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BY

EDWARD  V.   HUNTINGTON

The algebra of symbolic logic, as developed by Leibniz, Boole, C. S.

Peirce, E. Schröder, and others, f is described by Whitehead as " the only

known member of the non-numerical genus of universal algebra." $ This algebra,

although originally studied merely as a means of handling certain problems in

the logic of classes and the logic of propositions, has recently assumed some

importance as an independent calculus ; it may therefore be not without interest

to consider it from a purely mathematical or abstract point of view, and to show

how the whole algebra, in its abstract form, may be developed from a selected

set of fundamental propositions, or postulates, which shall be independent of

each other, and from which all the other propositions of the algebra can be

deduced by purely formal processes.

In other words, we are to consider the construction of a purely deductive

theory, without regard to its possible applications.

Introductory remarks on deductive theories in general.^ The first step in

such a discussion is to decide on the fundamental concepts or undefined symbols,

concerning which the statements of the algebra are to be made.

One such concept, common to every mathematical theory, is the notion of

1) a class (K) of elements (a, b, c, ■ ■ -).\\

♦Presented to the Society: §1, September 1, 1903; §2, December 28, 1903 (and since

revised) ; § 3 and the appendix, April 30, 1904.    Received for publication, April 30, 1904.

t For an extensive bibliography, see Schroder's Algebra der Logik, vol. 1 (1890).

î A. N. Whitehead, Universal Álgebra, vol. 1 (1898), p. 35.

I Cf. papers by A. Padoa, oited in Transactions, vol. 4 (1903), p. 358.

|] A class is determined by stating some condition which every entity in the universe must

either satisfy or not satisfy ; every entity which satisfies the condition is said to belong to the

class. (If the condition is such that no entity can satisfy it, the class is called a " null " class. )

Every entity which belongs to the class in question is called an element (cf. H. Weber, Algebra,

vol. 2 (1899), p. 3).
No further analysis of this concept class, or of similar concepts introduced below, is here

attempted. For an elaborate disoussion of the logical processes which underlie all mathematical

thinking, see B. Russell's work on The Principles of Mathematics, vol. 1, 1903.
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If two elements a and 6 are, for the purposes of the discussion in hand,

equivalent, that is, if either may replace the other in every proposition of the

algebra in question, we write a = 6 ; otherwise, a +- 6. *

In regard to the other fundamental concepts, one has usually a considerable

freedom of choice ; several different sets of undefined symbols may serve as the

basis of the same algebra ; the only logical requirement is that the symbols of

every such set must be definable in terms of the symbols of every other set. f

Thus for the algebra of logic the fundamental concepts (besides the notion of

class) may be selected at pleasure from the following : $

2) a rule of combination, § denoted, say, by ffi (read, for convenience, " plus " ;

see remark on these symbols below) ;

3) another rule of combination, denoted, say, by o (read, "times");

4) a dyadic relation,^ denoted, say, by © (read, "within").

Any two of these symbols can be defined, as we shall see, in terms of the

third. ^[

In the present paper, I choose the fundamental concepts as follows : In § 1;

* Concerning the symbol = we have the following obvious theorems : 1) a = a, 2) if « = 6,

then b = a ; and 3) if a = b and b = c, then a — e, ; which are taken by many writers as the prop-

erties by which the symbol = is to be defined. But cf. O. Höldeb, Die Axiome der Quantität und

die Lehre vom Mass, Leipziger Berichte, Math.-Phys. Classe, vol. 53 (1901), p. 4, footnote.

tCf. remarks by M. PlEEl, in his article called : Nuovo modo di svolgere deduttivamenle la geo-

metría projettiva, Reale Istituto Lombardo di scienze e lettere (Milano), Rendi-

conti, ser. 2, vol. 31 (1898), especially p. 797.

X For a quite different point of departure, see A. B. Kkmpe, On the relation between the logical

theory of classes and.the geometrical theory of points, Proceedings of the London Mathe-

matical Society, vol. 21, pp. 147-182, January, 1890, and The subject-matter of exact thought,

Nature, vol. 43. pp. 156-162, December, 1890.

\ A rule of combination o, in the given class, is a convention according to which every two ele-

ments a and b (whether a = 6or«+6), in a definite order, determine uniquely an entity

a o b ( read ' ' a with b " ),

which is, however, not necessarily an element of the class. In the class of quantities or numbers,

familiar examples of rules of combination are +, —, X, -*-, etc.

|| A dyadic relation, R, in the given class, is determined when, if any two elements a and b

are given in a definite order, we can decide whether a stands in the relation R to b or not ; if it

does, we write
aRb, or, equally well, £>Ha.

In the class of quantities or numbers, familiar examples of dyadic relations are =, <[, > , 2£,

etc. Relationships among human beings furnish other examples. [If R is such that aRa for

every element a, then R is called a reflexive relation ; if R is such that aRb and bRe together

always imply aRc, then R is called a transitive relation ; if R is such that aRb always implies

bRa, then R is called a symmetric relation. Thus the relation ^ is reflexive and transitive, but

not symmetric ; the relation of equivalence is reflexive, transitive and symmetric]

If In all discussions like the present, definitions are purely nominal definitions, introducing a

new symbol as an abbreviation for an old concept. Cf. papers by Peano and Bubali-Foeti in

Bibliothèque du congrès international de philosophie, Paris, 1900, vol. 3 (pub-

lished in 1901).
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the two rules of combination, e and o ; in § 2, the relation © ; in § 3, a single

rule of combination, e.    The three sections form properly three separate papers.

Having chosen the fundamental concepts, the next step is to decide on the

fundamental propositions, or postulates, which are to stand at the basis of the

algebra. These postulates are simply conditions arbitrarily imposed on the

fundamental concepts and must not, of course, be inconsistent among themselves.

Any set of consistent * postulates would give rise to a corresponding algebra,—

namely the totality of propositions which follow from these postulates by logical

deduction.f For the sake of elegance, every set of postulates should be free

from redundancies ; in other words, the postulates of every set should be inde-

pendent, no one of them deducible from the rest.J For, if any one of the pos-

tulates were a consequence of the others, it should be counted among the derived,

not among the fundamental propositions. Furthermore, each postulate should

be as nearly as possible a simple statement, not decomposable into two or more

parts ; but the idea of a simple statement is a very elusive one, which has not

yet been satisfactorily defined, much less attained. §

In selecting a set of consistent, independent postulates for any particular

algebra, one has usually a considerable freedom of choice ; several different sets

of independent postulates (on a given set of fundamental concepts) may serve

as the basis of the same algebra ; || the only logical requirement is that every

such set of postulates must be deducible from every other. *[[

Thus, for the algebra of logic, several different sets of postulates might be

given on each of the three sets of fundamental concepts which we have selected.

In the present paper a single set of postulates is chosen for each of the three

sections.

Object of the present paper. The object of the paper can now be stated as

follows : Having chosen a set of fundamental concepts and a set of fundamental

propositions for each of the three sections, I show, first, that the fundamental

* On the consistency ( Widerspruchslosigkeit) of a set of postulates, see a problem of Hilbert's

cited in Transactions, vol. 4 (1903), p. 361, and an article by A. Padoa, Le problème no. 2 de

M. David Hubert, L'Enseignement Mathématique, vol. 5 (1903), pp. 85-91.

t The processes involved in " logical deduction " have been subjeoted in recent years to a very

searching analysis; see especially the work of G. Peano and others in the Revue de Mathé-

matiques, and B  Russell's Principles of Mathematics.

% The method of proving the independence of a postulate used and explained below, has been

made familiar especially by the works of Peano, Padoa, Pieri, and Hilbert.

§ Compare remarks by E. H. Moore, in his paper on A definition of abstract groups, Trans-

actions, vol. 3 (1902), especially pp. 488-489.

|| For a striking example, see the postulates for a field in recent articles by L. E. Dickson

and E. V. Huntington, Transactions, vol. 4 (1903), p. 13 and p. 31.

If Cf. M. Pieri, loe. cit. Even if the postulates could be made strictly simple statements, I see

no reason why several different sets of consistent, independent, and simple postulates might not

be possible for the same algebra.    (Cf. Schröder, loe. cit., vol. 3, p. 19.)
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propositions of each set are consistent (and independent) ; and secondly, that the

fundamental concepts of each section can be defined in terms of the fundamental

concepts of each of the other sections, while the fundamental propositions of

each section can be deduced from the fundamental propositions of each of the

other sections. Then we may say, first, that each section determines a definite

algebra, and secondly, that the three algebras are equivalent.

Finally, in order to justify the name "algebra of logic" for the algebra thus

established, I show that the fundamental theorems of that algebra, as set forth

in standard treatises like those of Schröder and Whitehead, can be derived

from either of my three sections. And the development of the theory in the

present paper is carried only so far as is necessary for this object.

In working out the set of postulates in § 1, I have followed Whitehead

closely. The postulates la—V are substantially the same as the fundamental

propositions given in his Universal Algebra, Book II ; except that the associa-

tive laws for addition and multiplication, which are there admitted as funda-

mental, are here deduced as theorems.

In § 2, postulates 1—10 are substantially the same as the fundamental pro-

sitions (called by various names*) in Schroder's Algebra der Logik; except

that postulate 9 here replaces a much less simple postidate of Schroder's which

I cite for reference as 92. For the possibility of this simplification I am especi-

ally indebted to Mr. C. S. Peirce, who has kindly communicated to me a proof

of the second part of the distributive law (22a, 6) on the basis of this postulate

9. (See footnote below.) A further problem in regard to postulate 9 is pro-

posed at the end of § 2.

The third set of postulates (§ 3) is a fairly obvious modification of the second.

The only part of the paper for which I can claim any originality (except pos-

sibly the proofs of XIHa, 6 in § 1 and 20a, 6 in § 2) is the establishment of the

complete independence of all the postulates of each set. There has been no dis-

cussion of this question, as far as I know, except an only partially successful

attempt of Schroder's to prove the independence of 92. f

A simple interpretation of the algebra. Although the algebra is necessarily

treated here solely in its abstract form, without reference to its possible applica-

tions—that is, without reference to the possible interpretations of the symbols

K, ©, 0, and © —nevertheless it may be well to mention at once one of the

simplest of these applications, so that the reader may give a concrete interpre-

* "Prinzipien," "Postulaten,'» "Definitionen." See loc. cit., pp. 168, 170, 184, 188, 196,

293, 303.

f He succeeded in showing, by a very complicated method, that 9, is independent of postu-

lates 1-7, omitting postulate 8. (Loc. cit., pp. 286-288, 617-628, 633-640, 642-643.) But the

question whether 9, is independent of the full list of postulates 1-8 was left undecided ; see loc.

cit. p. 310, bottom.
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tation, if he so desires, to all the propositions of the algebra. Any system

(K, ©, 0, ©) which satisfies the postulates and definitions of § 1, § 2, or § 3

will answer the purpose.    One of the simplest of such systems is the following : *

K= the class of regions in the plane including the " null region " [ = /\ ;

read " nothing " ] and the whole plane [ = V ; read " everything ] ;

a © b = the smallest region which includes both a and o, called the " logical

sum " of a and 6 ;

a o ô = the largest region which lies within both a and 6, called the " logical

product " of a and b ;

© = the relation of inclusion ; that is, a © 6 signifies that the region a lies

within or coincides with the region 6.

Bemarks on the symbols ©, O, etc. The symbols ©, 0, and © are chosen

with a double object in view. On account of the circles around them they

are sufficiently unfamiliar to remind us of their true character as undefined

symbols which have no properties not expressly stated in the postulates; while

the +, •, and < within the circles enable us to adopt, with the least mental

effort, the interpretation which is likely to be the most useful. The symbol ©

was used by Leibniz for the same purpose about 1700. •(■

The symbols [\ and \J, which occur below, I take from Peano's Formu-

laire de Mathématiques, vol. 4 (1903), pp. 27-28. The resemblance which

these symbols bear to an empty glass and a full glass will facilitate the inter-

pretation of them as " nothing " and " everything " respectively.

§ 1. The First Set of Postulates.

In § 1 we take as the fundamental concepts a class, K, with two rules of

combination, © and o ; and as the fundamental propositions, the following ten

postulates :

I«. a © 6 is in the class whenever a and b are in the class.

Ib. a o o is in the class whenever a and b are in the class.

lia.  There is an element /\ such that a © /\ = a for every element a.

Tib.  There is an element V such that a o \J = a for every element a.

Ilia, a © 6 = 6 © a whenever a, b, a © b, and 6 © a are in the class.

III6. a o 6 = 6 © a whenever a, b, a o 6, and boa are in the class.

TVa. a©(6oc) = (a©o)o(a©c) whenever a,6,c,affio,a©c,ooc,

a © ( b © c ), and (a©ô)o(a©c) are in the class.

* Compare Euler's diagrams, in works on logic.

t Leibniz, Philosophische Schriften, herausgegeben von Gerhardt, vol. 7 (1890), p. 237; cf.

Formulaire de Mathématiques, vol. 3 (1901), p. 19. On the use of the circles around

these symbols, see also Christine Ladd [Mrs. Franklin], On the algebra of logic, in Studies in

Logic by members of Johns Hopkins University, 1883, p. 18.
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IV6. a 0 (6 © c) = (a © 6) © (a © c) whenever a, 6, c, a 0 6, a © c, 6 © c,

a © ( 6 © c) awa" (a © 6) © (a © c) are m íAe cZasa.

V. If the elements A and \J in postulates lia and 116 extsí araá7 are unique,

then for every element a there is an element ä such that a © ä = V and a o ä = A •

VI. 2Aere are ai Zeasí £w>o elements, x and y, in the class such that x +- y.

Consistency of the postulates of the first set.

To show the consistency of the postulates, we have only to exhibit some system

( K, ©, O ) in which K, ©, and © are so interpreted that all the postulates are

satisfied. For then the postulates themselves, and all their consequences, will

be simply expressions of the properties of this system, and therefore cannot

involve contradiction (since no system which really exists can have contradictory

properties).

One such system is the following : K= the class of regions in the plane

including the "null region " and the whole plane ; a © 6 = the " logical sum "

of a and 6 (that is, the smallest region which includes them both) ; a o 6 = the

" logical product " of a and 6 (that is, the largest region which lies within them

both).

Another such system, in fact the simplest possible one, is this : K = a class

comprising only two elements, say 0 and 1, with © and © defined by the tables

For other such systems, see the appendix.— The existence of any one of these

systems is sufficient to prove the consistency of the postulates.

Deductions from the postulates of the first set.

The following theorems follow readily from the postulates la—VI ; the proofs

are given in the next paragraph.

Vila. The element A in Ha is unique : a © A = a.

VII6. The element V in 116 is unique : a o y = a.

Villa, a (& a = a.

VIII6. a © a = a.

IXa. a © V = V •

1X6. a © A — A •
Xa. a©(a©6) = a.

X6. ao(a©6) = «.

(The " law of absorption.")
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XI. The element à in V is uniquely determined by a :

a © ä = V    an(i    a o à = A •

Definition. The element ä is called non-a, or the supplement oí a. By Ilia,

III6, if b is the supplement of a then a is the supplement of b ; that is, if 6 = à,

then a = b, or, ä = a.

Xlla. a © b = à o 6, and

XIIo.  a © 6 = o" © b ;

that is, a © 6 and äoi are supplementary elements as are also a o 6 and ä © b.

These theorems establish the principle of duality between © and o, which is a

characteristic feature of the algebra.     They also enable us to define either

multiplication or addition in terms of the other and negation.

Xllla. (affio)© c = a©(6©c). (Associative law for addition.)

XIIIo. (a©6)oc = ao(ooc). (Associative law for multiplication.)

These theorems are sufficient to make the connection between the postulates

here adopted and the usual treatment of the subject. See, for example, White-

head's Universal Algebra, vol. 1, book II, where two lists of fundamental

propositions for the algebra of logic are given ; the first list (p. 35) comprises

(besides la, 6) Ha, b, Ilia, b, IVa, V, Villa, b, Xa, and Xllla, 6 ; the second
list (p. 37), which is more symmetric, includes lia, b, Ilia, 6, IVa, b, IXa, 6,

Xa, o, XI, and Xllla, 6.

The further development of the subject is based on the definition of ©, which

may be given in various forms, thus,

Definition. If a®b=b; or,ifaob=a; or,ifa®b=\J ; or,if'aoo= f\;

then we write a © 6 (or b © a).

It is easily seen that these definitions are all equivalent, and that the prop-

erties of © used as postulates in § 2 can be readily deduced.

Proofs of theorems in the preceding paragraph.

In the following proofs we write, for brevity, a o 6 = ab. The proofs for

the theorems " 6 " may be obtained from the proofs for the corresponding the-

orems " a " by interchanging © with o and A with V •

Proof of Vila. Suppose there were two elements, Ai an<l A2i su(m *ßat

a © A i = a and a © A 2 = a f°r every element a. Then, putting a = f\2ia

the first equation and a = f\, in the second, we should have A 2 © A i = A 2

and A, © A2= Ai5 whence, by Ilia, A! = A2-

Proof of Villa. By V (in view of Vila, b) take ä so that a © ä = V and

aä = A •    Then by la, Ha, 6, and IVa we have

a © a = (a © a) \J = (a © a)(a © ä) = a © (aä) = a © A = a.
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Proof of IXa. By V (in view of Vila, 6) take ä so that a © ä = \J. Then

by la, 116, III6, and IVa we have

a©V =(a©V)V = V(«©V) = (a© ä)(a ® \J) = a ® (à\j)= a ® ä=\J.

Proof of Xa.    By la, 6, 116, IV6, Ilia, and IXa we have

affi(a6) = (a\y)©(a6) = a(V ©6) = a(6© \J ) = a\J = a.

Proof of XL Suppose that for a given element a there were two elements,

äx and ä2, such that a©äl=a©ä2= \J and aäx = aä2 = A ', then using la,

6, Ha, 6, III6, IV6, and V we should have

a2 = \Jä2= (a ® äx)ü2= (aä2) ® (äxä2) = A © (äxä2)

= (äxa) © (äxä2) = äx(a © ä2) = ax \J =äx.

Proof of Xlla.    We notice first that

a © (ä © c) = V an(i        a ( ôc ) = A ;

for, by la, 6, 116, III6, IVa, V, and X6,

a©(a©c)= V [a©(a©c)] = (a©ä)[a©(ä©c)]

= a© [â(â©c)] = a©â= Vi

and similarly for the reciprocal proposition.

Then, using IVa, 6, Ilia, 6, and XI,

(a©6)©(a-6*) = [(a©6)©a][(a©6)©6] = V V= V >

and

(a©6)(a-6)= [a(a-6)] © [6(a-6)] = A A = A ,

whence, by XI, a © 6 and ah are supplementary elements.

Proof of XIHa. Let (a©6)©c = a; and a © (6 © c) = y; then

(a-h)c = x, by XHa, and in order to prove that x = y it is sufficient (by XI)

to show that x and y are supplementary elements.

Now
(1) y ® a = y ®7> = y ® c = \J .

For, first, 2/ffiä = äffi[a©(6©c)]=V as in the proof of Xlla ; secondly,

y © 6 = v(&© y) = (b © b)(b © y) = ° © (by) by IVa,
while

by = 6 [a © (6 © c)] = (6a) © [6(6 © 6)] = (6a) © 6 = 6, by IV6 and Xa, 6,

so that y©6 = 6©6 = \/; and similarly, y © c = V.
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Also, by a similar method,

(2) xa = xb = xc = A •

Therefore, by IVa,

y®x = y® [(a-6)c] = [(y © a)(y © 6)] (y © c) = (\/ V) V = V>

and, by IV6,

xy = x [a © (6 © c)] = (xa) © [(*6) © (5c)] = A©(A©A)=A;

whence, by XI, x and y are supplementary elements.    Therefore x = y.

Theorem XIII6 follows at once from XHIa by Xlla, 6.

Independence of the postulates of the first set.

The ten postulates of the first set are independent; that is, no one of them

can be deduced from the other nine. To show this, we exhibit, in the case of

each postulate, a system (K, ©, ©) which satisfies all the other postulates, but

not the one in question. This postulate, then, cannot be a consequence of the

others ; for if it were, every system which had the other properties would have

this property also, which is not the case.

For postulate VI take K= the class comprising a single element, a, with

a © a = a and aoa == a.

For the other postulates, take K= a class containing two elements, say 0 and

1, with © and © defined appropriately for each case, as indicated in the fol-

lowing scheme:

la)

16)

Ha)

116)
Ilia)

1116)

IVa)

IV6)
V)

0©0    Offil    IffiO    lffil

0

0

0

0

0

0

0

0

0

1
1

0

1

1

1

1

1

1

X

1

0

1

1

1

0

1

1

OoO    0©1    1©0    1©1

0

X

0

1

0

0

0

1

0

0
0
0
1
0
0

0

0

1

0

0

0

1
0
1

0

0

1

In verifying these results, notice that the system for lia (or 116) satisfies

postulate V " vacuously," since no element having the properties of A (or V )

exists ; while the system for Ilia (or III6) also satisfies V vacuously, since the

element A (or V) ls n0* uniquely determined. In the other systems, A = 0

and V = 1, except in the system for V, where A = 0 and \/ = 0.
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§ 2.  The Second Set of Postulates.

In § 2 we take as the fundamental concepts a class, K, with a dyadic relation,

© ; and as the fundamental propositions, the following ten postulates. (Note

that a © 6 and o © a mean the same thing.)

1. a © a whenever a belongs to the class.

2. If a © 6 and also a © 6, then a = b.

3. If a © 6 and b © c, then a © c.

4. There is an element f\ such that A © a for every element a +- A •

5. There is an element \J such that \J © a ybr every element a + \J.

6. If a + b, and neither a © 6 nor a © 6, ¿Aere ¿s aw element s such that

Io) s ©a;        2°) s ©6;        ana7

3°) i^" y, =}= s, is such that y © a and y © 6, íAen y © s.

7. If a =^ b, and neither a © 6 nor a © o, ¿Aere is an element p such that

Io) p Q a ; 2°) p © b;        and

3°) if x, + p, is such that x © a ana7 a; © 6, ¿Aen x ©^>.

8. If the elements A ana* \y "-71 4 an J 5 exist and are unique, then for every

element a there is an element ä such that

Io) if'x © a and x © ä, then x = A >'        and

2°)  \fy © a and y © a, then y = V •

9. If postulates 1,4, 5, ana* 8 hold, and if a ©Z is false, then there is an

element x +- A such that x © a and x © 6.

10. There are at least two elements, x and y, such that x + y.

In this list, postulates 1—7 are independent among themselves, and postulates

8 and 9 are independent of the first seven (ordinally independent). Taking the

whole list together, however, either 6 or 7 can be deduced from the rest, as

shown in 25 below. Both postulates 6 and 7 are allowed to stand in the list for

reasons of symmetry ; but if a set of absolutely (not merely ordinally) inde-

pendent postulates is desired, either one or the other must be omitted.

Consistency of the postulates of the second set.

To show the consistency of the postulates, we have only to exhibit some sys-

tem ( K, © ) in which K and © are so interpreted that all the postulates are

satisfied.

One such system is the following : K = the class of regions in the plane

(including the null-region and the whole plane) ; a © b signifying that the region

a lies within (or coincides with) the region 6.
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Another such system is the class composed of two elements, 0 and 1 with

0 © 0, 0 © 1, and 1 © 1, but not 1 © 0.

For other such systems, see the appendix.

Deductions from the postulates of the second set.

The following theorems are deduced from the postulates of the second set, and

are sufficient to connect these postulates with the usual presentation of the

theory : the proofs wherever needed are given in the next paragraph. The pos-

tulates on which each theorem depends are indicated at the right.

11a. The element A in 4 is unique. (2, 4)

Hence A © a for every element a ; and if a; © A » then x = A • (1» 2, 4)

116.    The element f in 5 is unique. (2, 5)

Hence V © a for every element a ; and if y © V, then y = \y. (1, 2, 4)

12a. The element s in 6 is uniquely determined by a and 6 ; hence we may

define a © 6 as follows :

Definition. Ifa©6,a©6 = 6;ifa@6,a©6=a;ifa = 6,a©a = a;

otherwise, a © 6 = * (in 6). Hence a © 6 © a and a © 6 © 6 ; and if y © a and

y©b, then y © a © 6.    Obviously, a © 6 = 6 © a. (1, 2, 6)

126. The element p in 7 is uniquely determined by a and 6 ; hence we may

define a © 6, or a6, as follows :

Definition. Ifa©6,a6=a; ifa©6,a6 = 6; if a = 6,aa = a; other-

wise, ab =p (in 7).    Hence ab Q a and a6 © 6 ; and if x©a and a; © 6 then

xQab.    Obviously a6 = 6a. (1,2,7)

13a. a © A= a and a© V= V- (1,2,4,5,6)

136. a\/ = aandaA = A- (1,2,4,5,7)
14a. If y © a © 6, then y ® a and y © 6. (1,2, 3, 6)

146. If x © a6, then as © a and x © 6. (1,2, 3, 7)

15a. If a © 6 and x © y, then a © x © 6 © y. (1, 2, 3, 6)

In particular, if x © y, then a © x © a © y.

156. If a © 6 and x © y, then ax © by. (1, 2, 3, 7)

In particular, if x © y, then ax © ay.

16a. (a © 6) © c = a © (6 © c). (1, 2, 3, 6)

166. (a6)c = a(6c). (1,2,3,7)

17. The element ä in 8 is uniquely determined by a ; hence

Definition. The element ä (in 8) is called non-a, or the supplement of a.

Hence, a © ä = V an(i aä = A •    Obviously, A = V an<^ V = A •

(1, 2, 4, 5, 8, 9)
18. If ä = 6, then a = 6 ; hence, ä = a, by 17. (1, 2, 4, 5, 8, 9)
19. If a © 6 then, inversely, 6 © ä. (1, 2, 3, 4, 5, 8, 9)
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20a. a © 6 = äo6. (1, 2, 3, 4, 5, 6, 7, 8, 9)

206. ao6 = ä©6. (1, 2,3,4,5,6,-7, 8, 9)

These last theorems, 20a and 206, establish the duality between a © 6 and

a © 6.

21a. a(6 © c) © a6 © ac. (1, 2, 3, 6, 7)

216. a © 6c © (a © 6)(a © c). (1, 2, 3, 6, 7)

22a. a(b © c) © a6 © ac. (1, 2, 3, 4, 5, 6, 7, 8, 9)
226. a © 6c © (a © b)(a © c). (1, 2, 3, 4, 5, 6, 7, 8, 9)
From theorems 21 and 22 the distributive laws follow at once, by 2, namely,

23a. a(6 © c) = a6 © ac. (1, 2, 3, 4, 5, 6, 7, 8, 9)
236. a© 6c = (a© 6)(a©c). (1, 2, 3, 4, 5, 6, 7, 8, 9)

All these theorems would hold for a class containing only a single element a,

with a ©a. This trivial case is excluded by postulate 10, however, and we

have:

24. ä ="= a ; in particular, A + V • (1, 2, 4, 5, 6, 7, 8, 10)
25a. Postulate 6 is a consequence of postulates 1, 2, 3, 4, 5, 7, 8, and 9 5

the required element s being s = ä o 6.

256. Postulate 7 is a consequence of postulates 1, 2, 3, 4, 5, 6, 8, and 9 ;

the required element^ beings = ä © 6".

Proofs of theorems in the preceding paragraph.

The theorems 11a, 6 and 12a, 6 follow immediately from the postulates indi-

cated. In theorems 13a, 6 it is sufficient to notice that the sum or product

given has the properties stated in 12a, 6. Theorems 14a and 146 follow from

12a and 126 by 3. The remaining theorems may be proved as follows, the proof

for any theorem " 6 " being in each case readily supplied from the proof for the

corresponding theorem " a " by interchanging © with ©, © with o, and A

with V-*

Proof of 15a. By 12a, a © a; © a and a © x © x. From a © x © a and

a © 6, by 3, a © x © 6 ; from a © x @ x and x© y, by 3, a © a; © y ; therefore,

by 12a, a © x © 6 © y.

Proof of 16a. By 12a, (a © 6) © c © a © 6, and a © 6 © a; hence, by 3,

(a©6)©c©a. But also, a © 6 © 6, whence (a©6)©c©6; and further,

(a©6)©c@c,by 12a ; hence, by 12a, (a©6)©c©(6©c). Therefore, by

12a, (a © 6) © c © a © (6 © c).

Similarly, a©(6©c)@(a©6)©c.    Hence the theorem, by 2.

* Theorems 216, 226, and 236 may also be inferred directly from 21a, 22a, and 23a, by the aid

of the principle of duality established in 20a and 206.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



300 E.   V.   HUNTINGTON:    POSTULATES   FOR [July

Proof of 17.    Let äx and ä2 be two elements having the properties of ä in 8.

Then äx © ä2 ; for if not, we should have, by 9, an element x 4= A such that

x © äx and x © a, whence, by 8 and lia, x = /\.

Again, ä2 © äx ; for, if not, we should have, by 9, an element y 4= A sucn

that y © â2 and y © a, whence, by 8 and lia, y = A•

Therefore âj = â2, by 2.

Proof of 18. From ä = 6 we have : if x © a and x © 6, then x = A > and

if 2/ © a and y © b, then y = \J . But these are precisely the conditions under

which a = 6, by 8.

Proof of19. If 6 © a were false, we should have, by 9, an element x 4= A

such that x © 6 and x © a. But from x © a and a © 6 follows x © 6, by 3 ;

and from x © 6 and x © 6 follows x = A, by 8 and 11a, which contradicts the

condition x 4= A •

Proof of 20a. Let a © 6 = s and ab =p; it is required to prove (see 18)

that s = p.

By 12a, s © a and s © 6 ; hence by 19, s © a and s © 6, or, by 126, s © a-6 ;

that is s © p, or by 19, p © s.

Again, by 126, p Q a and p © 6"; hence, by 19, p © a and ^j © 6, or, by 12a,

¿j © a © 6 ; that is, p © s.

Therefore s = jo, by 2 .

Proof of 21a.    By 126, ab Q a and ac © a, whence, by 12a,

a6 © ac © a.

Again, ab ©b and ac © c, by 126 ; hence, by 15a,

a6 © ac © 6 © c .

Therefore, a6 © ac © a(6 © c), by 126.

Proof of 22a.* In order to facilitate the proof of this theorem, we first

establish the following

Lemma : a(6©c)©6©ac.

* This demonstration is borrowed, almost verbatim, from a letter of Mr. C S. Peibce's, dated

December 24, 1903. Mr. Peirce uses the symbol -< where I have used © , and in a slightly

different sense; so that he is enabled to state that the principle here called postulate 9 "follows

from the definition of Pi -< & on page 18" of his article of 1880. The demonstration was origi-

nally worked out for that article (American Journal of Mathematics, .vol. 3 (1880),

p. 33), but is now published for the first time (compare ibid., vol. 7, p. 190, footnote, 1885

[wrongly cited as 1884 in Scheödee's bibliography], and Schbödeb, loc. cit., p. 291).

Under the date February 14, 1904, Mr. Peibce writes as follows :

"Dear Mr. Huntington : Should you decide to print the proof of the distributive principle

(and this would not only relieve me from a long procrastinated duty, but would have it certain

value for exact logic, as removing the eclipse under whioh the method of developing the subject

followed in my paper in vol. 3 of the American Journal of Mat hematics has been obscured)

I should feel that it was incumbent upon me, in decency, to explain its having been so long with-

held.   The truth is that the paper aforesaid was written during leisure hours gained to me by
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Suppose the lemma to be false.    Then, by 9 and 18, there is an element

x + A sucn that
x © a(b ® c), (Io)

and a; © 6 © ac,

whence, by 19, aT©6ffiac. (2°)

From (Io), by 146, x © a, (3°)

and x ©b ® c. (4°)

From (2°), by 14a, x© 6 and x© ac, whence, by 19,

x © 6, (5°)

and x © ac. (6°)

From (6°) and (3°) it follows that x © c must be false; for if x © c and

a; © a, then x © ac by 126, whence x = A i by 17, which contradicts the condi-

tion x + A •

Therefore, by 9 and 18, there is an element y 4= A suca that

y©x, (Io)

and y © c,

whence, by 19, y © c. (8°)

From (7°) and (5°), by 3, y © 6", whence by 19,

y ©6. (9°)

From (8°) and (9°) by 12a, y © 6 © c, whence, by 19,

y©6©c. (10°)

But from (7°) and (4°), by 3, we have

y © 6 © c, (11°)

and from (10°) and (11°), by 17, y=f\, which contradicts the condition y =j= A •

my being shut up with a severe influenza. In writing it, I omitted the proof, as there said, be-

couse it was ' too tedious ' and because it seemed to me very obvious. Nevertheless, when Dr.

Schröder questioned its possibility, I found myself unable to reproduce it, and so concluded

that it was to be added to the list of blunders, due to the grippe, with which that paper abounds,

—a conclusion that was strengthened when Schröder thought he demonstrated the indemon-

strability of the law of distributiveness. (I must confess that I never carefully examined his

proof, having my table loaded with logical books for the perusal of which life was not long

enough. ) It was not until many years afterwards that, looking over my papers of 1880 for a

diffeient purpose, I stumbled upon this proof written out in full for the press, though it was

eventually cut out, and, at first, I was inclined to think that it employed the principle that all

existence is individual, which my method, in the paper in question, did not permit me to em-

ploy at that stage. I venture to opine that it fully vindicates my characterization of it as

'tedious.'    But this is how I have a new apology to make to exact logicians."

Trans. Am. Math. Soc. 90
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Therefore the supposition from which we started is impossible, and the lemma

is established.

The proof of the main theorem then proceeds as follows : By the lemma,

a(6©c)©6©ac.

Therefore, by 156, G [a(5 © c)] © a [6 © ac]. (12°)

But, by 166 and 126,

a [a(6 © c)] = (aa)(6 © c) = a(6 © c), (13°)

and by 12a and the lemma again,

a[6©ac]=a(ac©6)©ac©a6 = a6©ac. (14°)

Therefore, by 3,
a(6©c)©a6©ac.

Proof of 23a.    This theorem follows at once from 21a and 22a by 2.

Proof of 24. If ä = a for any particular element a, then a = A ■> by 8, 1,

and 11a. But if A = A » then A = V > Dy 8, 1, and 116 ; whence, every ele-

ment coincides with A » by 2—a result which is impossible by 10. Therefore

ä + a, for every element a.

Proof of 25a. Let s = a © ï ; we have then to show that this element s

has the properties Io), 2°), and 3°) demanded by postulate 6. By 18 and 126,

a © 5 © a and a © 3 ©7) ; hence, by 19, s © a and s © b. Further, if y © a

and y © 6, then, by 19, y © a and y © 7> ; whence, by 126, y © a © T>, or, by

19, y © s .

Independence of the postulates of the second set.

The independence of the nine postulates of the second set (either 6 or 7 being

omitted) is shown by the following systems (F, © ), each of which satisfies all

the other postulates, but not the one for which it is numbered.

(1) K= a class of four elements, say 0, 1, 2, 3, with © defined by the

accompanying " relation table."    In a table of this kind,* a dot standing to

2    0 1    3

* Schröder makes extensive use of tables of this kind in his Algebra der Logik; see vol. 3

(1895), p. 44.
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the right of a and underneath 6 indicates that the relation a © 6 is true ; the

absence of such a dot indicates that a ©.6 is false. Here postulate 1 is noi

satisfied, for 0 © 0 and 1 © 1 are not true. In postulates 4 and 5, take A = 0

and V = 1. In postulate 8, take 0 = 1, 2 = 3, and conversely. Postulate 9

is satisfied vacuously.

(2) K = a class of two elements, a and ß, with © interpreted as " equal to

or different from," so that a © 6 is always true.

Here postulate 2 is clearly false.    Postulate 9 is satisfied vacuously, since

a © 6 is never false.

(3) K= a class of six elements, 0, 1, 2, •••, 5, with © defined as in the

accompanying table.

4    2    0 113    5

Here postulate 3 is false, since 2 © 4 and 4 © 3, but not 2 © 3. In postu-

lates 4 and 5, take A = 0, y = 1. In postulate 8, take 0 = 1,2 = 3,4 = 5,

and conversely.

(4) K= the class of all the finite sets of integers which include the integer

1 ; with © interpreted as " the same as or includes." (Thus, a © 6 means that

every integer in the set 6 is also in the set a.)

Postulate 4 fails, since there is no set which includes all the other sets. In

5, take y = 1. In 6 and 7, let s be the set of integers common to the sets a

and 6, and p the sets composed of a and 6 together. Postulates 8 and 9 are

satisfied vacuously.

(5) K= the class of all the finite sets of integers which include the integer

0 ; with © interpreted as " the same as or part of." (Thus, a © 6 means that

every integer in the set a is also in the set 6.)

Postulate 5 fails, since there is no set of which every other set is a part. In

4, take A = 0. In 6 and 7, let s be the set composed of sets a and 6 together,

and p the set of integers common to the sets a and 6.

(6 and 7). K= a class of fourteen elements, denoted, say, by u0 ; w01, w02, um,

M04 !   M012' M013> W024» M031 '   M0123' M0124> M0134 ' W0234 ' W01234 '   WÍth   ©  defined as folloWS :

uA © uB when and only when the digits in the subscript A are all included

among the digits in the subscript B. (Notice that u0X4 and u023 are not included

in the class.)
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Here postulates 1-5 clearly hold.    Postulate 6 fails when a = uox, b = u0

and also when a = u(a,b = um.    Postulate 7 fails when a = «.„„., 6 : , and

also when a = u   ,, 6 Postulates 8 and 9 hold.

(8) K= a class of three elements, 0, 1, 2, with © defined by the accom-

panying table.
0   2   1

Here postulates 4 and 5 hold, and A and V are unique :   f=0,\J=l

But postulate 8 is false for the case a = 2.

(9) F=a, class of five elements, 0, 1, 2, 3, 4, with © defined by the

accompanying table.

0   2   3   4   1

Here postulates 4 and 5 are satisfied: /\ = 0, \/ = 1 ; and also postulate 8,

although the element ü is not always uniquely determined by a : thus, 0 = 1,

2 = 3,3 = 2 or 4,4 = 3, 1 = 0. Postulates 9 fails, since 4 © 2 is false,

while x = 0 is the only element x such that x © 4 and x © 3.

I have not been able to find a system for (9) in which ä is always uniquely

determined by a; see the unsolved problem proposed below.

(10) K= a. class comprising a single element a, with a © a. (Postulate 9

is satisfied vacuously.)

Thus the postulates of § 2, omitting either 6 or 7, are independent, as was to

be proved.

It is interesting to notice also that, if we confine ourselves to the first seven

postulates, then postulates 6 and 7 are independent of each other. This is

proved by the following systems, each of which satisfies all the postulates 1-7

except the one for which it is numbered.

(6) K= a class composed of the following areas : all the squares which lie

within a given square (with sides parallel to the sides of the given square) ; the

given square itself, and the " null " square ; a fixed circle, lying wholly within

the given square ; and all areas formed by the addition of two or more of these

areas;— with © interpreted as "includes or coincides with."
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Postulates 1-5 clearly hold. (In 4, A = the whole square ; in 5, y = the

null-square). Postulate 6 fails when a = the circle and 6 = a square which

overlaps the circle ; for there is no largest area (belonging to the class) which

lies within both a and 6. Postulate 7 holds, the area p being the combined

area of a and 6.

(7) K= the same class as used above in the proof of the independence of 6 ;

with © interpreted as " within or coincident with."

Postulates 1-5 clearly hold. (In 4, A = the null-square ; in 5, y = the

whole square). Postulate 6 holds, the area s being the combined area of a and

6. Postulate 7 fails when a = the circle and 6 = a square which overlaps the

circle ; for there is no largest area (belonging to the class) which lies within

both a and 6.

A problem connected with postulate 9.

Other forms which may be used in place of postulate 9 are the following

[assuming such of the postulates 1-8 as may be necessary, and defining a © 6

and a © 6 ( = a6) as above] :

9j. If 6c = A, then 6 © c.

92 .* If 6c = A, then a(6©c)©a6©ac [whence a ( 6 © c ) = a6 © ac, by

2 and 21a].

93.f a © a6 © a6 [whence a = a6 © a6, by 2 and 21a].

The form 9, can be deduced from 92 or 93 as follows : if 6c = A, then

6c~= 6c © 6c = 6(c©c~) = 6y =6; whence, 6 © c.

The form 9 can be deduced from 9X as follows : if a © 6 is false, there must be

some element x + A > such that x © a and x © 6 ; for, if there were no element

except A which is © a and © 6, then by 126, ab = f\, whence, by 9X, a © 6, which

contradicts the hypothesis.

The form 9X is clearly simpler than 92 or even than 93 ; but all these forms

are in so far unsatisfactory as they lack the symmetry which corresponds to the

principle of duality between © and ©.

I therefore propose the following problem: if postulate 9 is replaced by 94,

namely :

94. If the elements A and y in postulates 4 and 5 exist and are unique,

and if postulates 8 is true, then the element a in 8 is uniquely determined

by the element a ;

can 9 then be deduced from 94, or must some other postulate be added?

In this connection, 19 is clearly of special importance.

*This is Schrödeb's " Prinzip III* " (loc. cit., p. 293), from which he showed that the dis-

tributive law, 23, can be deduced.   ,

fThis is Schrödeb's "Prinzip IIIx," a weaker form of his " Prinzip Illx ," and not, as far

as he could see without the knowledge of a proof like that of Peibce's in the present paper, suf-

ficient for his purpose.
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§ 3.  The Third Set of Postulates.

In § 3 we take as the fundamental concepts a class, K, with a rule of com-

bination, © ; and as the fundamental propositions, the following nine postulates :

A. a © a = a whenever a and a © a belong to the class.

B. a © 6 = 6 © a whenever a, 6, a © 6, and 6 © a belong to the class.

C. (a © 6) © c = a © (6 © c) whenever a, 6,c,a©6,6©c,(a©6)©c,

and a © (6 © c) belong to the class.

D. There is an element f\ such that a © A = a for every element a.

F.  There is an element \J such that \J © a = V for every element a.

F. If a and 6 belong to the class, then a © 6 belongs to the class.

G. If the elements f\ and \J in postulates D and F exist and are unique,

then for every element a there is an element ä such that

1°) if x © a = a and x © ä = ä, then x = f\ ;

and 2°) a © ä = \J .

H. If postulates A, B, E, and G hold, and if a © 6 +-6 then there is

an element x + f\ such that a © x = a and 6 © x = 6.

J.  There are at least two elements, x and y, such that x + y.

Consistency of the postulates of the third set.

The consistency of the postulates is shown by the existence of the following

system ( K, © ), in which all the postulates are satisfied :

F= the class of regions in the plane (including the null region and the whole

plane) ; a © 6 = the " logical sum " of the regions a and 6, that is, the smallest

region which includes them both.

Another such system is the class composed of two elements, 0 and 1, with ©

defined by the table
©     0    1

0     0    1

111

For other such systems, see the appendix.

Beductions from the postulates of the third set.

All the postulates of § 2 are very easily deduced from the postulates of § 3

when © is defined as follows :
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Definition.    We shall write a © 6 (or 6 © a ) when and only when a © 6 = 6.

The proof of 6, for example, is as follows : By F, B, C and A,

(a©6)©a=a©(a©6) = (a©a)©6 = a©6,

and similarly (a©6)©6 = a©6; whence, a © 6 © a and a © 6 © 6. Further,

if y © a and y © 6, then a®y = y and b®y = y, whence (a © y) © (6 © y) = y © y,

or (a © 6) © y = y, or  y ® ( a © 6 ).

Postulate 7 follows as in 256, and we may define a © 6 thus :

Definition,    a © 6 = a © 6.

The equivalence between the algebra of § 3 and the algebras of § 1 and § 2 is

thus readily established.

Independence of the postulates of the third set.

The independence of the nine postulates of the third set is shown by the fol-

lowing systems (A", ©), each of which satisfies all the other postulates, but not

the one for which it is lettered.

(A) The class of positive integers, and 0 and oo ; with a © 6 = a -4- b.

Here postulates B—F clearly hold.    In G take ä = oo when a 4= °°, and

ä = any other element when a = 00.    Postulate His satisfied vacuously.

(B) A class of two or more elements, with a © 6 = a.

Here B clearly fails. In D, E, and F, any elements will answer as A and

y. Postulate G is satisfied vacuously, since A and y are not uniquely deter-

mined.    In H, x = any element.

(C) A class of six elements, 0, 1, 2, ••■, 5, with © defined as in the accom-

panying table.

4    2    0

4 4 4

4 2 2

4    2    0

111

3 13

12    5

13    5

13 1

112

13    5

1 1 1

13 5

15    5

Here C fails, since (2 © 4) © 3 = 4 © 3 = 3, while 2 © (4_© 3)==2 ©3_=1.
In D and E, take A = 0 and y = 1. Postulate G holds : 0=1, 2=3 , 4=5,
and conversely.    Postulate H ?x\so holds.

(D) The class of all the finite sets of integers which include the integer 1 ;

with a © 6 defined as the set of integers common to the sets a and 6.
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Here B fails, since no set includes all the rest. In E, take \j =1. Postu-

lates G and H are satisfied vacuously.

(E) The class of all the finite sets of integers which include the integer 0 ;

with a © 6 defined as the set composed of the sets a and 6 together.

Here E fails, since no set includes all the rest. In B, take /\ = 0. Postu-

lates G and H axe satisfied vacuously.

(F) The class of fourteen elements used in proving the independence of 6

and 7 in § 2 ; with © defined as follows : uA © uB = us, where the subscript S

includes all the digits in the subscript A and also all those in the subscript B.

Here F fails when a = u ., 6 = u04, and also when a ,»*-
(G) A class of three elements, 0, 1, 2, with © defined as in the accompany.

ing table.
0    2    1

Here G fails when a = 2.    In D and E, take A = 0 and V = 1 •    Postu-

late H is satisfied vacuously.

(H) A class of five elements, 0,1,2,3,4 with © defined as in the accom-

panying table.
0    2    3    4    1

0 2    3    4    1

2 2    14    1

3 13    11

4 4    14    1

111111

Here A and B clearly hold. Postulate C holds, when a or 6 or c is

0 or 1 ; when a = c; and in the other cases by trial. Postulate G holds :

0 = 1,2 = 3,3 = 2 or 4, 4 = 3,1 = 0; but notice that ä is not uniquely

determined by a in the case a = 3. Postulate H fails in the case a = 4, 6 = 3,

S = 2 . (Compare proof of independence of postulate 9 in § 2, and the unsolved

problem proposed at the end of that section.)

(J) A class composed of a single element a, with a © a= a.

Appendix.

Any system (K, ©, o, ©) which obeys the laws of the algebra of logic may

be called a logical field (a term which I venture to suggest as analogous to
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" Galois field "). In this appendix * we consider all possible finite logical fields,

that is, all possible finite classes, K, in which the rules of combination, © and

©, and the dyadic relation, ©, can be so defined as to satisfy the postulates of

§1, §2, or §3.

1. The number of elements in every finite logical field must be 2m, where

m = l, 2,3,   ■-.

For, if a © 6, and a 4= 6, we can always find an element x 4= A , namely

x = ö6, such that a © x = 6 and ax = A • Hence, in_ any finite logical field

we can find a set of m elements different from A , 8ay ux,4u2, ■ ■ -, um, such that

Ux + U2 + W3 +-\-Um=   V
while

uiu.= A (*+i).

These w elements may be called irreducible.

Every element except A is then the sum of k of these irreducible elements

( 1 = k É= m ), whence, by a familiar theorem in combinations, f the total num-

ber of elements is 2"'.

2. Any class the number of whose elements is a power of 2, say 2m, can be

made into a logical field by properly defining ©, © and © ; and this in essen-

tially only one way.

The process of constructing the requisite " addition-," " multiplication-," and

" relation-tables " is the following :

Select one element to serve as /\. Select m other elements to serve as the

"irreducible" elements of the system, and denote them by ux, «„, u3, • • -, um.

Select C„ other elements to serve as the elements which are the sums of two of

the irreducible elements, and denote them by uX2, uX3, u^, etc., so that we shall

have u,., = u, © u., etc. Select C, other elements to serve as the elements

which are the sums of three of the irreducible elements, and denote them by

Mi23' Mi24' M234' et°' ' s0 that we shall have «123 = ux © u2 © u3, etc. And so on.

Finally, w123...m = V-

The construction of the tables is then obvious. Thus, uA © uB when and only

when the digits in the subscript A are all contained among the digits in the sub-

script B ; uA © uB = us where the subscript S contains all the digits that occur

in A and also all that occur in B ; uAo uB = uP, where the subscript P con-

tains only those digits which are common to the subscripts A and B.

Haevabd University,

Cambeidge, Mass.

* Cf. P. POEETSKII, Théorie des égalités logiques à trois termes a, b etc; Bibliothèque du

congrès international de philosophie, Paris 1900, vol. 3 (1901), pp. 201-233; and

Schröder, loc. cit., vol. 1, p. 658. The notation and method of proof here used were suggested

60 me by Professor E. H. Moore.

t This theorem :  1 + mCx + mC2 + mC3 H-h mCm = 2m,   is,  oddly enough,  not explicitly

mentioned in Chbystal's Algebra; see vol. 2 (2d edition), chap. XXIII, § 13.
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