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ON THE VIBRATIONS OF CIRCULAR PLATES. 225

XXI. The Vibrations of Circular Plates and their Relation to
Bessel Functions. By JouN R. Amrey, M.4., B.Sc., late
Scholar of St. John’s College, Cambridge.

FirsT RECEIVED FEBRUARY 15, 1911. RECEIVED 1§ FINAL FOoRM
_ Marem 7, 1911,

Tue vibrations of circular plates were first investigated by
Poisson * in a celebrated memoir read before the French
Academy of Sciences in 1829. Three cases were considered :
(a) when the circumference was fixed ; (b) when the plate was
“ supported ” ; (c) when the plate was free. The ratios of the
radii of the nodal circles to the radius of the plate were calcu-
lated when the vibrating plate had no nodal diameter and one
or two nodal circles. Kirchhoff  extended Poisson’s results
for the free plate by calculating six ratios of the radii when the
plate vibrated with one, two or three nodal diameters, whilst
Schulze § found eight more values of the ratios for a plate with
fixed circumference.

The calculation of these ratios required the determination of
the roots of equations involving Bessel functions with real and
imaginary arguments. These appear to have been found by a
“trial and error ” method or by interpolation from tables of
these functions.

The object of the present Paper is to give a general method
of solving these equations—viz., equation (4a) for a circular
plate with fixed circumference (Table I.), and equation (9a)
for a free circular plate (Tables II. and III.). From the roots
so calculated, the radii of the nodal circles and the times of
vibration in any given mode are readily found.

(A) Vibrations of a Circular Plate with Fixed Circumference.

The displacement of a point on the plate from its position of
equilibrium is given by
w=A cos (p0) {J ,(kr)+AT (ixr)} cos (g —e). . . (1)

PP dw
The boundary conditions in this case are w=0and El7=0 when

r==a, or, if the radius of the plate is equal to unity, when
r=1,

# ¢ Mémoires de I’Académie royale des Sciences de I'Institut de France,”

tome VIIL., 1829. N
T Kirchhoff, ¢ Pogg. Annalen,” 1850. Strehlke, ©“ Pogg. Annalen,” 1855,
* Schulze, * Ann, der Physik,” XXIV., 1907.
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Hence (1) gives
J(ka)+AJ (tka)=0, . . . . . (2)
J(ka)+AT ) (ika)=0. . . . . . (3)
Eliminating A and writing « for «xa, we get

T @) T, (i)

j_p-(;:) =Jp(z'w) B )
. Jpra(@) | L)
o1 w:]it(l:i)h_{— Vi’;(%c‘)_ =0 . . . . . . (4A)

This becomes, after the substitution of the semi-convergent
series for J,(z), &c.,

/' ..;[)—l'—l I‘)+].P +.l .Q -
ts € 77 V= p r p+1. o i
d.ll\ 4: ) Ip'l'Qp—I .Ip+1 ())

p _ ( 417" Q 1) I(P +Q ) D
t _pm 2 '+ P'r b L4 H
or all ('r 9 nm > . p+l+Qp+l)+Ip’L1(Pp_ QIJ)

= -y — 8aJ~—— (MmP+-2m+93) yy*— Balyt

2a ]
—13 (i BmP--T744m? —10726m--56055)y°. ..,

where a=4p® -1, m=4p* and y=8_lr'
Then, by Gregory’s series,

w=nm+ B —a ly+8y2+4 (m+23)
75 (96m? — 18624m-+-110688) %°. . .}
"y a 8a _ 4a(m-23)
T 8z (8x)? 3(8z)?
@ (96m2—18624m--110688) ©)
1—5 . (8w)5 . v e

By Lagrange’s theorem, if

-

ww~

-3 t—2¢° — 4, 2p3
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Hence
— B 1 8  4(Tm+4-17)  192(m —1)
v=B=n=1 [ g5t sgrt a7+ 98
32(83m>4-218m4-2579)
+ T5EE =)o
where B= (2”';— p)vr.

Two roots of equation (4a) were given by Poisson when p=0,
viz., 3-196 and 6:292, whilst Lord Rayleigh gave the values
320 and 6-3. Forother values of p, Schulze found the follow-
ing roots : When p=1, 4-612, 7-80, 10-95; and when p=2,
5-904 and 9-40.

The roots of equation (4) have been calculated from the ex-
pression given in (7), when p=0, 1, 2 and 3, some of the earlier
roots by interpolation.

TarLe I.

. Jpqqle) I 1€9)
Roots of 2XY 0 Tet 1) g,
B Y™ R 71

No. of [ \
root. p=0. f »=1. p=2. p=3.
1 31955 4-611 5:906 7144
2 f 6:3064 | 7-799 9-197 10-536
3 | 94395 10-958 12-402 13795
4 | 125711 | 14109 15-579 17-005
5 l 157164 | 17256 18-745 20-192
6 | 188565 | 20:401 21:901 23-366
7 219971 | 23:545 25-055 26-532
s | 251379 | 26689 28205 |  29-693
g9 | 282790 i 29-832 31-35¢ 32849
10| 314200 32:975 34502 | 36003

By substituting one of these values in (2), the value of A cor-
responding to this root can be found—e.g., when the plate is
vibrating with one nodal diameter and three nodal circles,
ka==2=10-958, and

A= — J,(10-958)
J,(10°958%)
or wA=0-0000255. . . .

Equation (2) becomes
J 1 (#r)+-0-00002551, (r)=0.
The roots of this equation are 3:8312, 7:0024 and 10-958.
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Therefore, the ratios of the radii of the nodal circles to that of
the plate are

38312 7-0024

10'958——0 3496 and 10958

Schulze (*“ Ann. der Physik.,” 1907) gives the values
0-350 and 0-640.

The expression for the frequency of vibration of the plate is

2
N=

=06390,

oz
N1 —p

where « is constant for the same plate (Lord Rayleigh, ““ Theory
of Sound,” Vol. 1., § 217), u is Poisson’s ratio, and z is a root
of equation (4). Since z is independent of , N is only affected

by a change in the assumed value of wx through the factor
1

Sl
(B) Vibrations of a Free Circular Plate.
The boundary conditions mquire

e P a0 3ol o N

T pAu— Did,) (ir) — I, ()it i) T
' (u—1) xd, (@) — x) —z%J (z) (
e e ey O

where x is written for «a.
Eliminating A, the expressions on the 1'ight of (R) and (9)
arc equal. . e e e e e o (Ya)

(i.) When p_ , i.e., when there is no nodal diameter,
cquation (Ya) becomes

. (i) Jolx)
2(1— 0 0L =0 . . .
2l —u)t+ To (@) +x T@) 0 (10)
or, using Poisson’s value for u(u=3%)

Jo@) _ 3 _Iy)

Jiz) 2 Iy(x)

Substituting the semi-convergent series for Jo(z), J,(x), &e.,
we get

7 - . am
P"'CO”'(”_E—Q”“”(”H) 3 I (11)
:L — .\ =a R
l’l.sin(w—-z-)—i—(zlcos(w—z> 2z 1y(z)

. (104)
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—aQ,
or tan (x_—)_QO—{—aPl N ¢ 1))
Putting y=815, a=12y_i‘f;§

=—1+4-8y—24y—192y>—2016y*—27648y. .
This value substituted in (12) gives, after simplification,
tan (x—Z—) 1 10y— 10>+ 32045 3650y*--59840y5. . .
tan (x—nr)=—by-+20y2 485y 500y*12107045. . . .
Expressing the angle in terms of the tangent, we find
x —nr=—by+20 J2—|— 3+90320y

5 380 20320
& Ber 3@ (8a)f

or T=NT—

Then, as before, by Lagrange’s theorem,

20 220 | 2400 , 54560
e s g

(ii.) When p=1—i.e., when the vibrating plate has one
nodal diameter, equation (94) gives

(6-+4a2)T,— (3z+42%)J,__ (6—42") ], — (Bz—42")],
(6—4a?)J,— 3z, 64251, — 321,

This reduces to

(13)

tan (Oz—- x—}—nw)=9y—84y9+6393/3—6804y4—}— 1687145, . ..

9 84 _ 396 65261
8z (8:1;) S Bap G

Hence x=(2n—{—1)g—

Writing 8 for (2n+1) 72:, Lagrange’s theorem then gives

L 84 1044 18144 3858TT
r~B—g5t war maT B (8P
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(iii.) The general expression for the roots of equation (9a),
as far as the term containing 1/(88)¢ can be obtained from a
result of Kirchhoff’s, viz.,

tan (w—nm— BT)—B/(82)+C/(B2)—D (8. .
| 2 A+ B/(82)FD/8zp...” 7

4 . .
where A= y= 5 using Poisson’s value of =1,

B=y (1—4p?)—8,
C=ry (1—4p%)(9—4p?)+48(1+4p?),
D= —JH(1—4p?)(9—4p*)(18— 4p2) - 8(9 136p2-+ 80*)
tan (2 —nm—B7) = — (4p*5) y-+ 4(16p°4- 5)y?
— % (64p°+-304p44-1804p2—255)3. . .

Writing B for (2n--p) ;r and m for 4p?, it is easily shown that

mﬂ)+4(4m+5)_4(m——1) <m+2§)+ 0

T=R= g T (Sap ™
—B m~4-5  44m+-5) 4(7m?-154m+-55)
PEPT BRI T T(BRE  88BF
96(m+-5) (4m--5)
+ g (14)

This series is not convergent enough to give the earlier roots
of equation (94). These can be obtained without difficulty from
tables of Bessel functions.

Poisson (Mém. Acad., 1829) found the first two roots of equa-
tion (9a), when p=0, viz., 2-9815 and 6-1936.

Kirchhoff calculated some of the roots of the general equa-
tion (9A) by expressing it in the form
ws $12
A KT
and finding the roots by “ trial.”” Only the first two roots,
(A)¢, in each case (p=0, 1, 2, 3) could be calculated from the

tahle of values of A,, A,, &c., given in the Paper. Kirchhoff’s
roots are readily expressed in the same form as those calcu-

4
0=1-%1
Ay
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lated from (14). Several of these values have been verified
and are included in the following table :—

Tapre II.
Roots of Equation (9a).
When p=0, 1, 2, 3. #=1}% (Poisson’s value).
n. p=0. p=1. [‘ p=2. p=3.
0 “ | 2-348 3-571
1 2:982 i 4-518 5-940 7-291
2 6192 7720 | 9-186 10-600
3 9-362 : 10-903 l 12-381 13-821 :
4 12-519 : 14-024 ! 15-556 17-015 \
5 15-669 ‘ 17-218 : 18-721 20-203
6 18-817 : 20-368 ! 21-880 23-363
7 21-963 23:516 g‘ 25-035 26-526
8 25-108 26-663 i 28-187 29-685
9 26255 | 20800 | 31337 32.841
i

The values of A(p=0, u=1) can be found from (8)
_ o) _ T
1J (i) Li(z)’
and z has one of the values in column 2 of Table II. When
r=xa=9-362, for example, A=—0-0001299.... The radii of the
nodal circles are readily found from the roots of the equation
Jo(kr)—0-0001299—Jy(ikr)=0. . . . (15)

The four roots of (15) are 2-40406, 5-5369, 8-3662 and 9-3620.
Hence the radius of the plate being taken as unity,

r,=0-25679 0-25679,
7,=0-59143 0-59147,
74=0-89365 0-89381.

For comparison, Kirchhoff’s calculated results* are given
in the second column.

The roots of equation (94) vary with the assumed value of 4,
but, with the exception of some of the earlier roots, the varia-
tions are comparatively small. The value of the roots for any
given value of w can be obtained without difficulty. For ex-
ample, if =1 (Wertheim’s value),

_p_3m+13 40(3m+5)
- 3(88) ' 9(8BR

* Strehlke, “ Pogg. Ann.,” 1855. Lord Rayleigh, * Theory of Sound,”
Vol. 1,
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If this expression be divided by the value of z in (14), the
new series of roots can be found with considerable accuracy by
multiplying the roots in Table IL. by this quotient, viz. :—

14 2 _4B(6m—5)—~6(m1-5)

9ApTT gy

Tasre IIL
Roots of Equation (94).
m=1% (Wertheim’s value).

n. p=0. ] p==1. p=2. i p=3. l
0 2.292 3406
1 3.013 4-530 5-936 | 7-274
2 6-206 | 7737 9-188 ; 10:595
3 9-371 10-810 12-386 f 13-820 |
4 12:526 14-029 15:559 ! 17-015 \

The first two roots in each column are those given by Kirch-
hoft (Crelle, 1850, § 85).

The calculated values of the radii of the nodal circles vary
very little for different values of 4. Taking the case where the
variation is greatest, viz., when p=3 and n=0, the change in
the value of the radius when u is changed from 1 to 1 is less than
1in 500. (Lord Rayleigh, ““ Theory of Sound,” Vol. 1., p. 363.)

The change in the calculated value of the frequency of vibra-
tion of a “ free ”” plate for a given change in u is easily found
from a consideration of the expression for the frequency, viz. :—

a being constant for the same plate and z one of the roots of
equation (9a). When the value of u is changed « also changes
and both contribute to the variation in the value of N. The
factor 1/4 1—pu? introduces a change of about 2:7 per cent. in
the frequency when the value of u is changed from } to .
Since N varies as the square of the root (z), the variation due to
this is easilv found from Tables II. and 1II. For example,
when p=3, a change in u from } to 4 diminishes the first root
by about 2 per cent., and, therefore, the calculated value of the
frequency is about 4 per cent. less. In the second mode of
vibration, the decrease in the frequency is less than 1 in 200, in
the third mode less than 1 in 1,000, and so on.



