

[Home](http://iopscience.iop.org/) [Search](http://iopscience.iop.org/search) [Collections](http://iopscience.iop.org/collections) [Journals](http://iopscience.iop.org/journals) [About](http://iopscience.iop.org/page/aboutioppublishing) [Contact us](http://iopscience.iop.org/contact) [My IOPscience](http://iopscience.iop.org/myiopscience)

The Roots of the Neumann and Bessel Functions

This content has been downloaded from IOPscience. Please scroll down to see the full text.

1910 Proc. Phys. Soc. London 23 219

(http://iopscience.iop.org/1478-7814/23/1/321)

View [the table of contents for this issue](http://iopscience.iop.org/1478-7814/23/1), or go to the [journal homepage](http://iopscience.iop.org/1478-7814) for more

Download details:

IP Address: 128.6.218.72 This content was downloaded on 08/09/2015 at 12:06

Please note that [terms and conditions apply.](iopscience.iop.org/page/terms)

XX. *The Roots of the Neumann and Bessel Functions.* By **JOHN** R. AIREY, *M.A., B.Sc.* ; *late Scholar of St. John's College, Camb ridge.*

FIRST RECEIVED DECEMBER **29,1910.** RECEIVED **IN** ABRIDGED **FORM FEBRUARY 10, 1911.**

THE first **40** values of *x* for which the Bessel function of the zeroth order, $J_0(x)$ vanishes, have been calculated by Willson and Peirce,* whilst a general expression for the roots of $J_n(x)=(0)$ has been given by MacMahon.[†] The second solution of the Bessel differential equation-Neumann's solution-is often referred to as a Neumann function, and is usually denoted by $\text{Y}_{p}(x)$. $\;$ Only the first four roots of $\text{Y}_{0}(x)$ $\!=$ $\!0$ and the first three roots of $Y_1(x)=0$ appear to have been given. These were found by graphic interpolation from $\tilde{\textbf{S}}$ mith's tables **1** by Kalähne **8** :-

The general expression for the calculation of the roots of $Y_p(x)$ and the roots of $\mu J_p(x) + Y_p(x)$, where μ is any real number, positive or negative, can be found by adopting the method employed in determining the roots of $J_n(x)$.

Roots of $\mu J_p(x) + Y_p(x) = 0$.

The equation may be written in the form

$$
\mu J_p(x) + (\log 2 - \gamma) J_p(x) + \frac{\pi}{2} N_p(x) = 0. \qquad . \qquad . \qquad (1)
$$

The function \P $N_p(x)$ is the same as $-Y_p(x)$ [Schafheitlin] $K_{p}(x)$ [Graf. u. Gubler] and the Neumann function of Nielsen, $Y_p(x)$.

1 tJnhnkc 11. Emdc. Funktinnentnfeln, *1909.*

^{* &}quot; Bulletin " of the American Mathematical Society, Vol. III., 1896-7.
† " Annals of Mathematics," Vol. IX., 1895.
‡ B. A. Smith, " Messenger of Mathematics," 26, 1897.
§ Kalähne, " Zeitschrift für Mathematik u. Physik,"

Writing *a* for $\mu + \log 2 - \gamma$, and substituting the semi-convergent series for the functions, equation (1) becomes

$$
\left[aP_{p}+\frac{\pi}{2}Q_{p}\right]\cos\left(x-\frac{2p+1}{4}\pi\right) + \left[\frac{\pi}{2}P_{p}-aQ_{p}\right]\sin\left(x-\frac{2p+1}{4}\pi\right) = 0. \quad . \quad (2)
$$

Case (i.), when a is equal to or less than
$$
\frac{\pi}{2}
$$
.
\nDivide by $\frac{\pi}{2}$, write b for $\frac{2a}{\pi}$, and put
\n $bP_p+Q_p=R \sin \theta_p$,
\n $P_p-bQ_p=R \cos \theta_p$.
\nThen $\tan \theta_p=(bP_p+Q_p)/(P_p-bQ_p)$. (3)
\nand (2) becomes $\sin \left(x-\frac{2p+1}{4}\pi+\theta_p\right)=0$.
\n $x=\frac{2p+1}{4}\pi+\theta_p=n\pi$. $(n=0, 1, 2 ...)$
\n $x=(4n+2p+1)\frac{\pi}{4}-\theta_p$ (4)

The expression for θ_p in powers of x is found by first calculating the value of tan θ_{p}^{r} from (3) and applying Gregory's series to determine the angle from its tangent.

to determine the angle from its tanger
Writing *m* for $4p^2$ and *y* for $\frac{1}{8x}$, we get 1 $\overline{8x}^2$

$$
\tan \theta_p = b + (1 + b^2)(m - 1)y + b(1 + b^2)(m - 1)^2 \cdot y^2 + \cdot \&c.,
$$

and
$$
\theta_p = \arctan b + (m - 1)y + \frac{4}{3}(m - 1)(m - 25)y^3 + \dots
$$
 (5)

$$
\quad\text{and}\quad
$$

The coefficients of the even powers of y and all terms containing b in the coefficients of the odd powers of y vanish. Equation (4) takes the form $\theta_p = \arctan b + (m-1)y + \frac{1}{3}(m-1)(m-20)y^3 + \dots$ (3)

The coefficients of the even powers of y and all terms con

ing b in the coefficients of the odd powers of y vanis

aation (4) takes the form
 $x = (4n+2p+1)\frac{\pi}{4} - \arctan b - \frac{m-1}{8$

$$
x=(4n+2p+1)\frac{\pi}{4}-\text{arc tan }b-\frac{m-1}{8x}-\frac{4}{3}\frac{(m-1)(m-25)}{(8x)^3}.
$$

or, writing β for $(4n+2p+1)\frac{\pi}{4}$ arc tan *b*, and applying Lagrange's theorem,

$$
x = \beta - \frac{m-1}{8\beta} - \frac{4(m-1)(7m-31)}{3(8\beta)^3}
$$

$$
- \frac{32(m-1)(83m^2 - 982m + 3779)}{15(8\beta)^5}, \quad (6)
$$

where
$$
m=4p^2
$$
, $b=\frac{2a}{\pi}=\frac{2(\mu+\log 2-\gamma)}{\pi}$

Case *(ii.)* When *a* is equal to or greater than $\frac{\pi}{6}$, it is readily shown, as above, that *x* can be expressed in the same form as *(6),* if 2

$$
b = \frac{\pi}{2a} = \frac{\pi}{2(\mu + \log 2 - \gamma)}
$$
 and $\beta = (4n + 2p + 3)\frac{\pi}{4} + \text{arc tan } b$.

These results can be tested when p is half an odd integer.

$$
Roots \text{ of } Y_p(x)=0.
$$

The expression for the roots of this equation is

$$
x = \beta - \frac{m-1}{8\beta} - \frac{4(m-1)(7m-31)}{3(8\beta)^3} \dots
$$

\nWe
\n
$$
\beta = (4n+2p+1)\frac{\pi}{4} - \arctan b
$$

\n
$$
= (4n+2p+1)\frac{\pi}{4} - 0.073671.
$$

wher

The following tables of the roots of $Y_0(x)$, $Y_1(x)$ and $Y_2(x)$ have been calculated from this formula, except in the case of some of the earlier roots. These were found by calculating the values of the Neumann functions to seven places of decimals in the neighbourhood of the roots from the expressions

$$
Y_0(x) = J_0(x) \cdot \log_e x + \left(\frac{x}{2}\right)^2 - \frac{3}{8}\left(\frac{x}{2}\right)^4 + \frac{11}{216}\left(\frac{x}{2}\right)^5 \cdots \&c.,
$$

and then graphically representing these results.

No. of root.	Root.	No. of root.	${\rm Root.}$	
1	0.82601	21	63.54555	
2	3.88456	22	66.68705	
3	7·01256	23	69.82856	
4	10·14876	24	72.97007	
5	13.28748	25	76-11159	
6	16.42729	26	79.25312	
7	19.56766	27	82-39465	
8	22.70837	28	$85 - 53619$	
9	25.84930	29	88.67773	
10	28.99037	30	91.81928	
11	32.13154	31	94.96082	
12	35.27278	32	$98 - 10237$	
13	38.41409	33	101.24393	
14	41.55544	34	104.38548	
15	44 69682	35	107.52704	
16	47.83823	36	110.66860	
17	50.97966	37	113-81016	
18	54·12111	38	116.95172	
19	57-26258	39	120.09329	
20	60.40406	40	123.23486	

	Root.	No. of root.	Root.	
ı	2.11827	21	$65 - 10862$	
$\frac{2}{3}$	5.35509	22	68.25048	
	8.52196	23	71.39231	
$\frac{1}{5}$	11.67528	24	74.53412	
	14.82365	25	$77\!\cdot\!67592$	
6	17.96965	26	80.81770	
7	21·11434	27	83.95947	
8	$24\!\cdot\!25823$	28	87.10123	
9	27 40159	29	90.24296	
10	30-54459	30	93.38470	
11	33-68732	31	96.52642	
12	36-82986		99.66813	
13	39-97226	33	102-80984	
14 43.11453		34	105.95154 109.09324	
15	46.25671			
16 49.39882		36	112-23493	
17 52.54087		37	115.37661	
18 $55 - 68287$		38	118.51829	
19	58.82482	39	121.65996	
20	61.96673	40	124-80163	
		TABLE of Roots of $Y_2(x)=0$.		

TABLE *of Roots of* $Y_1(x)=0$.

TABLE *of Roots of* $Y_2(x)=0$.

No. of root.	Root.	No. of root.	Root.
	3.29690	21	66-65705
2	6.71703	22	69-79990
$\overline{\mathbf{3}}$	9.94840	23	72-94265
	13.13551	24	76-08531
$\frac{4}{5}$	16.30478	25	79.22788
6	19.46500	26	82.37037
7	22.62002	27	85-51280
8	25.77173	28	88.65517
9	28.92124	29	91.79749
10	32.06920	30	94-93976
11	35.21601	31	98.08199
12	38.36197	32	101.22417
13	41.50726	33	104.36632
14	44.65204	34	107.50844
15	47.79639	35	110-65053
16	50.94040	36	113-79259
17	54.08414	37	116-93462
18	$57 \cdot 22763$	38	120.07664
19	60.37093	39	123-21863
20	63.51406	40	126-36060

Example 18 Roots of $N_p(x)$ [Nielsen's $Y_p(x)$, &c.].

By making $\mu = \gamma - \log 2$, $a=0$ and $b=0$, equation $\mu J_p(x)$ $+Y_p(x)=0$ becomes $N_p(x)=0$.

The expression for the roots of this function is found from (9) and agrees with that given by Prof. MacMahon, viz.,

$$
x = \beta - \frac{m-1}{8\beta} - \frac{4(m-1)(7m-31)}{3(8\beta)^3} - \dots,
$$

re

$$
\beta = (4n+2p+1)\frac{\pi}{4} = (4n+2p-1)\frac{\pi}{4} + \frac{\pi}{2}.
$$

Roots of N₀(x) and N₁(x).

whe.

The first two roots of $N_0(x)$ and the first root of $N_1(x)$ were found by interpolation from values of these functions in the neighbourhood of the roots. These values were calculated from the expressions

$$
N_0(x) = \frac{2}{\pi} \left[\left(\frac{x}{2} \right)^2 - (1 + \frac{1}{2}) \left(\frac{x}{2} \right)^4 / (2!)^2 + (1 + \frac{1}{2} + \frac{1}{3}) \left(\frac{x}{2} \right)^6 / (3!)^2 - \dots \right. \n- (\log 2 - \gamma - \log_e x) J_0(x) \Big].
$$
\n
$$
N_1(x) = \frac{2}{\pi} \left[-\frac{x}{2} + \frac{3}{4} \left(\frac{x}{2} \right)^3 - \frac{11}{72} \left(\frac{x}{2} \right)^5 + \dots \right. \n- (\log 2 - \gamma - \log_e x) J_1(x) - \frac{J_0(x)}{x} \Big].
$$

Roots of $\mu J_p(x)+Y_p(x)=0$.

The first two or three roots of the equation, when $\mu=1$, 2, 3 . . . and $p=0$ and $p=1$, have been found graphically by Kalähne from tables of the Bessel and Neumann functions.

Roots of $J_0(x) + Y_0(x) = 0$. 0.356(5), 3.34(4) Roots of $J_1(x) + Y_1(x) = 0$. **1** $52(2)$, **4** $\cdot 80(2)$.

١

No. of root.	Root.	No. of root.	Root.	
	0.35617		$15 - 88353$	
	3.34532		19.02383	
3	6.46999		22.16449	
	9.60543		25.30539	
5.	12.74386	10	28.44644	

TABLE of First Ten Roots of $J_0(x) + Y_0(x) = 0$.

No. of root.	Root.	No. of root.	Root.	
3	1.52101 4.80339 7-97498 11.12971		17.42498 20.56985 23.71385 26.85729	
5	14.27867	10	30.00035	

TABLE *of First Ten Roots of* $J_1(x) + Y_1(x) = 0$.

No. of root.	$J_0 - Y_0$.	$J_n = 2Y_n$	$10J_0 + Y_0$	$10J_0 - Y_0$.
	1.37616	1:11707	2.55629	2.25096
2	4.46696	4.19582	5.67354	5.36311
3	7.59752	7.32529	8.80753	8.49639
	10.73440	10.46187	$11 - 94545$	$11 - 63407$
ō	13.87338	13-60073	15.08488	14.77345
6	17-01333	16.74062	18.22505	17-91352
	20.15378	19.88103	21.36564	21.05408
8	23.29454	23.02177	24.50649	$24 - 19490$
9	$26 - 43549$	26-16271	27.64750	27-33590
10	29.57658	29.30380	30.78864	30.47702

Roots of $J_0(x) - Y_0(x) = 0$, &c.