THE OSTEOLOGY OF THE SKULL OF THE PELYCO-SAURIAN GENUS, DIMETRODON.

During the summer of 1904 the author collected in the Permian beds of Texas two skulls of the genus *Dimetrodon* belonging in the suborder *Pelycosauria*. These skulls were in an excellent state of perfection, which permits the completion of previous descriptions and the correction of some errors.

Especially valuable is the fact of the preservation of the temporal arches, permitting a description of this region, which has been hitherto only partially known and falsely interpreted. The two skulls are numbered 1001, Dimetrodon incisivus (?), and 1002, Dimetrodon gigas, of the University of Chicago collection of fossi vertebrates. The specimen of Dimetrodon gigas was almost perfectly preserved, only a portion of the temporal arches of the left side and the middle portion of the epipterygoid being lost. The larger part of the following description is taken from it; some details, and the description of the lower jaws, are added from specimen 1001.

As shown in Fig. 1, the skull has proportions much like those of the modern lizards or the carnivorous Dinosaurs. The eyes are not located so far back in the head, and the facial region, while elevated, does not bear the great disproportion to the skull shown in previous restorations.¹

The quadrate of *Naosaurus* was correctly interpreted by Cope as an elevated element similar to the same bone in the modern *Sphenodon*. This was later denied by Baur and Case, and the statement was made that the quadrate was a depressed bone completely surrounded by the bones of the temporal region, and in this regard similar to the African Theriodonts.

¹ E. D. COPE, "On the Homologies of the Posterior Cranial Arches of the Reptilia," Transactions of the American Philosophical Society, Vol. XVII (1892); G. BAUR AND E. C. CASE, "On the Morphology of the Skull of the Pelycosauria and the Origin of the Mammals," Anatomische Anzeiger, Vol. XIII (1897), pp. 109-20; idem., "The History of the Pelycosauria, with a Description of the Genus Dimetrodon," Transactions of the American Philosophical Society (2), Vol. XX (1899), pp. 1-58.

² Op. cit.

The determination was made on a partially preserved skull of *Dimetrodon incisivus*, and a series of unfortunate conclusions have been drawn from this erroneous determination. The present specimens show that Cope was correct in his determination of the quadrate as an elevated bone, and also demonstrates its remarkable similarity in position and relations to the quadrate of *Sphenodon*.

Figs. 1, 2, and 4 show the general form and relation of the quadrate. It is an elevated, thin plate of bone ending freely above, articu-

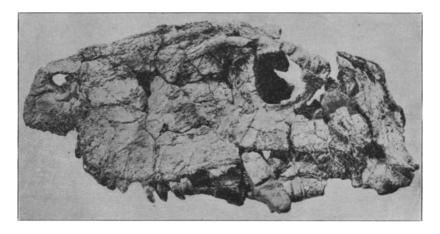


Fig. 1.—Left side of the skull of *Dimetrodon gigas*. About one-fourth natural size. Full length of skull, 46 cm.

lating with the pterygoid anteriorly, and the quadrato-jugal, squamosal and paroccipital posteriorly. The lower end is terminated by two elongate articular condyles, which run almost parallel antero-posteriorly, but are slightly convergent anteriorly. The inner condyle stands out from the side of the bone, and its inner side articulates with the posterior end of the pterygoid. The outer condyle projects beyond the posterior edge of the bone, and its upper surface is flat, forming a sort of shelf, to the upper side of which is articulated the lower end of the quadrato-jugal.

The quadrato-jugal is a very slender plate of bone that articulates with the posterior edge of the quadrate for its full length. Above, the quadrato-jugal passes between the squamosal and prosquamosal, and articulates with the parietal; below, it is separated from the quadrate by a fair-sized quadrate foramen.

306 E. C. CASE

Anterior to the quadrato-jugal is another element in the position usually assigned to the quadrato-jugal; *i. e.*, it articulates with the jugal anteriorly and passes back to articulate with the quadrate region. It is separated from the quadrato-jugal posteriorly (which is identified beyond doubt by the presence of the quadrate foramen) by a distinct suture, and occupies the exact position of the anterior portion of the squamosal of the living *Sphenodon*. It is separated from

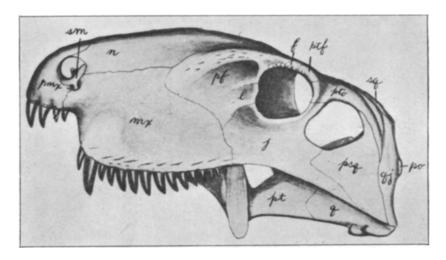


Fig. 2.—Restoration of the left side of the skull of D. gigas. bo, basi-occipital; bs basi-sphenoid; f, frontal; f, jugal; f, lachrymal; f, maxillary; f, nasal; f, preximaxillary; f, prevomer; f, ascending plate of pterygoid; f, pterygoid; f, prefrontal; f, postfrontal; f, postfrontal; f, postfrontal; f, postfrontal; f, parasphenoid; f, prosquamosal; f, ethmoid; f, paraccipital (opisthotic); f, quadrate; f, squamosal; f, stapes.

the squamosal above by the meeting of the quadrato-jugal and parietal; but if these were to separate, and the squamosal and this element came in contact or fuse, we should have the exact condition of the primitive *Rhyncocephalia* (Saphaeosaurus), or Sphenodon. For this reason I have determined the bone as the prosquamosal. This bone articulates posteriorly with the postorbital, quadrato-jugal, and the lower extermity of the parietal.

The inferior temporal vacuity is formed by the jugal, prosquamosal and postorbital. It is nearly as large as the orbit. The superior temporal vacuity is formed by the postorbital, prosquamosal, quadrato-jugal, and parietal. It is very small, amounting to a small slit in the *Dimetrodon gigas* No. 1002, and is even doubtfully open in the *Dimetrodon incisivus* (?) No. 1001. The edges of the bones adjacent to the opening are thinned, and in case where the opening is uncertain there is clear evidence of the thinness of the roof of the skull. If this superior temporal opening is just appearing, as seems certain, we have confirmatory proof of the origin of the temporal arches by a process of natural trephining of the completely roofed skull, as proposed by Baur. It is important to notice that the bones

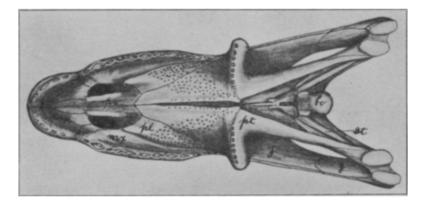


Fig. 3.—Palatal view of the same skull. Letters as in Fig. 2.

have arranged themselves in the position of the perfect arches before the openings appear.

On the posterior face of the skull the remnants of fairly strong stapes was found in position. Unfortunately, neither end was preserved, so that it is impossible to confirm Cope's description of the anterior end of the Pelycosaurian stapes.

On the inferior face of the skull the position of the pterygoids and other bones is confirmed, but the external processes of the pterygoids are shown to have been located farther forward than supposed—at the posterior end of the maxillaries. It is determined that there were no posterior palatine openings between the palatine and maxillary. Anteriorly the nares are separated by the paired prevomers; the sides of the prevomers are marked by rugosities at the inferior opening of the nasal canal.

The ectopterygoid (transverse) is made out for the first time. It is a short bone, articulating with a strong, curved ridge on the inner

308 E. C. CASE

side of jugal, which at its lower end becomes sessile, and anteriorly with the maxillary. It covers the anterior and the upper portion of the outer process of the pterygoid.

The bones of the facial region are very similar in position to those of previously described specimens, but there is shown a separate bone

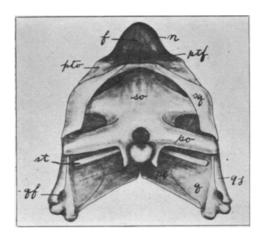


FIG. 4.—Posterior view of same skull. Letters as in Fig. 2.

at the anterior end of the nasal, forming the posterior wall and a portion of the floor of the external nares. This occupies the same position as the bone called the septomaxillary in Sphenodon by Howes and Swinnerton.1 The bone has a very peculiar form, being bent at right angles so that the anterior portion forms the posterior half of the floor of the nares, and the posterior half

forms the posterior wall. The two bones of the opposite sides meet in the median line, so that they would close the nares; but the inner part of the posterior half is only one-half as high as the outer, so that the inner opening of the nares is elevated. The air entering the nares could not pass directly backward or downward, but first rose over the half partition, and then down into the mouth. The lower edge of the septo-maxillary joins the maxillary and premaxillary. The suture between maxillary and septo-maxillary is marked by two foramina.

The section of the skull shows several peculiar conditions. There are paired prevomers which are anteriorly united with the premaxillaries. Passing backward, they are convex upward, so that the anterior portion of the mouth is vaulted. Opposite the maxillary-

¹ G. B. Howes and H. H. Swinnerton, "On the Development of the Şkeleton of the Tuatera Sphenodon (Hatteria) punctatus," Transactions of the Zoölogical Society of London, Vol. XVI (1903), Part I, No. 1, pp. 1-87, Plates I-VI, Figs. 18.

premaxillary suture the prevomers are free from the side walls of the skull, leaving the elongate openings of the posterior nares. The sides of the posterior nares are marked on the prevomers by rugose ridges. The prevomers are united on the lower surface, but the upper portion is divergent, and receives anteriorly the lower edges of two vertical plates that seemingly originate from the inner edges

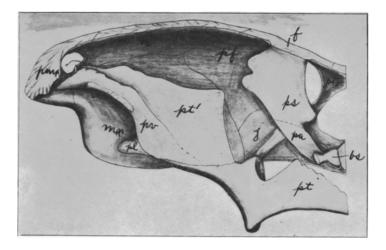


Fig. 5.—Section of the same skull showing septal bones. Letters as in Fig. 2.

of the pterygoids and extend directly upward in the skull. Owing to the somewhat crushed condition of these very slender plates, it is impossible to tell exactly the point of their connection with the prevomers below, but apparently they lie between them, and there was either a squamous contact, or the bones were free in life and have been crushed together in fossilization. The origin of the two vertical plates is somewhat obscure. They occupy the position of vomers behind the prevomers, but the true vomer is a single median bone, and, moreover, is accounted for. Broom¹ has described in *Proterosuchus* two slender vertical plates rising from the inner edges of the pterygoids, with a single median vomer between. It seems that these plates must be the same sort of a structure. They occupy

¹ R. Broom, "On a New Reptile (*Proterosuchus jergusi*) from the Karoo Beds of Tarkastad, South Africa," *Annals of South African Museum*, Vol. IV (1903), Art. 7.

310 *E. C. CASE*

exactly the same position, but are relatively much larger than figured by Broom.

Posteriorly the parasphenoid is much reduced, and is attached as a slender vertical plate of bone to the anterior end of the basisphenoid between the basiptergoid processes. Above, the parasphenoid articulates directly with a thin vertical plate of bone which expands antero-

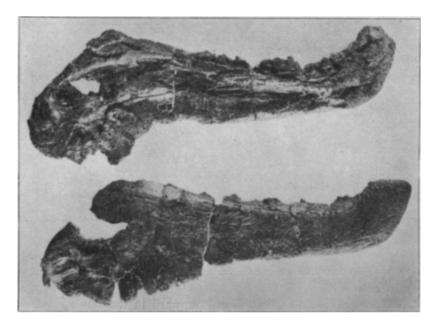


Fig. 6.—Lower jaws of *Dimetrodon incisivus* (?), showing the inner and outer surfaces. Full length of jaws, 33 cm.

posteriorly as it rises in the skull, and finally articulates in the median line with the under side of the frontals. This bone can only be the ossified ethmoid portion of the median cartilaginous septum. The anterior edge of the ethmoid is somewhat irregular and thin, and represents the true vomer; the posterior inferior angle is rounded and thickened and there is an excavation which evidently marks the exit of the 11 nerve from the skull. The presence of a median septum of this character is very peculiar in view of the fact that there are well-developed epipterygoid bones indicated by the preserved lower ends in contact with the posterior portion of the pterygoids.

There was no sign of the lower jaws with the skull of Dimetrodon gigas, but with the other skull, No. 1001, the jaws were preserved nearly perfectly. They show that the portion identified by Baur and Case as the articular region of the skull is in reality the articular region of the lower jaw. The articular is small and nearly inclosed by other bones. Its upper face is marked by two deep cotyli, and the posterior edge in specimen No. 1001 has a small hook-shaped projection. The quadrate is supported by the angular, surangular, and splenial (Baur), prearticular (Williston). The posterior ends of these bones stand out from the thin expanded posterior end of the bone, supporting the articular bone on a sort of pedicel instead of on the upper edge of the jaw. This explains why the articular region is so often found isolated in the fossil beds. The posterior portion of the jaw is very thin, but expanded vertically. In both jaws the coronoid bone is lost, but it was a small, thin plate, as shown by the sutures for its attachment. Anteriorly the angular passes far forward, forming the posterior half of the outer side of the jaw. The splenial or prearticular reaches nearly to the middle of the jaw, where it disappears under the splenial (presplenial of Baur). The spenial reaches to the symphasis, but does not take part in it.

As previously described, there are enlarged incisor and canine tusks in the upper jaw, and enlarged incisors in the lower jaw. In *Dimetrodon gigas* the edges of the teeth are crenate, but this and the number of the teeth in the jaws seem to be somewhat variable in the different species of the genus.

In general, the whole skull may be said to bear a remarkable resemblance to the skull of *Sphenodon*, in most parts being directly comparable to it, and varying only in the temporal arches—the ossified interorbital septum, and the vertical plates of the upper side of the pterygoids.

E. C. CASE.

STATE NORMAL SCHOOL, Milwaukee, Wis.