
FREQUENCY DISTRIBUTION OF THE VALUES OF THE
CORRELATION COEFFICIENT IN SAMPLES FROM
AN INDEFINITELY LARGE POPULATION.

BY E. A. FISHER.

1. My attention was drawn to the problem of the frequency distribution of the
correlation coefficient by an article published by Mr H. E. Soper* in 1913. Seeing
that the problem might be attacked by means of geometrical ideas, which I had
previously found helpful in the consideration of samples, I have examined the two
articles by " Studentf," upon which Mr Soper's more elaborate work was based,
with a view to checking and verifying the conclusions there attained.

"Student," if I do not mistake his intention, desiring primarily to obtain
a just estimate of the accuracy to be ascribed to the mean of a small sample,
found it necessary to allow for the fact that the mean square error of such a
sample is not generally equal to the standard deviation of the normal population
from which it is drawn. He was led, in fact, to study the frequency distribution
of the mean square error. He calculated algebraically the first four moments of
this frequency curve, both about the zero point, and about its mean, observed
a simple law to connect the successive moments, and discovered a frequency curve,
which fitted his moments, and gave the required law.

Thus if x1, Xi, ... xn are the members of a sample,

. + xn,
and n(ii = (x1-xy + (x2-xy + ... + (xn-xy,
the frequency with which the mean square error lies in the range d/t is propor-
tional to

fj.n^e~^ dp.

This result, although arrived at by empirical methods, was established almost
beyond reasonable doubt in the first of "Student's" papers. I t is, however, of
interest to notice that the form establishes itself instantly, when the distribution
of the sample is viewed geometrically.

* Biometrika, Vol. n . p. 91. t Ibid. Vol. vi. pp. 1 and 302.
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508 Distribution of the Correlation Coefficients of Samples

In the second of these two papers the more difficult problem of the frequency
distribution of the correlation coefficient is attempted. For samples of 2 the
frequency distribution between the only two possible values —1 and + 1 was

determined by Sheppard's theorem to be in the ratio g- + sin-'/> : - — sin-1/j,

where p is the correlation of the population. Besides this theoretical result,
" Student" appeals only to experimental data. From these he derives an
empirical form for the distribution when p = 0, and makes several valuable
suggestions. I t has been the greatest pleasure and interest to myself to observe
with what accuracy " Student's" insight has led him to the right conclusions.
The form when p= 0 is absolutely correct, and as a further instance I may quote
the remark* " I have dealt with the cases of samples of 2 at some length, because
it is possible that this limiting value of the distribution, with its mean of

— SYD~1P and its second moment coefficient of 1 — (— sin~*p) , may furnish a clue

to the distribution when n is greater than 2." As a matter of fact it is just these
quantities with which we shall be concerned.

To Mr Soper's laborious and intricate paper I cannot hope to do justice.
I have been able to establish the substantial accuracy and value of his approxima-
tions. I t is one of the advantages of approaching a problem from opposite
standpoints that Mr Soper's forms are most accurate for those larger values of n,
where the exact formulae become most complicated.

2. The problem of the frequency distribution of the correlation coefficient r,
derived from a sample of n pairs, taken at random from an infinite population,
may be solved, when that population can be represented by a normal surface,
with the aid of certain very general conceptions derived from the geometry of
n dimensional space. In this paper the general form will first be demonstrated,
and for a few important cases some of the successive moments will be derived.
Incidentally it will be of interest to compare the exact form with Mr Soper's
approximation, and with reference to the experimental data supplied by "Student."

If the frequency distribution of the population be specified by the form

df= L^^e1"^* a*1 *!•* W Sdxdy,
27To-(rVl p* 3- p*

where df is the chance that any observation should fall into the range dxdy, then
the chance that n pairs should fall within their specified elements is

ti-miV 2p (j - mi) (y - TO;) (y-m

« W y i .
(27rcr1o-!!Vl-p2)n

and this we interpret as a simple density distribution in In dimensions.
* Biometrika, VoL vi. p. 304.
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R. A. FISHER 509

For the variables x and y it is now necessary to substitute the statistical
derivatives determined by the equations

/=2(y ) ,
i

nx = X (a;),
1

n
'2{x-x)(y~ y),
1

and it is evident that the only difficulty lies in the expression of an element of
volume in 2n dimensional space in terms of these derivatives.

The five quantities above defined have, in fact, an exceedingly beautiful
interpretation in generalised space, which we may now examine.

3. Considering first the space of n dimensions in which the variations of x
are represented, the mean and mean square error of n observations are determined
by the relations of P, the point representing the n observations, to the line

x1 = xi = xs = . . . = « „ ,

for the perpendicular PM drawn from P upon this line will lie in the region

and will meet it at the point M, where

further, since, PM' = («, - xf + (x2 - xf + ... + (xn - xf,

the length of PM is ^ >Jn.

X3

An element of volume in this n dimensional space may now without difficulty
be specified in terms of * and ^ ; for, given x and /&,, P must lie on a sphere in
re — 1 dimensions, lying at right angles to the line OM, and the element of
volume is

where G is some constant, which need not be determined.
65—2
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510 Distribution of the Correlation Coefficients of Samples

The point in 2n dimensional space which is represented by the n pairs of
observations must be such that its projection on the n dimensional space, in
which x is represented, lies upon a certain sphere of radius y^ *Jn, and on the space
in which y is represented, upon another sphere of radius /*2\M> and now, when we
come to the interpretation of r, we must observe that to each point on the first
sphere there corresponds a certain point on the second sphere, to which it bears
the relation

xx — x_xi — x_ _xn—x

yi-y~ y*-y yn-y'

In general this relation does not hold for the n pairs of observations, and the
two projections will not fall at corresponding points on the two spheres. If now
one of the spheres be turned round so as to occupy the same space as the other,
and so that the lines upon which x^ and ylt and the other pairs of coordinates, are
measured, coincide, then corresponding points will lie on the same radii, and the
correlation coefficient r measures the cosine of the angle between the radii to the
two points specified by the observations.

Taking one of the projections as fixed at any point on the sphere of radius fit,
the region for which r lies in the range dr, is a zone, on the other sphere in n — 1
dimensions, of radius ^ V n V l — r", and of width y^ *Jn dr/Vl — r2, and therefore

n-i

having a volume proportional to fjn
n~2(l — r") 2 dr.

4. We may now turn to the direct simplification of the expression (I), at each
stage discarding any factors which do not involve r.

J

may be reduced to

— 4
2 dr,

or to e
 1 -

In order to integrate this expression from 0 to oo, with respect to yu, and fi^,, let

and we have
n-4

/"CO fOO

J -oo J o
n-i

or —TZ ( l_ ,a ) " dr>

(cosn z — pr)

 at A
ston U

niversity on January 11, 2014
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/
http://biomet.oxfordjournals.org/


R. A. FISHER oil

which, on substituting cos 0 for - pr, may be expressed in terms of a Legendre
function in the form

n-4

(tcosectfy^Qn-sCicotflMl-r1) 2 dr (II).

A in r dZ 6

^ a m Jo cosh z + cos 0 sin 0'
[w dz 1 / 3 \™ 0

S0 * a t J o (coshz + cos 0)"-1 = | n ^ 2 \sin (?9^/ s i n l '

and since this is a function of pr only, we may express the frequency distribution
by the convenient expression

Professor Pearson has shown that this last result can be obtained directly
from Sheppard's theorem* that

2 7 T 2 1 2 2 V 1 - - R 2 - ' O - / »

making the substitutions

t i d

R nrp

which give R = pr
and cos-l(--R) = 0,
we obtain

— fe .
aiO-2(l-ps)Jo Jo

and hence differentiating (« — 2) times with respect to r, the required expression
is obtained.

5. The form which we have now obtained may be applied without difficulty
to all small even values of n, and in such cases is peculiarly suitable for the
calculation of moments.

When n = 2 the ordinate of the curve, with abscissa r, is
6

(1 - r2) sin 6'

which becomes hyperbolic in the neighbourhoods of — 1 and + 1 . The value

• Phil. Tram. Vol. 192, A, p. 141.
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512 Distribution of the Correlation Coefficients of Samples

of r is, therefore, as we know, either —1 or + 1 , and the proportion, .in which
these occur, depends upon p. The ratio of the infinite areas included with the
asymptotes of the above curve is

cos-1p
cos-1 ( - p)'

so that the mean value of a number of observations is - .

When n = 4 there is still no approach to normality, the curve takes the form

1
sin* 6

which, when r is positive, increases regularly from its value of -fe when 6 = 0, to
infinity, to which it approaches as 8 approaches ir. Unless p is actually equal
to 1, in which case r is also 1 of necessity, the curve has finite ordinates at both
extremes. For calculating the number of values which should fall within any

given range, the integral, . , o ( l — flcotfl), may be directly tabulated, as has

been done in forming the accompanying table of " Student's " observations, and
the corresponding expectations. The values given by Mr. Soper's formula are
apposed for comparison.

Table for comparison with p. 114, Biometrika, Vol. IX.

r

•905— 1
•805—-905
•705—-805
•605—
•505—
•405—
•305—
•205—
•105—
•005—

1-905—
1-805—
T-705—
1-605—
1-505—
T-405—
1-305—
1-205—
1-105—
1—1-105

—

Calculated
frequency

m

202-1
124-9
88-7
65-1
49-9
37-8
30-6
24-8
20-5
17-1
14-5
12-4
10-7
9-3
8-1
7-2
6-3
5-6
5-1
4 3

—

Observed

175-5
136 5
84
66
55
45
24-5
24-5
19
7

22
12
13
3

12
16
7

10
4
9

745

Difference
e

-15-0

- 3-8

+ 12-3

- 6-4

-11-6

+ 71

- 4-0

+ 12-7

+ 51

+ 3-6

—

m

•69

•09

1-73

•74

3-58

1-87

•80

10-54

2-19

1-38

23-61

H.E. Soper's
approxi-
mation

230-3
98-9
72-1
57-6
48-0
40-2
34-3
29-7
25-6
22-0
18-8
16-0
13-5
11-2
9-0
6-9
5-1
3-3
1-9

•6

—

Difference
e

-17-2

+ 20-3

+ 11-8

-15-0

-21-6

- -8 '

- 8-7

+ 12-1

+ 8-6

+ 10-5

—

i.
m

•90

3-18

1-58

3-52

9-80

O-02

3-06

9-21

8-80

44-10

84-17
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R A. FISHER 513

6. The direct process of integration by parts applied to such expressions as

n-4

-=• dr and
n-4

v 2

gp to
when n is even, merely introduces the sums and differences of the terms —̂ •%

at the extremes, where r is — 1 or + 1 , with coefficients which are, in any
particular case, easily calculable.

Thus, n being 6,

= 2 x the sum of the extreme values of -A^ (0 - 3 cot 0 + 3d cot2 6)

— 2 x the difference of the extreme values of A , (1 - 6 cot 6).
sms 6 v

If p = sin a, so that the extreme values of 6 are -5 — a and -g + «, the sums and

differences may readily be expressed in terms of a, and the first few may here be
tabulated: the table has been carried back as far as is necessary for the calculation
of the fourth moment.

V (
siad

P
I2

2

sinfl

36 cot 6 cot2 6\J

P3

sin'c

^ - (4 - 90 cot 0+15 cot2 8 -155 cot3 0)

n-cot a (1+atan a)

jr tana

2 tan2 a (1+atan a)

JT tan2 a (1+3 tan2 a)

difference

(a + 3 tan a+3 a tan2 a)

cot a J2a- 2 ^- +o2)tana|-4 / J

2a tan a

n- tan3 a

2 tan3 a (a + 3 tan a + 3a tan2 a)

n tan4 a (9 tan a+15 tan3 a)

There are here two natural series, which appear alternately as sums and
differences; the simpler, which may be expressed in the form

= s inPaf —) a,
2 \cosot3a/
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514 Distribution of the Correlation Coefficients of Samples

is essentially a series of Legendre functions of the first kind; and may be
expressed as

£ . ten" a £=*>,_,(» tan a);

and it is these only which occur in the evaluation of the even moments.

7. I t is, however, desirable to obtain general expressions for these integrals
in terms of n and p, and to evaluate them when n is odd.

For this purpose let us introduce a quantity <p, such that

cos <f> = cos 8 — k,

then, when k is sufficiently small, we may expand <f>2 by Taylor's theorem, so that

¥ = & j . b _JL_ f!
2 2 +

Now let k = ph'/l — r2,

then

and differentiating twice with respect to

whence, dividing by (1 — r2)*, we obtain

/)/ 2 (i _ y*)h \sin (93^ 2 P Vsin 6d67 2

n-4
- 9 -

>
so that

may be obtained by multiplying by |TI— 3 the coefficient of A"~3 in

2 f T&dv 1 — <f> c o t <b
J _ ] AJ^ fa SlUarf>

when cos <̂> = cos ^ — pA Vl — r2 = - p (r + h Vl — r2).

Our object might equally be achieved by the evaluation of the integral

r+i rPdr / <p < ? \
P).1 l - r 'Un^ sin^j'

The quantity <f> is determined by the equation

cos <j> = cos 6 - ph Vl — r2,

that is cos <f> = - p (r + h \/l — r2).
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R. A. FISHER 515

If now r — s i n ^

h = tan e,
then cos 6 = - p sin /?,

cos <ft = — p VI + Aa sin (/3 + e) = — /»Vl + A2 sin /S*,

and as r passes from — 1 to + 1 ,

/8 passes from - ^ to + J ,
2 2

# from — — a to ^ + a,

& from — - + e to ^ and thence to x + e,

a n d * from £ - « to ^ + a' and thence back to %

where sin a* = p v 1 + h?, <f> oscillates in the same manner as 0, with a somewhat
greater amplitude, and slightly in advance in respect of phase.

The expression ? \+1 I z l ^ -JL-
r J -i sin2 <|> V̂ l _ r3

may now be reduced to

5

r h _ - ^ c o ^ fl / l ^sinasin^ X
; 5 sin'A J i V l i ^ ' i ' S ' ( l i 8 ' i s 9 ' ) ^

_ f l d^ f^^' sina'sinyg'^

2

(rf>) sin a sin
P

D-7T -n-p2 sin â  /sin e\ vp1 ,. ,.
= ——> + r . , I H £_. ( l - cos o)

cos a cos* a \cos a/ cos2 a

-I (1 - sin* a'sin*

P3TT / si

os2 af\
sin a tan e\

cos2 a' \ cos a / '

but cos2 oC = 1 - p2 (1 + h?) = cos2 a - sin2 a tan2 e,

so that
+ 1 1 - 6 cot <6 dr ir tan2 a

y = z—j
, f+11 - 6
J -i sin2 1 _ j-2 1 — A t a n a '

From this evaluation we deduce the general form
n-4

••« (III).

Biometrika z 66
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516 Distribution of the Correlation Coefficients of Samples

The absolute frequency df, with which r falls in the range dr, is therefore

"~4 * o ,
| n - 3 v ' Vsin030/ sin 0

8. I do not see how to integrate the other expressions of the type

f + 1 1 - 4> co t <j> t*dr

although a form could probably be obtained when p is even. The general
expression for the second moment may, however, be deduced by means of a
reduction formula.

By a process of integration by parts it appears that, if we write

n-4
— = —

then /n+2.2 = /n+2.o + »-7n.o-M(?l- l)/n.s,

, . T . /tan sa \
and since lt.i = l-n | —^ '•an a + aj >
we may obtain successively

, _. /tan5 a tan8o \
I>.B = 2 4 T ( — I g— + t a n o - o 1,

r *«,-* /ten7 a tan5 a tan3 a , \
/ 8 . 2 = 720TT - 2 — + —5 tan a + o ) ,

and so on, yielding, when n is even, the expression

^« s = In o — ir |» — 2 tann~2 a;d«,1 Jo
a form which may well hold when n is odd.

The above expressions are useful in tabulating the numerical values of the
second moment, r1 + a3, of the unit curve, which may easily be calculated in
succession for different values of n when tan2 a is taken to have some simple
value.

9. Before leaving this aspect of the subject it is worth while to give a more
detailed examination of the mean of the frequency curves of r when n = 4.

Two formulae are arrived at by Mr Soper, which are equivalent approximations
of the second degree
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R. A. FISHER 517

and these we shall compare with the form

III. 2
r = - (o + cot a - a cot2 a),

it

p
I

II

III

•1000
•0853

•0847

•0850

•2000
1710

•1697

1704

•3000
•2578

•2555

•2570

•4000 -
•3463

•3419

•3451

•5000
•4377

4310

•4360

•6000
•5333

•5241

•5301

•7000

•6347

•6236

•6290

•8000
•7443

•7330
•7357

•9000

•8649

•8566

•8540

•9500

•9304

•9254

•9209

It will be observed that the approximations lie on either side of the exact
value over the greater part of the range, and that the error of the first
approximation increases up to the value when p = "9. The second formula
gives the correct value somewhere between '8 and '9, and is thereafter too
large.

For the particular case p = "6608,

I find (formula III) r ='5897, nearly the maximum difference from p,

Mr Soper gives (p. 109) the value -5933

and the experimental data *5609.

The two theoretical values are much nearer to each other than either is to
the experimental value. On the whole, it is obvious that even in this unfavour-
able case Mr Soper's formulae possess remarkable accuracy.

10. The use of the correlation coefficient r as independent variable of these
frequency curves is in some respects highly unsatisfactory. For high values of r
the curve becomes extremely distorted and cramped, and although this very
cramping forces the mean r to approach p, the difference compared with 1 — p
becomes inordinately great. Even for high values of n, the distortion in this
region becomes extreme, and since at the same time the curve rapidly changes
its shape, the values of the mean and standard deviation cease to have any very
useful meaning. It would appear essential in order to draw just conclusions from
an observed high value of the correlation coefficient, say '99, that the frequency
curves should be reasonably constant in form.

The previous paragraphs suggest that more natural variables for the treatment
of our formulae are afforded by the transformations

r
t = tan /3 =

T = t a n a = •

Vl-r*'

The expression for the frequency curve (II)
n-4

(1 ^)~ ( d y-102
c

K ' {sindddj 2 66—2
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518 Distribution of the Correlation Coefficients of Samples

now becomes
' <P dt

and the range of the curve is extended from — oo to + oo.

I t is interesting that in the important case, r = 0, the frequency reduces to
dt

n-i and the curves are identical with those found by " Student" for z,
(1 + V)2

the probability integral of which he has tabulated in his first paper.

11. The moments of these curves are obtained by the evaluation of the
expressions

d Y^1 &' dt [" / 3 \ " ~ ' ^ tdt

and so on; of these the first is known already (III) to have the value

7T bi — 3

and the others may be obtained in succession, for
3"""1 01 t?dt 3n-1 f 1 8* fdt

- 2 ^ "-^~9p"-1J-»r-»-1 2

9"-1 f« &> dt d?
dp1^)-*, 1 ' ¥=^ = do~P " - P " '~3p-

so that the first moment
f" / 3 y - 1 ^" t<ft 3 7r |w-4 7r |w-4(n-2)/3

J - oo Vsir

, -. n — 2 p w—2
hence < = s r = 5 T.

n — 3 Vl — p2 w — 3

The mean, therefore, is greater than the true value T by a constant fraction
of its value. And this fraction decreases in the simplest possible manner as n
increases.

In the same way, we may evaluate the second moment,

and

the third moment
( w ~ 2 ) T

and the fourth moment
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R. A. FISHER 519

6(n-2)T»
(n-3)«(n-6) }'

For high values of n, all but the first terms tend to vanish; ft tends to vary
as />', and ft tends to become independent of p. In effect for high values of T,
where p2 is nearly equal to unity, the form of the curve is nearly constant, but the
skewness measured by ft decreases to zero at the origin, and changes its sense,
when T and p change their sign.

Tables are appended for inspection rather than for reference which show the
nature and extent of these changes in the form of the curves.

7s =

n=
8

IS
18
SS
SS
4S
58

•01

•2531
•1123
•07219
•05319
•03484
•02590
•02062

•OS

•2593
•1148
•07372
•05429
•03555
•02643
•02103

•10

•2810
•1234
•07908
•05817
•03805
•02827
•02249

Tdbk

•so

•3430
•1481
•09438
•06925
•04518
•03353
•02666

! of a3.

1-00

•5600
•2344
•1479
•1080
•7015
•05194
•04123

s-oo

1-140
•4811
•3010
•2188
•1415
•1045
•08288

10-00

3-350
1-344

•8365
•6066
•3912
•2886
•2287

so-oo

9-550
3-811
2-367
1-714
1105

•8146
•6451

100-00

31-250
12-444
7-722
5-592
3-602
2-655
2103

Table of ft.

r* =

n=
8

IS
18
28
SS
4S
58

•01

05685
•01517
•008399
•005757
•003518
•002530
•001973

•OS

•1662
•04776
•02463
•01691
•01035
•007435
•005798

•10

•5076
•1376
•07645
•05247
•03214
•02315
•01807

•so

1-230
•3400
•1914
•1317
•08100
•05841
•04562

1-00

2-450
•7058
•4016
•3016
1731

•1251
•09800

3-00

3-788
1-018

•5857
•4093
•2559
•1858
•1458

10-00

3-965
1-205

•6990
•4910
•3031
•2237
•1757

so-oo

4-153
1-271

•7395
•5208
•3260
•2376
•1868

100-00

4-184
1-296

•7546
•5314
•3334
•2429
•1910

00

4-252
1-3065

•7619
•5361
•3366
•2452
•1928

Table of ft.

r2 =

71 =

8
IS
18
SS
SS
4S
53

00

6-0000
38571
3-5000
3-3529
3-2222
3-1622
3-1277

•01

6-1137
3-8802
3-5121
3-3612
3-2271
31656
31303

•03

6-3179
3 9248
3-5356
3-3768
3-2365
31723
31356

10

7-0179
4-0663
36104
3 4271
3-2667
3-1938
31522

•so

8-4767
4-3770
3-7937
3-5556
3 3343
3-2422
3-1898

1-00

10-9668
4-9397
4-0828
3-7486
3-4619
3-3261
3-2640

s-oo

12-9652
5-4240
4-3532
3-9356
3-5773
3-4172
3-3281

10-00

14-1116
5-7147
4-5186
4-0511
3-6493
3-4692
3 3676

so-oo

14-5024
5-8186
4-5783
4-0930
3-6756
3-4886
3 3826

100-00

14-6508
5-8578
4-6009
4-1089
3-6856
3-4958
3-3883

00

14-7159
5-8750
4-6109
41159
3-6899
3-4991
3-3909
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520 Distribution of the Correlation Coefficients of Samples

12. The fact that the mean value r of the observed correlation coefficient is
numerically less than p might have been interpreted as meaning that given
a single observed value r, the true value of the correlation coefficient of the
population from which the sample is drawn is likely to be greater than r. This
reasoning is altogether fallacious. The mean f is not an intrinsic feature of the
frequency distribution. I t depends upon the choice of the particular variable r
in terms of which the frequency distribution is represented. When we use t as
variable, the situation is reversed. Whereas in using r we cramp all the high
values of the correlation into the small space in the neighbourhood of r = 1,
producing a frequency curve which trails out in the negative direction and so
tending to reduce the value of the mean, by using t, we spread out the region ot
high values, producing asymmetry -in the opposite sense, and obtain a value I
which is greater than T. The mean might, in fact, be brought to any chosen
point, by stretching and compressing different parts of the scale in. the required
manner. For the interpretation of a single observation the relation between
t and T is in no way superior to that between f and p. The variable t has been
chosen primarily in order to give stability of form to the frequency curves in
different parts of the scale. It is in addition a variable to which the analysis
naturally leads us, and which enables the mean and moments to be readily
calculated, and so a comparison to be made with the standard Pearson curves, but
it is not, with these advantages, in a unique position. In some respects the

function, log tan £ (a + •«)» ^s its superior as independent variable.

I have given elsewhere* a criterion, independent of scaling, suitable for
obtaining the relation between an observed correlation of a sample and the most
probable value of the correlation of the whole population. Since the chance of
any observation falling in the range dr is proportional to

for variations of p, we must find that value of p for which this quantity is a
maximum, and thereby obtain the equation

Since
Jo (coshx + cos 0)

we have f" 1 1 ( 1 - „')
Jo 3/>lv (c°shx + cos

* B. A. Fisher, "On an absolute criterion for fitting frequency curves," Messenger of Mathematics,
February, 1912.
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R. A. FISHER 521

which leads by a process of simplification to the equation

da;I"
Jo

— p coshx) = 0.
lo (cosh x — pr)n

Since cosh x is always greater than pr, the factor in the numerator, r—p cosh x,
must change sign in the range of integration. We therefore see that r is greater
than p. Further an approximate solution may be obtained for large values of n.
The integrand is negligible save when x is very small, and we may write

o?
1 + •£• for cosh x

Z

nx>

and (1 - pr)
n e2 ( 1 " ̂  for (cosh x - pr)n.

Then ^ " '

and in consequence, as a first approximation,

The corresponding relation between t and T is evidently

It is now apparent that the most likely value of the correlation will in general
be less than that observed, but the difference will be only half of that suggested
by the mean, t.

It might plausibly be urged that in the choice of an independent variable we
should aim at making the relation between the mean and the true value approach
the above equation, or rather that to which the above is an approximation, or
that we should aim at reducing the asymmetry of the curves, or at approximate
constancy of the standard deviation. In these respects the function

log tan \ (a + ^ J that is, tanh"1 p

is not a little attractive, but so far as I have examined it, it does not tend to
simplify the analysis, and approaches relative constancy at the expense of the
constancy proportionate to the variable, which the expressions in T exhibit*.

* [It may be worth noting that Mr Fisher's t is the 0-square root mean square contingency—of the
more usual notation, and is the expression used in determining the probability thai correlated material
has been obtained by random sampling from unoorrelated material. ED.]
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