ON CERTAIN PROBABLE ERRORS AND CORRELATION COEFFICIENTS OF MULTIPLE FREQUENCY DISTRIBUTIONS WITH SKEW REGRESSION.

By L. ISSERLIS, D.Sc.

(1) In the systematic investigation of the statistical constants of multiple correlation and of their probable errors, it is important to have to hand the probable errors and the mutual correlations of the more fandamental constants-the means, the standard deviations and the correlation coefficients. For the case in which the frequency distribution follows the normal law this need is supplied in the memoir by Pearson and Filon entitled "On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation*."

As regards the more general case in which the regression is akew, the probable error of a correlation coefficient was first given by Sheppard (Phil. Trans. Vol. 192, A, p. 128).

The probable error of a mean and the corralation between deviations in the value of the mean and that of a standard deviation, or of a correlation coefficient, and the correlation between two standard deviations, are given by Pearson (Bionsetrika, Vol. Ix. 1913, pp. 1-10).

For reference we give here the results for the case of normal distributions obtained by Pearson and Filon in the memoir referred to above:

$$
\begin{align*}
& \Sigma_{\sigma_{1}}=\sigma_{1} / \sqrt{2 n} \tag{1}\\
& \Sigma_{r_{11}}=\left(1-r_{12}^{2}\right) / \sqrt{n} \tag{2}\\
& R_{\sigma_{1} \sigma_{2}}=r^{2}{ }_{12} \\
& R_{\sigma_{1} r_{13}}=r_{12} / \sqrt{ } 2 \\
& R_{\sigma_{1} r_{n}}=\frac{r_{18}\left(r_{13}-r_{18} r_{28}\right)+r_{13}\left(r_{18}-r_{18} r_{28}\right)}{\sqrt{2} \cdot\left(1-r_{28}^{3}\right)} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& R_{r_{13} r_{4}}=\frac{\left\{\begin{array}{c}
\left(r_{13}-r_{12} r_{23}\right)\left(r_{M 1}-r_{23} r_{34}\right)+\left(r_{14}-r_{34} r_{13}\right)\left(r_{23}-r_{12} r_{13}\right) \\
+\left(r_{23}-r_{14} r_{34}\right)\left(r_{M}-r_{12} r_{14}\right)+\left(r_{14}-r_{19} r_{M}\right)\left(r_{23}-r_{M} r_{34}\right)
\end{array}\right.}{2\left(1-r_{12}^{2}\right)\left(1-r_{91}^{2}\right)} \tag{7}
\end{align*}
$$

- Phil Trane VoL 191, A (1898), pp 229-311.
\dagger Phil. Trane Fol 191, A, Equations (xv)-(xviif), (xxivi), (xrivii) and (ㄷ)).

In the present paper the corresponding results are obtained for the case of skew regression. The method employed is different and by supposing the regression to be linear and the distribution to be normal, a confirmation is obtained of the above results which in Pearson and Filon's memoir depend on very complicated analysis.
(2) We may begin by discussing the correlation that exists between deviations from their means in the case of two correlation coefficients $r_{x y}$ and $r_{s t}$.

We have

$$
\begin{align*}
& r_{x y}=p_{x y} / \sqrt{ }\left(p_{x^{2}} p_{v}\right) \\
& r_{x t}=p_{x t} \sqrt{ }\left(p_{x} p_{t}\right) . \tag{9}
\end{align*}
$$

where $p_{x^{\prime} y^{m} x^{m} \boldsymbol{H}^{+}}$is employed to denote the mixed moment of orders l, m, n, k in the variables, taken about the means so that
and

$$
\begin{align*}
& \frac{d r_{a y}}{\tau_{n y}}=\frac{d p_{x y}}{p_{x y}}-\frac{1}{2} \frac{d p_{x^{2}}}{p_{x t}}-\frac{1}{2} \frac{d p_{t}}{p_{v}} \tag{10}\\
& \frac{d r_{x t}}{r_{x t}}=\frac{d p_{x t}}{p_{x t}}-\frac{1}{2} \frac{d p_{s^{t}}}{p_{x^{t}}}-\frac{1}{2} \frac{d p_{t}}{p_{t}} \tag{ll}
\end{align*}
$$

It is clear that we shall require the correlations between any one of $p_{\boldsymbol{r}}, p_{\mathbf{s}^{2}}, p_{\boldsymbol{y}^{2}}$ and any one of $p_{s t}, p_{x^{2}}$ and $p_{t^{2}}$. It will suffice to find the correlation between $p_{x y}$ and $p_{s t}$.

Now $\quad N p_{x y}=\operatorname{Six}_{\boldsymbol{y}}\left\{n_{x y}(x-\bar{x})(y-\bar{y})\right\}$
$\therefore N d p_{x y}=\underset{x y}{S}\left\{d n_{x y}(x-\bar{x})(y-\bar{y})\right\}$

$$
\begin{equation*}
+\underset{x}{ } \underset{y}{ }\left\{-n_{x y}(y-\bar{y}) d \bar{x}\right\}+\underset{x y}{S} \underset{y}{ }\left\{-n_{x y}(x-\bar{x}) d \bar{y}\right\} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
N d p_{x y}=\operatorname{Six}_{x} S\left\{d n_{x y} X Y\right\} \tag{14}
\end{equation*}
$$

if we denote the total population by $N, x-\bar{x}$ by $\bar{X}, y-\bar{y}$ by Y and remember that

Similarly

$$
\begin{align*}
\underset{x}{S}\left\{(x-\bar{x}) n_{x v}\right\} & =\underset{y}{\underset{y}{\mid}\left\{(y-\bar{y}) n_{x v}\right\}=0 .} \\
N d p_{x t} & =\underset{x}{\int_{t}}\left\{d n_{\mathrm{tt}} Z T\right\} \ldots \ldots . \tag{15}
\end{align*}
$$

The mean value of $d n_{x y} d n_{x t}$ in many samples is the mean value of
where in the fourfold summation the term
is omitted.

$$
\left(d n_{x_{1}, y_{0} z_{l} q_{r}}\right)^{2}
$$

But clearly the right-hand member of (16) reduces to
hence the mean value of

$$
n_{x_{0} y_{\delta^{\prime}} z_{1} t_{r}}-n_{x_{1} y_{r}} n_{x_{1} t_{r}} / N,
$$

$$
\begin{equation*}
N^{2} d p_{y v} d p_{z t} \text { is } N\left(p_{x y z t}-p_{x y} p_{x t}\right) \tag{17}
\end{equation*}
$$

Putting $t=2$ we deduce from (17)
Mean value of $d p_{x y} d p_{x^{\prime}}=\left(p_{x v x^{2}}-p_{x y} p_{x^{z}}\right) / N$
and putting $y=x$ in this result,
Mean value of $d p_{x^{\prime}} d p_{x_{s}}=\left(p_{s_{s}}-p_{x_{r}} p_{x_{x}}\right) / N$
If we multiply (10) and (11), sum for all samples and divide by the number of samples we deduce

$$
\begin{aligned}
& N \sigma_{\tau_{z a}} \sigma_{r_{w}} R_{r_{z i}, r_{d}} / r_{x v} \tau_{z t}
\end{aligned}
$$

This result like Sheppard's formula for $\sigma_{r_{v g}}$ is much simpler when expressed in reduced moments. Let us write
so that q_{x} is anity and $q_{k y}=r_{r y}$. The numerical term in (20) is

$$
-1+\frac{1}{2}(4)+\frac{1}{1}(-4)
$$

or zero, hence

$$
\begin{aligned}
& N \sigma_{r_{z a}} \sigma_{r_{z}} R_{r_{z,}, r_{k}} / r_{x y} r_{x t}
\end{aligned}
$$

In the same notation Sheppard's formula becomes

$$
\begin{equation*}
\frac{\sigma^{2} \tau_{z y}}{r_{x y}^{2}}=\frac{1}{N}\left\{q_{x^{2} x^{2}}^{r_{x y}^{2}}+\frac{1}{2}\left(\beta_{y}+\beta_{z}^{\prime}\right)+q_{x^{2} v^{2}}-\frac{q_{x^{2}}+g_{x r^{\prime}}}{r_{x v}}\right\} \tag{21}
\end{equation*}
$$

To find the correlation between $r_{x y}$ and $r_{x x}$ we have only to replace t by x in (21), tbus

$$
\begin{aligned}
& N \sigma_{r_{x y}} \sigma_{r_{x x}} R_{\tau_{x y}, r_{x y}} / r_{x y} r_{x t}
\end{aligned}
$$

(3) These correlation coefficients will simplify if the regression be linear and simplify to a considerable extent if at the same time the distribution be normal. For with linent regression

$$
\begin{aligned}
N p_{x^{2} w} & =\operatorname{Sin}_{x} \operatorname{SS}_{y}\left(n_{x n} x^{2} y z\right) \dagger \\
& \left.=\operatorname{Sixy}_{x} \operatorname{Sn}_{x y} x^{2} y \times \bar{z}_{x y}\right),
\end{aligned}
$$

where $\bar{x}_{x y}$ is the mean value of z for given values of x and y.
*For the denominator of left-hand side, ct. Biometrika, Vol. Ix p. 4.
\dagger The origin being taken at the mean.

But from the usual regression equation

$$
\bar{z}_{z y}=x\left(\frac{\tau_{x y}-r_{x y} \tau_{y z}}{1-r_{z y}}\right) \frac{\sigma_{z}}{\sigma_{z}}+y\left(\frac{\tau_{y z}-r_{z z} r_{x y}}{1-r_{x y}^{2}}\right) \frac{\sigma_{z}}{\sigma_{y}},
$$

so that for linear regression

Further

$$
\begin{align*}
p_{x^{\prime} y} & =\frac{1}{N} S_{x y} S_{y}\left(n_{x y} x^{2} y\right) \tag{24}\\
& =\frac{1}{N} S_{x}\left(n_{x} x^{x} \bar{y}_{x}\right) \\
& =\frac{1}{N} S_{x}\left(n_{x} x^{1} \frac{\sigma_{y}}{\sigma_{z}} q_{x y}\right),
\end{align*}
$$

or

$$
\begin{equation*}
p_{x y}=p_{z} r_{x y} \frac{\sigma_{y}}{\sigma_{x}} \tag{25}
\end{equation*}
$$

while $\quad q_{\alpha x}=1+r_{a y}^{2} \sqrt{\left(\beta_{z}-1\right)\left(\beta_{z}^{\prime}-1\right)}$ approximately........$(26)^{*}$,
so that (23) can be evaluated approximately by the use of simple moment coefficients and correlation coefficients only. If in addition the distribution be normal, we know that
so that for normal distributions
or
Similarly

$$
\begin{equation*}
\frac{q_{x v_{v x}}}{r_{x v} r_{x x}}=2+\tau_{v z} / r_{x v} r_{x x} \tag{27}
\end{equation*}
$$

\qquad
and
and

$$
\begin{equation*}
\frac{q_{s r^{2},}}{r_{E z}}=1+2 r_{y z} r_{m v} / r_{E 1} \tag{28}
\end{equation*}
$$

Substituting these values in (23) we obtain, after some reduction and using

$$
\begin{aligned}
& \sigma_{\tau_{t y}}=\left(1-r^{2}{ }_{a v}\right) / \sqrt{N},
\end{aligned}
$$

$$
\begin{align*}
& =r_{r g}\left(1-r_{x y}^{2}\right)\left(1-r_{a x}^{2}\right)-\frac{1}{1} r_{c y} r_{s y}\left(1-r^{2}{ }_{s y}-r_{v z}^{2}-r_{z x}^{2}+2 r_{x y} r_{v z} r_{z z}\right) \tag{30}
\end{align*}
$$

agreeing with (6) the value obtained by Pearson and Filon for normal distribations.
As regards the more general case dealing with the correlation between deviations of $r_{k y}$ and those of $r_{x t}$ given by equation (22), we have when the regression is linear

$$
\begin{aligned}
& p_{x v x t}=\underset{x}{\operatorname{Sin}} \operatorname{Sin}_{y} S S\left\{n_{\mathrm{Eyz}}(x y z t)\right\} \\
& =\underset{x}{\operatorname{Sin}} S \underset{y}{ } S\left\{n_{x y z}\left(x y z \bar{i}_{z r y}\right)\right\}, \\
& \text { * Biometrika, Vol Ir. p. } 4 .
\end{aligned}
$$

where $\bar{t}_{x y}$ is the mean value of t for given values of x, y and z, so that as is well known

$$
\begin{equation*}
\bar{t}_{x y z}=-x \frac{\sigma_{t}}{\sigma_{x}} \frac{\Delta_{x t}}{\Delta_{t t}}-y \frac{\sigma_{t}}{\sigma_{y}} \frac{\Delta_{y t}}{\Delta_{t t}}-z \frac{\sigma_{t}}{\sigma_{z}} \frac{\Delta_{z t}}{\Delta_{t t}} \tag{31}
\end{equation*}
$$

where

$$
\Delta=\left|\begin{array}{cccc}
1, & r_{x y}, & r_{x z}, & r_{x t} \tag{32}\\
r_{x y}, & 1, & r_{y z}, & r_{y t} \\
r_{x y}, & r_{y z}, & 1, & r_{z t} \\
r_{x t}, & r_{y t}, & r_{x t}, & 1
\end{array}\right|
$$

and $\Delta_{\mathcal{N}}$ is the minor corresponding to r_{∞}. Thus

$$
\begin{equation*}
q_{x y t}=-\left(\Delta_{x t} q_{x^{2} x}+\Delta_{y t} q_{x r^{\prime} z}+\Delta_{x t} q_{x x^{1}}\right) / \Delta_{t t} \tag{33}
\end{equation*}
$$

so that $R_{r_{z}, r_{z}}$ can be evaluated approximately in the case of linear regression without employing any mixed moments beyond the simple product moment occurring in a correlation coefficient.

For normal distrubtions we may use (27), 28) and (29) giving

$$
\begin{equation*}
q_{s y t}=-\left[\Delta_{x t}\left(2 r_{x y} r_{x z}+r_{y z}\right)+\Delta_{y t}\left(2 r_{x y} r_{v z}+r_{x z}\right)+\Delta_{x t}\left(2 r_{x z} r_{y z}+r_{s y}\right)\right] / \Delta_{t t} \ldots \tag{34}
\end{equation*}
$$

By well-known properties of firat minors of a determinant we have from (32)

$$
\begin{align*}
& \Delta_{x t}+r_{a y} \Delta_{y t}+r_{x z} \Delta_{z t}+r_{z t} \Delta_{t t}=0 \tag{35}\\
& r_{e y} \Delta_{x t}+\Delta_{y t}+r_{y z} \Delta_{z t}+r_{y t} \Delta_{t t}=0 \tag{36}\\
& r_{x z} \Delta_{x t}+r_{y z} \Delta_{y t}+\Delta_{z t}+r_{s t} \Delta_{t i}=0 \tag{37}
\end{align*}
$$

Maltiply these equations by $r_{y z}, r_{k z}, r_{x y}$ respectively and add,

$$
\begin{align*}
& \therefore \quad\left(r_{y z}+2 r_{x z} r_{x y}\right) \Delta_{a t}+\left(r_{z z}+2 r_{y z} r_{z y}\right) \Delta_{y t} \\
&+\left(r_{x y}+2 r_{y z} r_{k z}\right) \Delta_{z t}+\left(r_{y z} r_{z t}+r_{z z} r_{y t}+r_{s y} r_{z t}\right) \Delta_{t t}=0 . \tag{38}
\end{align*}
$$

Combining this resalt with (33) we see that for normal distributions

$$
\begin{equation*}
q_{s y s t}=r_{a y} r_{s t}+r_{y s} r_{a t}+r_{s e} r_{y t} \tag{39}
\end{equation*}
$$

an interesting result likely to prove useful in other applications and probably capable of generalisation Particular cases of (39) are obtained by putting $t=x$
 which is well known.

If we now substitute these values in equation (21) we find

$$
\begin{aligned}
& N \sigma_{r_{\omega}} \sigma_{\tau_{e}} R_{r_{\text {mat }} t_{\mu}} \\
& =2 r_{y s} r_{z t}+2 r_{s s} r_{y t}-2 r_{m z} r_{y s} r_{s t}-2 r_{z t} r_{y t} r_{s t} \\
& -2 r_{x s} r_{z t} r_{s y}-2 r_{y s} r_{y t} r_{x y}+r_{s y} r_{x t}\left(r_{x z}^{2}+r_{x t}^{2}+r_{y z}^{2}+r_{y t}^{2}\right) .
\end{aligned}
$$

The right-hand member can be put in the form

$$
\begin{aligned}
\frac{1}{2}\left\{\left(r_{x t}-r_{x z} r_{x t}\right)\right. & \left(r_{y z}-r_{x y} r_{x z}\right)+\left(r_{x t}-r_{x y} r_{v t}\right)\left(r_{v z}-r_{y t} r_{x t}\right) \\
& \left.+\left(r_{x z}-r_{x y} r_{y z}\right)\left(r_{v t}-r_{y z} r_{x t}\right)+\left(r_{x z}-r_{z t} r_{y z}\right)\left(r_{y t}-r_{x y} r_{x t}\right)\right\},
\end{aligned}
$$

[^0]and if we remember that for normal distributions
$$
\sigma_{r_{x y}}=\left(1-r_{x y}^{2}\right) / \sqrt{N}, \quad \sigma_{r_{x}}=\left(1-r^{2}{ }_{x t}\right) / \sqrt{N}
$$
this result agrees with Pearson and Filon's value quoted above as equation (7).
(4) To find the probable error of a standard deviation.
\[

$$
\begin{align*}
\sigma_{x}^{2} & =p_{x^{2}} \\
\therefore \frac{d \sigma_{x}}{\sigma_{x}} & =\frac{d p_{x^{2}}}{2 p_{x^{2}}} \tag{40}
\end{align*}
$$
\]

Hence

$$
\begin{align*}
& \frac{\Sigma_{\sigma_{3}}^{2}}{\sigma_{3}^{2}}=\frac{p_{x^{1}}-p^{2} x^{1}}{4 p^{2} x^{2} N} \text { by (17) } \\
& \beta_{2}-1 \\
& 4 N
\end{aligned} \quad \begin{aligned}
\therefore \Sigma_{\sigma_{3}} & =\frac{\sigma_{a} \sqrt{\beta_{2}-1}}{2 \sqrt{N}} \ldots \ldots . \tag{41}
\end{align*}
$$

This result is well known, and for normal distributions, i.e. when $\beta_{2}=3$, becomes $\Sigma_{\sigma_{x}}=\frac{\sigma_{x}}{\sqrt{2} \bar{N}}$, agreeing with (1).

To find the correlation between a standard deviation σ_{x} and a correlation coefficient $r_{y y}$, we multiply (40) by the equation

$$
\frac{d r_{y z}}{r_{y z}}=\frac{d p_{y z}}{p_{y z}}-\frac{d p_{y^{2}}}{2 p_{y^{2}}}-\frac{d p_{z^{2}}}{2 p_{z^{3}}}
$$

and sum for all samples and divide by their number in the usual way, obtaining

$$
\begin{aligned}
& 2 N \sigma_{\sigma_{x}} \sigma_{r_{r z}} R_{\sigma_{x}, r_{y z}} / \sigma_{x} \tau_{r_{z}}
\end{aligned}
$$

a result which as before can be approximated to in the case of linear regression, and which for normal distribations becomes*

$$
\begin{align*}
& R_{\sigma_{x}, r_{y z}}=\frac{r_{y x}+2 r_{x y} r_{x x}-\frac{1}{8}\left(2+2 r^{2}{ }_{s y}+2 r^{2}{ }_{z z}\right)}{r_{y z}} \\
& 2 N \cdot \frac{\sigma_{z}}{\sqrt{2 N}} \cdot \frac{\left(1-r^{2}{ }_{y z}\right)}{\sqrt{N}} \cdot \frac{1}{\sigma_{x} r_{y z}} \tag{43}\\
&=\frac{2 r_{x y} r_{x x}-\left(r^{2}{ }_{x y}+r^{2} x_{x}\right) r_{y z}}{\sqrt{2} \cdot\left(1-r^{2}{ }_{y z}\right)} \ldots \ldots \ldots \ldots
\end{align*}
$$

agreeing with equation (5).

[^0]: * This result, which is accurate for normal distribations, is given as approximstely true for such distributions by H. E. Soper, Biometrika, Vol. II p. 100

