
NON-DESARGUESIAN  AND NON-PASCALIAN  GEOMETRIES*+

BY

O. VEBLEN AND J. H. MACLAGAN-WEDDERBURN

§ 1. The object of this paper is to discuss certain non-pascalian and non-

desarguesian geometries. Beside their intrinsic interest, these geometries are

useful in forming independence proofs for systems of axioms for geometry.

In a previous paper J it has been shown how to construct all finite projective

geometries of three or more dimensions and all two dimensional projective

geometries in which the Desargues theorem (cf. third footnote) is valid. The

present paper supplements the other by showing the existence of non-desar-

guesian finite geometries. It is to be noted that, since every finite linear asso-

ciative algebra in which every number possesses an inverse is commutative, §

therefore every non-pascalian finite geometry is necessarily non-desarguesian.

Moreover, as has been shown by Hessenberg,|| every non-desarguesian geom-

etry is also non-pascalian, whether finite or infinite.

A projective plane geometry is a set of elements called points, finite or infinite

in number, subject to the following conditions :

1. If A and B are any two points, there is (a) one and (ß) only one set of

points called a line and containing both A and B.

2. If a and 6 are any two lines, there is (a) one and (ß) only one^f point con-

tained in both a and 6.

3. Each line contains at least three points.

* Presented to the Society (Chicago), April 22, 1905. Received for publication, December 6,

1906.
f As originally read, the paper called attention to the fact that Hilbert's example of a non-

pascalian geometry in his Festschrift did not satisfy his order axioms. The error however is not

repeated in later editions of his book. This paper also contained a discussion of the non-pascalian

geometry obtained by letting the coordinates of a point be quaternions. As such geometries are

discussed in the Abstrakte Geometrie of K. T. Vahlen, Leipzig, 1905, this part of the paper is

omitted.

J Veblen and Bussey, Finite projective geometries, Transactions, vol. 7 (1906), p. 271.

The reader is referred to this paper for references to the literature and discussion of the general

problem of finite geometries. Condition VII of that paper is the "Pascal Theorem " and the

paragraph following VII contains the " Desargues Theorem."

§J. H. Maclagan-Wedderburn, A theorem on finite algebras, Transactions, vol. 6

(1905), p. 349.
||G. Hessenberg, Beweis des Desarguesschen Salzes aus dem Fascalschen, Mathematische

Annalen, vol. 61 (1905), p. 161.

f The condition 2(ß) is of course logically a consequence of 2 ( a ) and l(ß).
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The geometry is non-desarguesian or non-pascalian if the theorems of

Desargues or of Pascal, respectively, fail to be valid.

If the number of points is finite it is at once evident that every line contains

the same number of points and that if n + 1 is the number of points on a

line, the total number of points is n2 + n + 1.

Conversely, if the total number of points is n2 + n + 1 and the number of

points on each line is n + 1 and every two points lie on one and only one line,

it follows that every two lines have one and only one point in common. For,

suppose the two lines a, 6 had no point in common. A point of a would deter-

mine with 6 n + 1 lines giving thus n(n + 1) + 1 points and, counting in the

points of a, we should have at least n2 + 2n points instead of n2 + n + 1.

By a dual argument, if the number of lines is n2 + n + 1 and the number of

lines through each point is n + 1 and every two lines have one and only one

point in common, it follows that every two points determine one and only

one line.

§ 2. Analytic geometries may be constructed so as to satisfy the given condi-

tions if the coordinates are numbers of a number-system subject only to the

following conditions :

(1) The numbers form a commutative group under the operation of addition :

that is, for any two numbers a and 6 there is a unique number c such that

a + 6 = c and a unique number d such that a + d=6 = d + a, and there is a

number 0 such that, for every a,a + 0 = a = 0 + a; further, addition is asso-

ciative and commutative,* i. e. (a+6) + c = a + (6 + c) and 6 + a = a + 6.

(2) For any two numbers a and 6 there is a unique number c such that

a6 = c and if a +- 0 unique numbers d, d' such that da = 6 and ad' = 6; also

0a = 0 = aO for every a.

(3) Finally there must be some sort of a distributive law. We shall use the

following: c(a + 6) = ca + c6. We shall not use for the presentf the other

distributive law ( a + 6 ) c = ac + be, nor the associative and commutative laws

of multiplication, nor shall we assume that there exists an identity element with

respect to multiplication.

A point is now defined as one of the systems of three coordinates

(a) x, y, ef>,

(ß) X, <b, 0,

(7) <P, 0, 0,

* The commutativity of addition is not an independent postulate. Cf. H. Hansel, Theorie

der complexen Zahlensysteme (Leipzig, 1867), page 32 ; E. V. Huntington, Annals of Math-

ematics, vol. 8 (1906), page 25.

t Cf. however the last sentence of this §.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1907] AND   NON-PASCALIAN   GEOMETRIES 381

where cp is not equal to 0 and is the same for all points.    There are n2 + n + 1

points in all if there is a finite number, n, of elements in the number-system.

A line is defined as all points which satisfy an equation of one of the forms

(1) arv|r + yb + zc = 0,

(2) yyjr + zc = 0,

(3) «sf = 0,

where yjr is not equal to 0 and is the same for all lines. There are n2 + n + 1

lines altogether in the finite case. Further there are, in that case, n + 1 points

on a line. For (3) is satisfied by points of types (ß) and (7): in case c = 0

(2) is satisfied by the n points of type ( a ) in which y = 0 and by ( 7 ) : in case

c + 0 in (2) if z = 0, then y = 0 and hence (7) is one of the points, while if

z = ef>, y must be equal to the solution of y^jr = — epc and x may have any of n

values. The argument is similar for an equation of type (1). A similar argu-

ment will show that in the finite case the number of lines through a point

is n + 1.

To show that our points and lines form a projective plane geometry it is

necessary to prove that any two lines have in common one and only one point.

This requires the consideration of several cases.

(a) Two lines of type (1) :

xyjr + yb + zc = 0,

xnjr + yb' + zc = 0.

The coordinates of a point of intersection must satisfy the condition

y(b — b') + z(c — c') = 0.

In case c = c, b cannot be the same as 6' (else the lines would be identical) and

hence y = 0 ; the lines then have in common only the point (a, 0, cp) where a

is the unique solution of xnfr = — cbc. In case c 4= c' and 6 = 6', we have

z = 0, y = cb and x is the solution of xyfr = — ebb. In case c + c, 6 + 6' we

have z = ef) and hence y is the solution, say a, of y(b — 6') = — cb(c — c) and

x is the solution of xijr = — (oc6 + epc). On account of the commutative law

of addition the values of x, y, and z thus found must satisfy the given equations.

(6) Lines of types (1) and (2) :

xi¡r + yb + zc = 0,

yyjr + zc = 0 .

The coordinate z cannot be zero, else y and x would also be zero.   Hence z = cf>,

y is the solution, a, of y-ty = — epc, and x the solution of xijr = — (ab + epc).
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(c) Lines of types (1) and (3) :

xijr + yb + zc = 0,

zy¡r = 0.

The coordinate y cannot be zero since then x and z would both be zero.    Hence

y = <b and x is the solution of x-*fr = — ebb.

(d) Two lines of type (2) :
yyfr + zc = 0 ,

yyfr + zc = 0 .

Any solution must satisfy the condition z(c — c') = 0 ov z = 0.    Hence y = 0

and x = cp.

(e) Lines of types (2) and (3) :

yy¡r + zc = 0,

The only solution is ( <b, 0, 0 ).

This, according to the last sentence of § 1, completes the proof that all finite

number systems of the type described above lead to finite plane geometries. If

the number system is not finite it is necessary to prove algebraically that every

two points determine a unique line. If the other distributive law holds also or

if multiplication is commutative this can be done by the analysis used above.

§ 3. In order to construct a particular non-desarguesian geometry it is

necessary only to adduce a particular number-system. The first class of systems

which we shall use is due to L. E. Dickson.* It is such that the number of

elements in each system is finite and such that multiplication is associative but not

commutative and the distributive law holds only in the form x(y + z) = xy + xz.

Each system possesses an identity which in the analysis above may be taken as

the common value of cp and i/r. These systems are discussed on pages 5 to 22

of Dickson's paper. A characteristic system of this type is the following.

There are p2m elements, (a, 6), where a and 6 are marks of a field GF\_pm~\,

p being an odd prime.   These elements obey the following laws of combination :

(«11   5l)  +  (°il   °l) = («1 +  «2>   \ +  h)

(ax, 6,) x (a2, 62) = (axa, + evbx6,, 6,a2 + ea,62)

where  i» is a fixed not-square in  the   G F [ p"1 ] ,  and  e = ± 1  according as

a2 — vb\ is a square or not-square, i. e., e = (a\ — vb\)'%m~l)/2.

*L. E. Dickson, On finite algebras, Göttinger Nachrichten, 1905, pp. 358-394.
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The simplest special case is where pm = 3 . The algebra may then be thought

of as having two units 1 and j and composed of all numbers of the form x + yj,

x and y being integers modulo 3 and j2 = — 1. The system * is thus com-

posed of nine numbers 0, 1, 2, j, 2j, 1 + j, 1 + 2j, 2 + j, 2 + 2j.

It is not difficult (as the reader may verify analytically) to find cases which

show that the geometry founded on this number-system is non-desarguesian and

non-pascalian. Instead of doing this, however, we shall now show how to get

another geometry based on the same number-system. The new geometry is so

constructed as to be capable of being explicitly exhibited in a compact form.

Since the number-system is associative and distributive [in the sense,

a(6 + c) = a6 + ac^ the point (x, y, z) may also be represented by

(kx, Ky, kz), k =j= 0. With this understanding a linear transformation changes

points into points and, if their coefficients are scalar, two transformations may

be combined in the usual way.    They do not in general change lines into lines.-)-

Consider now the following transformation of period 13 :

A :        x = x + z ,        y = 2x ,        z = 2y' + 2z .

Let A0, B0,..., G0 denote the points (2, 0,1), (2 + 2j, j, 1), (2 +j, 2j, 1),

(1 + 2j, 1 +j, 1), (j, 2 + 2j,l), (1+j, 1 + 2j, 1), (2j, 2 +j, 1) and let

Ak, Bk, ■ ■■, Gk (¿<13) denote the points derived from these by transforming

them by the kth power of A. In this notation, seven of the lines of our original

geometry are :

x + y+z=0: A0AXA3A9B0C0D0E0F0G0,

x + yj + z = 0: A^B.D.D^E^G.G,,

_   x + y(2j) + z = 0:  A^.C.E^F^Gfifi,,

* In this special case the distributive law has a very Bimple form ; namely

(a+bj )j — — aj — bf=b — aj

where neither a nor 6 is zero. Though the commutative law is not valid it is always true either

that xy = yx or that xy = — yx.

For the convenience of the reader in verifying computations, we subjoin the multiplication

table :
2 j 2/        1+j     1 + 2/     2+j     2 + 2/

2

i

2/
l+j

1 + 2/
2+i

2+2/

1             2/            j 2 + 2j 2+j 1 + 2/ 1+j

2j            2             1 2+j 1+j 2 + 2/ 1+ 2/

j             1             2 1 + 2/ 2 + 2/ 1+./ 2+j

2 + 2/ 1 + 2/ 2+j         2 2/ j 1
2+j 2 + 2j 1+j         j 2 1 2j

l + 2j 1+j 2 + 2j        2j 1 2 j

1+j 2+j 1 + 2J        1 j 2j 2

t For example, the transformation A changes (1, 0, 0), (0,j, 1) (j,j, 1) which lie on

yj + z = 0 into (1,2,0) ( 1, 0, 2 + 2/ ), (1 +j, 2/, 2 + 2/) of which the first two, but not the
third, lieon*(l+j) + ¡i(l+i) + 2 = 0.
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x + y(l+j) + z = 0: A^BçD^F^F&G,,,

x + y(2 + 2j) + z=0: A^B.B&C^E^F,,

x + y(l + 2j)+z = 0: A&C^D^E^F^,

x + 2/(2 +j) + z=0: A^B^C&C^D^G,.

A and its powers give 84 other heptads of points which may be obtained by

adding successively the integers 1, 2, •• -, 12 to the subscripts of the points of

each of the above lines, the resultant subscripts being, of course, reduced modulo

13. 77ie ninety-one heptads so obtained are the lines of a new non-desar-

guesian and non-pascalian geometry.

It is not difficult to verify a posteriori that this scheme does define a geom-

etry. By trial we see that if two lines intersect in more than one point, then

neither of these points can be of the form Ak or Bk. Further, the scheme is

invariant under the following transitive substitution group :

1, (BDG)(CEF), (BGD)(CFE),

(BC)(DF)(EG), (BE)(CD)(FG), (BF)(CG)(DE).

Hence the same is true of the remaining letters. The other axioms may be

tested in the same way. That the geometry is non-desarguesian and non-

pascalian is proved by examples which are sufficiently indicated in the diagrams

below.

Fig. 1. Fig. 2.

More interesting, however, than this tactical verification is the analytical proof

that the 91 heptads derived by A and its powers from the lines B ave the lines

of a plane geometry. As in § 2, it is only necessary to show that any two

heptads have one and only one point in common. It is a direct consequence of

definition that a heptad is the set of points satisfying the equation,

»(«11 + an) + y(ai2 + «32)  + Z(«13 + %) + («««1 + y«22 + Z«23)ß = 0>
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where ß is any one of the seven numbers of the system and art are the coefficients

of any one of the thirteen powers of A. This equation may be abbreviated as

follows :

(1) xa + yb + zc + (xd + yb' + zc) ß = 0.

Consider the intersection of this with

(2) x + y a + z = 0.

In (1) and (2), a and ß are the only coefficients which are not necessarily scalar.

From (1) and (2) we deduce

(3) y(2aa + b) + z(2a + c)+ {y(2da + 6') + z(2d + c)} ß = 0,

and shall now show that there is only one point whose coordinates satisfy (2)

and (3) simultaneously.    There are three cases,

(i) 2a' + c = 0.    In this case (3) becomes :

(4) y{2aa + b + (2da+b')ß} +z(2a+c) = 0.

If the coefficients in (4) do not vanish identically, (2) and (4) have evidently one

and only one point in common. On forming the powers* of the transforma-

tion A we find that 2a + c and 2a' + c cannot vanish simultaneously except

for the identical transformation, and in this case the vanishing of the coefficient

of y leads to a = ß. Hence except in this trivial case (4) is not an identity,

(ii) 2a + c = 0.    In this case

y {(2aa + b)ß~* + 2da + 6'} + z(2a' + c) = 0.

Hence as in (i) there is one and only one point common to (2) and (3).

(iii) 2a'+ c'= (2a + c)d +- 0, where d is scalar.    Then (3) may be written

in the form

y {2(a+2a'd-l)a+b + 2b'd'1} + {y(2a'a+b')d-1 + z(2a+c)} (1 + dß) = 0,

or say

ye + (yf+«9)\y = °-
This is equivalent to

_ y(ey-1+f) + zg = 0.

* The first twelve powers have the matrices

101 120 201 221 021 122 212 110 001 022 111 020

200 202 210 102 112 012 211 121 220 002 011 222

022       111       020       100       101       120       201       221       021       122       212       110

and the thirteenth power is the identical transformation.
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Hence, since g + 0, (1) and (3) and therefore also (1) and (2) have one and

only one point in common.

The point transformation A transforms lines of the new geometry into lines.

Hence, if any two lines intersect in more than one point, the lines obtained by

transforming these simultaneously by any power of A will also intersect in more

than one point. But any pair of lines can, by transformation by a suitable

power of A, be transformed into such a pair as has been considered above.

Hence any two lines intersect in one and only one point.

§4. On pages 381-394, loc. cit.,* L. E. Dickson has given another set of

algebras which are available for geometrical purposes. The following multipli-

cation table (cf. (68), loc. cit., p. 394) defines an algebra which satisfies the con-

ditions of § 2 together with the commutative law of multiplication and has an

identity element.    It therefore leads to a geometry.

; b + ßi

6 + ßi   -ß2-8bi- 2ßj

Any number of the algebra is of the form a + di + ej, where a, d and e are

any marks of any field F, not having the modulus 2, in which x3 = 6 + ßx is

irreducible. In such an algebra an equation of the form ax = 6 has a unique

solution if a + 0.

If 6 = 2, ß = 0 and F is the field of rational numbers this table becomes

3        2

2   -16¿.

Points and lines are defined as above, but as multiplication is commutative the

equation of a line is more conveniently written in the form ax + by + cz = 0.

That the geometry is non-desarguesian is shown by the following example.

Consider the six points A =(0,0,1), A' = (0,i,l), B=(i,i,l),

B'=(i,j,l), C=(j, 0,1), C' = (j,i,l). These points lie in pairs on

the lines x = 0, x — iz = 0, and x —jz = 0, which meet in the point (0,1,0).

The equations of the sides of the triangles ABC and A'B' C are as follows:

AC: y = 0,        A' C : y - iz = 0,

AB: x-y = 0,        A'B': x + (1 + i +j)y/11 - (2 + i + j)z/ll = 0,

BC: x-(l-i)y-jz = 0,        B'C: x + y - (i +j)z = 0.

* See also L. E. Dickson, Linear algebras in which division is always uniquely possible, these

Transactions, vol. 7 (1906), p. 371.
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If D, E and F are the intersections of AC with A' C, AB with A'B',

and BC with B'C, the coordinates of these points are: D = (1,0,0),

E=(x=y=8(n/8 + 2i+j)/m,l)andF=[(-l + i+2j)/B,(l + 2i+j)/S,lY
The equation of the line DE is y— 8(17/8 + 2i +j)z/lTÏ = 0 and evidently

does not contain F. Hence D, E and F are not collinear and the geometry

is non-desarguesian.

In the same way by taking the six points .4 ' = ( 1, 0 , 1 ), Z?' = ( £, 0, 1 ),

C = (i+j,0,1), ¿-(1,1,0), B= (£,1,0), C=(j, 1,0), it can be

shown that the geometry is non-pascalian.

The finite number-system of the present type with the smallest number of

elements is obtained by letting F he the GF [ 3 ] and letting 6 = 1 and ß = l.

This however leads to a geometry with 28 points on a line and (27)2+ 27 + 1 = 757

points in all and has not been exhibited explicitly.

§ 5. The number systems discussed above all have identity elements. The

presence of an identity is not necessary for the analysis of § 2, and examples of

number systems that lead to geometries, though lacking the identity, are not

hard to find.    Two simple cases are constructed as follows :

Let ex and e2 be two independent units. The systems under consideration

consist of all numbers of the form aex + be2 where a and 6 are integers reduced

modulo 2.    Addition is defined by the equation

(aex + be2) + (cex + def) = (a + c)ex + (b + d)e2.

The two multiplication tables are

(i) (££)

where e3 = ex + e2. In ( £ ) multiplication is commutative and in both systems

the two-sided distributive law holds. Each system gives rise to a geometry with

five points on a line. Both geometries however turn out to be identical with

PG(2,22) which is based on the Galois field, GF(22). This suggests the fol-

lowing theorem : There is only one projective plane geometry with five points

on a line.

To prove this consider the following Pappus configuration in which O, A, B,

C, Ax, Bx, Cx arfi distinct. Consider the lines DE, EF, FD. These lines

obviously cannot intersect the line O A in any of the points A, B, C\ hence as

there are only two other points on OA, D, E, and F must be collinear. The

geometry is therefore pascaban.    Desargues's theorem may be proved in the
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same way or it may be deduced from Pascal's theorem. Now there is only one

pascaban geometry for a given finite number of points on a line,* therefore

there is only one geometry with five points on a line.

Thus a non-desarguesian geometry must have at least six points to the line.

A number system which furnishes a geometry with this number of points is the

following. Denote the elements by 0, 1, 2, 3, 4, and let addition be identical

with ordinary addition modulo 5.    Let multiplication be defined by the table :

12    3    4

112    3    4

2 4    3    2    1

3 3    14    2

4 2    4    13

The element, 1, is a left-hand identity. All the conditions of § 2 are satisfied

and we may conveniently take ef> = -^r = 1. The resulting geometry however

turns out to be P G ( 2, 5 ). The problem of determining a non-desarguesian

geometry of minimum number of points to the line remains unsolved.

* Cf. these transactions, vol. 7 (1906), p. 247 and \ 1 above.

[Note added April 22,1907. Dr. C. R. MacInnes has fonnd by a tactical investigation that

the only plane projective geometry of six points to a line is the PG (2,5) and that there is none

at all with seven points to a line. The latter result has also been found by S afford, Ameri-

can Mathematical Monthly, vol. 14 (1907), p. 84.]
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