

Home Search Collections Journals About Contact us My IOPscience

The Roots of the Neumann and Bessel Functions

This content has been downloaded from IOPscience. Please scroll down to see the full text. 1910 Proc. Phys. Soc. London 23 219 (http://iopscience.iop.org/1478-7814/23/1/321)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.6.218.72 This content was downloaded on 08/09/2015 at 12:06

Please note that terms and conditions apply.

XX. The Roots of the Neumann and Bessel Functions. Bu JOHN R. AIREY, M.A., B.Sc.; late Scholar of St. John's College, Camb ridge.

FIRST RECEIVED DECEMBER 29, 1910. RECEIVED IN ABRIDGED FORM FEBRUARY 10, 1911.

THE first 40 values of x for which the Bessel function of the zeroth order, $J_0(x)$ vanishes, have been calculated by Willson and Peirce,* whilst a general expression for the roots of $J_{n}(x) = (0)$ has been given by MacMahon.[†] The second solution of the Bessel differential equation-Neumann's solution-is often referred to as a Neumann function, and is usually denoted by $Y_p(x)$. Only the first four roots of $Y_0(x)=0$ and the first three roots of $Y_1(x)=0$ appear to have been given. These were found by graphic interpolation from Śmith's tables ‡ by Kalähne § :--

Roots of $Y_0(x) = 0$.	Roots of $Y_1(x) = 0$.	
0.826(0) 3.88(5) 7.01(3) 10.14(9)	2:11(8) 5:35(5) 8:52(1)	

The general expression for the calculation of the roots of $Y_{p}(x)$ and the roots of $\mu J_{p}(x) + Y_{p}(x)$, where μ is any real number, positive or negative, can be found by adopting the method employed in determining the roots of $J_{\nu}(x)$.

Roots of $\mu J_p(x) + Y_p(x) = 0$.

The equation may be written in the form

$$\mu J_{p}(x) + (\log 2 - \gamma) J_{p}(x) + \frac{\pi}{2} N_{p}(x) = 0. \qquad (1)$$

The function $\| N_p(x) \|$ is the same as $-Y_p(x)$ [Schafheitlin] $K_{p}(x)$ [Graf. u. Gubler] and the Neumann function of Nielsen, $\mathbf{Y}_{n}(x)$.

Jahnke u. Emde. Funktionentafeln, 1909.

^{* &}quot;Bulletin" of the American Mathematical Society, Vol. III., 1896-7.
† "Annals of Mathematics," Vol. IX., 1895.
‡ B. A. Smith, "Messenger of Mathematics," 26, 1897.
§ Kalähne, "Zeitschrift für Mathematik u. Physik," 54, 1907.
§ Kalähne, "Zeitschrift für Mathematik u. Physik," 54, 1907.

Writing a for $\mu + \log 2 - \gamma$, and substituting the semi-convergent series for the functions, equation (1) becomes

$$\begin{bmatrix} \alpha \mathbf{P}_{p} + \frac{\pi}{2} \mathbf{Q}_{p} \end{bmatrix} \cos\left(x - \frac{2p+1}{4}\pi\right) \\ + \begin{bmatrix} \frac{\pi}{2} \mathbf{P}_{p} - \alpha \mathbf{Q}_{p} \end{bmatrix} \sin\left(x - \frac{2p+1}{4}\pi\right) = 0. \quad . \quad (2)$$

Case (i.), when a is equal to or less than $\frac{n}{2}$.

Divide by
$$\frac{\pi}{2}$$
, write b for $\frac{2a}{\pi}$, and put
 $bP_p + Q_p = R \sin \theta_p$,
 $P_p - bQ_p = R \cos \theta_p$.
Then $\tan \theta_p = (bP_p + Q_p)/(P_p - bQ_p)$. (3)
and (2) becomes $\sin \left(x - \frac{2p+1}{4}\pi + \theta_p\right) = 0$.
 $x = \frac{2p+1}{4}\pi + \theta_p = n\pi$. $(n=0, 1, 2...)$
 $x = (4n+2p+1)\frac{\pi}{4} - \theta_p$ (4)

The expression for θ_p in powers of x is found by first calculating the value of tan θ_p from (3) and applying Gregory's series to determine the angle from its tangent.

Writing m for $4p^2$ and y for $\frac{1}{8r}$, we get

$$\tan \theta_{p} = b + (1+b^{2})(m-1)y + b(1+b^{2})(m-1)^{2} \cdot y^{2} + \cdot \&c.,$$

and $\theta_{p} = \arctan b + (m-1)y + \frac{4}{3}(m-1)(m-25)y^{3} + \dots$ (5)

The coefficients of the even powers of y and all terms containing b in the coefficients of the odd powers of y vanish. Equation (4) takes the form

$$x = (4n+2p+1)\frac{\pi}{4} - \arctan b - \frac{m-1}{8x} - \frac{4}{3} \frac{(m-1)(m-25)}{(8x)^3}.$$

or, writing β for $(4n+2p+1)\frac{\pi}{4}$ -arc tan b, and applying Lagrange's theorem,

$$x = \beta - \frac{m-1}{8\beta} - \frac{4(m-1)(7m-31)}{3(8\beta)^3} - \frac{32(m-1)(83m^2 - 982m + 3779)}{15(8\beta)^5}, \quad (6)$$

where
$$m=4p^2, b=\frac{2\alpha}{\pi}=\frac{2(\mu+\log 2-\gamma)}{\pi}$$

Case (*ii*.) When a is equal to or greater than $\frac{\pi}{2}$, it is readily shown, as above, that x can be expressed in the same form as (6), if

$$b = \frac{\pi}{2a} = \frac{\pi}{2(\mu + \log 2 - \gamma)}$$
 and $\beta = (4n + 2p + 3)\frac{\pi}{4} + \arctan b$.

These results can be tested when p is half an odd integer.

Roots of $Y_p(x) = 0$.

The expression for the roots of this equation is

$$x = \beta - \frac{m-1}{8\beta} - \frac{4(m-1)(7m-31)}{3(8\beta)^3} \cdot \cdot$$

re $\beta = (4n+2p+1)\frac{\pi}{4} - \arctan b$
 $= (4n+2p+1)\frac{\pi}{4} - 0.073671.$

where

The following tables of the roots of $Y_0(x)$, $Y_1(x)$ and $Y_2(x)$ have been calculated from this formula, except in the case of some of the earlier roots. These were found by calculating the values of the Neumann functions to seven places of decimals in the neighbourhood of the roots from the expressions

$$Y_0(x) = J_0(x) \cdot \log_e x + \left(\frac{x}{2}\right)^2 - \frac{3}{8} \left(\frac{x}{2}\right)^4 + \frac{11}{216} \left(\frac{x}{2}\right)^5 \dots \&c.,$$

and then graphically representing these results.

No. of root.	Root.	No. of root.	Root.
1	0.82601	21	63.54555
2	3.88456	22	66.68705
3	7.01256	23	$69 \cdot 82856$
4	10.14876	- 24	72.97007
5	13.28748	25	76.11159
6	$16 \cdot 42729$	26	$79 \cdot 25312$
7	19.56766	27	82.39465
8	22.70837	28	85.53619
9	$25 \cdot 84930$	29	88·677 7 3
10	28.99037	30	91.81928
11	$32 \cdot 13154$	31	94.96082
12	$35 \cdot 27278$	32	$98 \cdot 10237$
13	38.41409	33	$101 \cdot 24393$
14	41.55544	34	104.38548
15	44.69682	35	107.52704
16	$47 \cdot 83823$	36	110.66860
17	50.97966	37	$113 \cdot 81016$
18	54.12111	38	116.95172
19	$57 \cdot 26258$	39	120.09329
20	60.40406	40	$123 \cdot 23486$

TABLE of First Forty Roots of $Y_0(x) = 0$.

No. of root. Root.		No. of root.	Root.	
1	2.11827	21	65.10862	
2	5.35509	22	$68 \cdot 25048$	
3	8.52196	23	71.39231	
4	11.67528	24	$74 \cdot 53412$	
5	14.82365	25	77.67592	
6	17.96965	26	80.81770	
7	$21 \cdot 11434$	27	83.95947	
8	$24 \cdot 25823$	28	87.10123	
9	27.40159	29	90.24296	
10	30.54459	30	$93 \cdot 38470$	
11	33.68732	31	96.52642	
12	36.82986	32	99.66813	
13	39.97226	33	$102 \cdot 80984$	
14	43.11453	34	$105 \cdot 95154$	
15	$46 \cdot 25671$	35	109.09324	
16	49.39882	36	$112 \cdot 23493$	
17	52.54087	37	115.37661	
18	55.68287	38	$118 \cdot 51829$	
19	$58 \cdot 82482$	39	121.65996	
20	61.96673	40	$124 \cdot 80163$	

TABLE of Roots of $Y_1(x)=0$.

TABLE of Roots of $Y_2(x)=0$.

No. of root.	Root.	No. of root.	Root.
1	3.29690	21	66.65705
2	6.71703	22	69.79990
3	9.94840	23	$72 \cdot 94265$
4	$13 \cdot 13551$	24	76.08531
4 5	16.30478	25	$79 \cdot 22788$
6	19.46500	26	82.37037
7	$22 \cdot 62002$	27	$85 \cdot 51280$
8	25.77173	28	88.65517
9	28.92124	29	91.79749
10	32.06920	30	94.93976
11	$35 \cdot 21601$	31	98.08199
12	$38 \cdot 36197$	32	$101 \cdot 22417$
13	41.50726	33	$104 \cdot 36632$
14	44.65204	34	$107 \cdot 50844$
15	47.79639	35	110.65053
16	50.94040	36	113.79259
17	54.08414	37	116.93462
18	57.22763	38	120.07664
19	60.37093	, 39	$123 \cdot 21863$
20	$63 \cdot 51406$	40	$126 \cdot 36060$

Roots of $N_p(x)$ [Nielsen's $Y_p(x)$, &c.].

By making $\mu = \gamma - \log 2$, a=0 and b=0, equation $\mu J_p(x) + Y_p(x) = 0$ becomes $N_p(x) = 0$.

t+

The expression for the roots of this function is found from (9) and agrees with that given by Prof. MacMahon, viz.

$$x = \beta - \frac{m-1}{8\beta} - \frac{4(m-1)(7m-31)}{3(8\beta)^3} - \dots,$$

where $\beta = (4n+2p+1)\frac{\pi}{4} = (4n+2p-1)\frac{\pi}{4} + \frac{\pi}{2}$.
Roots of $N_0(x)$ and $N_1(x)$.

where

The first two roots of $N_0(x)$ and the first root of $N_1(x)$ were found by interpolation from values of these functions in the neighbourhood of the roots. These values were calculated from the expressions

$$N_{0}(x) = \frac{2}{\pi} \left[\left(\frac{x}{2} \right)^{2} - (1 + \frac{1}{2}) \left(\frac{x}{2} \right)^{4} / (2!)^{2} + (1 + \frac{1}{2} + \frac{1}{3}) \left(\frac{x}{2} \right)^{6} / (3!)^{2} - \dots - (\log 2 - \gamma - \log_{\epsilon} x) J_{0}(x) \right].$$

$$N_{1}(x) = \frac{2}{\pi} \left[-\frac{x}{2} + \frac{3}{4} \left(\frac{x}{2} \right)^{3} - \frac{11}{72} \left(\frac{x}{2} \right)^{5} + \dots - (\log 2 - \gamma - \log_{\epsilon} x) J_{1}(x) - \frac{J_{0}(x)}{x} \right].$$

No. of root.	$\mathbf{N}_{0}(x).$	$N_1(x).$
1	0.89358	2.19685
$\overline{2}$	3.95769	5.42968
3	7.08605	8.59601
4	10.22234	11.74915
5	13-36110	14.89744
6	16.50092	18.04340
ž	19.64131	21-18807
8	22.78203	24.33194
9	25.92296	27.47529
10	29.06403	30.61829

Roots of $\mu J_{p}(x) + Y_{p}(x) = 0$.

The first two or three roots of the equation, when $\mu=1$, 2, 3... and p=0 and p=1, have been found graphically by Kalähne from tables of the Bessel and Neumann functions.

Roots of $J_0(x) + Y_0(x) = 0.$ 0.356(5), 3.34(4)Roots of $J_1(x) + Y_1(x) = 0.$ 1.52(2), 4.80(2).

223

۱

No. of root.	Root.	No. of root.	Root.	
1	0.35617	6	15.88353	
2	3.34532	7	19.02383	
3	6.46999	. 8	$22 \cdot 16449$	
4	9.60543	9	$25 \cdot 30539$	
5.	12.74386	10	$28 \cdot 44644$	
1				

TABLE of First Ten Roots of $J_0(x) + Y_0(x) = 0$.

No. of root.	Root.	No, of root.	Root.
	1.52101	6	17.42498
$\frac{1}{2}$	4.80339	7	20.56985
3	7.97498 11.12971	8	$23 \cdot 71385 \\ 26 \cdot 85729$
5	14.27867	10	30.00035

TABLE of First Ten Roots of $J_1(x) + Y_1(x) = 0$.

No. of root.	$\mathbf{J}_{0} = \boldsymbol{Y}_{0}.$	$J_0 - 2Y_0$.	10J ₀ +Y ₀ .	$10J_0 - Y_0$.
1	1.37616	1.11207	2.55629	2.25096
2	$4 \cdot 46696$	4.19582	5.67354	5.36311
3	7.59752	7.32529	8.80753	$8 \cdot 49639$
4	10.73440	10.46187	11.94545	11.63407
5	13.87338	13.60073	15.08488	14.77345
6	17.01333	16.74062	18.22505	17.91352
7	20.15378	19.88103	21.36564	21.05408
8	$23 \cdot 29454$	23.02177	$24 \cdot 50649$	$24 \cdot 19490$
9	$26 \cdot 43549$	$26 \cdot 16271$	27.64750	$27 \cdot 33590$
10	$29 \cdot 57658$	29.30380	30.78864	30.47702

Roots of $J_0(x) - Y_0(x) = 0$, &c.