	-007437	. 010812	015369	081387	029164	039018	051237	068128	083937
50	000821	000365	000588	000921	001416	002131	003144	${ }^{0} 4551$	006467	009032
60	. 000007	000013	$0000 z 2$	000038	000084	000104	000168	000264	000407	000618
70	000000	-000000	000001	.000001	-000002	000004	000007	-000011	000019	-000030

TABLE II

x^{3}	$\log \left\{x \sqrt{\frac{2}{7}} c^{-6 x^{x}}\right\}$	$\log e^{-t+4}$	x^{2}	$\log \left\{x \sqrt{\frac{8}{4}} e^{-3 x}\right\}$	$\log e^{-t} x^{e}$
1	T.88479282	1.78285876	51	T168181586	12.92649071
$\stackrel{8}{8}$	T 18181816038	T.566705592	51 59 59	T1.46888890	IE.70834447
4	${ }^{1} \cdot 483843881097$	$\stackrel{1}{\mathrm{~T} \cdot 13814110488888}$	59 54 54		-18.49119623
$\stackrel{4}{5}$	T.16568888	${ }_{8}$	${ }_{65}^{65}$	${ }_{12}$ 2.82902316	${ }^{12} 505690175$
6	2-98813224	玉 268711655	56	[2.61578858	13-83974450
7	¢ -80445839	2.47996931	${ }^{57}$	[8.40248475	${ }^{13} 682880726$
8	E.81030713	$\mathrm{F}^{5}-262882207$	${ }^{68}$	18.18911408	${ }^{13} \cdot 40548008$
9	5.42473615	\% 2.04567483	69	${ }_{15}^{1597567885}$	I3.18831978
10	8-83046785	${ }^{3} 888858759$	60	13.78818183	1497116554
11	8.03401675	381138935	61	15.548683388	1476401830
12	${ }^{3} 8.83576379$	3.39423311	62	${ }^{15} 333500098$	14.53987106
13	5.83599760	3.17708887	${ }^{69}$	13.12133418	14.31972388
14	${ }^{5} 434494871$	4.89893863	64	14400760669	14.10257638
15	3523277708	474279139	65	1469382607	TB.88642934
16	3.02964420	4.52584414	${ }^{66}$	14.48099419	${ }^{15} 688888209$
17	4.82566143	4.30048990	67	14.26811238	IB.46113485
18	4.82092598	4.09134068	68	14.05218813	IB-23988781
19	4.41551928	5.87420248	${ }_{69} 6$	[15.83820498	${ }^{15-01684037}$
20	4.20951024	${ }^{6} 65705518$	70	15.62418281	1679998313
${ }_{29}^{21}$	4.00296765	$5 \cdot 43990794$	${ }_{72}^{71}$	15-41011518	16.588545889
${ }^{28}$	Б-79591210	5-22876070	72	${ }^{15} 19600496$	16.36539868
23	5•58841744	${ }^{3} .00561346$	73	16.98185890	$16 \cdot 14825141$
24	E.38051190	6.78846622	74	16.76788009	17.93110417
25	5.17222904	${ }^{6} 577131898$	75	$1{ }^{16} 33342762$	${ }^{17} 713995693$
26	${ }_{6}^{6.963598847}$	${ }_{6}^{635417173}$	${ }^{76}$	16.33915654	${ }^{17}$-49980968
${ }^{27}$	${ }_{6}^{6.75464644}$	$\stackrel{6}{6} 13702449$	${ }_{78}^{77}$	${ }^{16} 112484787$	I7-27968244
${ }^{28}$	${ }_{6}^{6.54539833}$	${ }^{7} 91987725$	${ }^{78}$	17.91050256	17.08231530
${ }_{80}$	6.33586907 6.12608348	7.70273001	79	17.69812157	18.84436796
91	${ }_{7} 791605644$	${ }_{7}^{7} \mathbf{7} 2888438353$	80 81 8	- 177.48178785605	$\frac{1868822078}{18.4107348}$
58	7.70580334	7.05128829	82	17-05877323	18.19392684
ss	7. 49533808	8.83414105	88	18.83885810	19-97677900
34	7-28467333	881699381	84	${ }^{18} 682371146$	${ }^{19} 75903176$
35	707382085	8 839984687	85	1840913404	19.54248452
36	8-86279064	8.18269932	86	$18 \cdot 19452856$	19.32533727
57	8-85159301	${ }_{9} 98555208$	87	TE97988978	${ }^{16} 10819003$
988	${ }^{6} .440238370$	9.74840484	88	19.78582419	E0-89104979
40	${ }_{8}^{8.2288729097}$	${ }_{9}^{9.3141271038}$	$\begin{array}{r}89 \\ 90 \\ \hline\end{array}$	${ }^{19} 19 \cdot 335850963$	$\frac{80}{80.458774831}$
41	0.80529311	${ }^{6}-99696312$	91	18.12108183	80-23960107
48	${ }_{8}^{8} \cdot 593388158$	10-87981588	92	20-90688780	E020244383
45	${ }_{6} \cdot 3.31342933$	10.86868884	93	Ev-99148818	${ }^{81} \cdot 80530659$
44	${ }^{8} \cdot 16918780$	10.44538140	94	E0-47860333	${ }^{81} .588815935$
$4{ }_{4}^{4}$	10.744545898	${ }^{10} 828833416$	${ }_{9} 95$	E\%-28181397	¢ $\frac{81}{81} \cdot 3710101211$
47	70.53206866	I1.79407967	${ }_{97}^{96}$	${ }_{\text {21 }}$ - 33204355	${ }^{21}$
48	$10 \cdot 31949311$	II.57693243	98	21-61712348	\%2.71957038
49	[0-10882329	H-35978519	99	91.40218080	22.50242314
50	T1.89406301	[1.14283795	100	21-18721596	82\%88527090

TABLE III.
Table of colog $[n]:-[n]=n(n-2)(n-4) \ldots \ldots$

odd nom	colog [\times]	${ }_{\text {even }}^{n} \mathrm{n}$	colog [8]
1	00000000	2	I 69897000
3	I. 582887875	+	İ09691001
5	¢.88390874	6	\% 231875878
7	3 3-97881070	8	$\underline{3} \cdot 41566878$
9	3.02458819	10	4.41568878
11	6.98317551	12	5.33648753
15	6.86923815	14	6.18035949
15	769314089	16	8 8-98623951
17	8-46269197	18	9.73096701
19	9.18393837	20	10.42993701
21	II.86171808	22	I108751433
28	12.40999184	24	13:70730309
25	13.10805123	26	14:29232974
27	1567088747	28	16.84517171
89	16.90828947	50	[7.36805045
31	18.716982778	5	18.86290048
35	19.18841384	34	200 33142156
35	8185434579	36	82-77511906
57	E208614407	38	283.19533546
59	24.49507946	40	25-59327547
41	28-88289561	42	87-97002818
49	87-24882715	44	28.32657350
45	¢89-59561464	46	50786381567
47	31-92351678	48	$35-88257443$
49	32-23332070	50	$3{ }^{3} \cdot 28380443$
51	34.62575052	62	35.56760109
55	36.80147465	54	37-83580733
65	3706111186	56	38.08701830
57	39.30523711	58	40.32359131
59	41.63438510	60	42:54544006
61	4594905526	68	44.75304837
65	45-94971471	64	46-94686839
65	46.13680135	66	47.12732446
67	48.31072655	68	\$9.204815.54
69	50.47187748	\% 0	51.44071750
71	52.62081911	72	53.59238501
75	54.75789685	74	56.72315329
75	5688823499	76	57.84233870
77	58-99574486	78	58.95024509
78	5990811717	80	6004716511
81	61.18963215	82	68.13334125
83	63.27053406	84	64.20906197
85	65.34113514	86	66.87456359
87	67.40161588	88	68.33008084
89	699-45229588	90	7037583833
91	71.48318448	32	78.41205051
98	73.52470154	94	74.43892965
95	76.54697793	96	76.45865142
${ }_{98}^{97}$	77.56020680	98	78.46548534
98	76:56467100	100	80,48542534

TABLE IV.

$\boldsymbol{x}^{\mathbf{2}}$	$\sqrt{\frac{2}{x}} \int_{x}^{\infty} e^{-i-3 x^{8} d x}$
1	8173108
2	-1572998
5	0832846
4	0455003
5	0263474
6	0143080
7	. 0081506
8	0046776
9	0028998
10	0015654
11	0009118
12	0005321
13	0003115
14	0001828
15	0001076
16	-0000634
17	-0000374
18	. 0000881
19	. 00000132
20	-0000078
21	-0000046
22	0000027
28	-0000016
24	0000011
25	-0000007
${ }^{26}$	-0000004
${ }^{27}$	-0000003
28	0000008
89	-0000001
50	-0000000

TABLE V.

[^0]: *The Table in Galloway's Treatise on Probabilitice was the one actuslly usod.

[^1]: - The caloulated values are given to the nearest hall skull because the observed values only run to this unit.
 + The numbers in the ffth column were obtained from the squares of those in the fourth by dividing them by the corresponding numbers in the third. The squaring is at once done from Barlow's Tables and the division to the acooracy required by Crelle's Rechentafels. Both these books are indispensable to biometriciang.

