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When p = 3  there are 32 such groups. They occur as 
follows : -  

Degree of groups . . . . . . . . .  4 6 8 12 24 
Number , . . . . . . . . .  1 3 3 10 15 

When 1o=7 there are 22 such groups. They occur as 
follows : -  

Degree of groups . . . . . . . . . . . .  8 14 28 56 
l ~ u m b e r  . . . . . . . . . . . . .  1 1 7 13 

When p - - 1  is divisible by 8 there are 27 such groups. 
They occur as follows : -  

Degree of groups . . . . . . . . . . . .  p 2p 4p 8p 
]Number , . . . . . . . . . . . .  1 2 9 15 

When p - - 1  is divisible by 4 but not by 8 there are 23 
such groups. They occur as ibllows 

Degree of groups . . . . . . . . .  2p 4/o 8p 
:Number ,, . . . . . . . . .  1 8 14 

When p - 1  is not divisible by 4 and p does not have one 
of the three values 2, 3, 7~ there are 18 such groups. They 
occur as follows : - -  

Degree of groups . . . . . . . . . . . .  4p 82 
Iqumber ,, . . . . . . . . . . . .  6 12 

The three groups whose degrees are 4, 8, and p respectively 
are primitive. All the others are nonprimitive. When 
29----2 there are five commutative groups~ but when 29 > 2 there 
are only three such groups. When 29=2 there are three 
non-commutative groups that are not simply isomorphic to 
any non-regular transitive group. When p - 1  is divisible 
by 4: there are five such groups. When this condition is not 
satisfied and p > 2 there are four such groups. 

Parisj December 1896. 

X V I I I .  On ttte Passage of Electric Waves tIlrough Tubes, 
or the Vibrations of Dielectric Cylinders. By LORD 
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General Analytical Investigation, 

T H E  problem here proposed bears amnity to that of the 
vibrations of a cylindrical solid treated by Yochham- 

i n e r t  and others~ bu~ when the bounding conductor if 
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regarded as perfect it is so much simpler in its conditions as 
to justify a separate treatment. Some particular c~lses of it 
have already been considered by ~rof. J. J. Thomson a. The 
cylinder is supposed to be infinitely long and of arbitrary 
section; and the vibrations'to b'e'investigated are assmned 
to be periodic with regard both to the time (t) and to the 
coordinate (z) measured parallel to the axis of the cylinder, 
i.e., to be proportional to e ~('~+p°. 

By Maxwell's Theory, the components o~: electromotive 
intensity in the dielectric (P, Q, R) and those of' magnetic 
induction (a, b, c) all satisfy equations such as 

t~R d2R d~R • 1 d'~R 
- d ~  + ~ + d~ ~ , - v  ~ d t  ~' " " " " (1) 

V being the velocity of light ; or since by supposition 

d~R d~R 
= - m ~ R '  c-~ =--p~R, 

where 

d'~R d2R 
d.v~ + ~ + F R  = O, . . . . .  (2) 

k s = p ' ~ l V  2 - m "~ . . . . . .  (3) ¢ 

The relations hetwecn Pi "Q; R -and a, b, c are expressed as 
usual by 

da dQ dR 
d--[=d~---~-ffy, . . . . . .  (4) 

and two similar equations ; while 

da db + d_~_O 
d ~ +  ~ dz - -  ' . . . . .  (5) 

up d?+  R=o d-'-x'+ a~t dz . . . . . .  (6) 

The conditions to be satisfied at the boundary are that the 
components of electromotive intensity parallel to the surface 
shall vanish. Accordingly 

R = 0 ,  . . . . . . .  (7) 

ds + Q  =0 ,  . . . . . .  (8) 

* ' Recent Researches in .Electricity and Magnetism,' 1898, § 300. 
+ The k ~ of Prof. J. J. Thomson (lee. cir. § 262) is the negative of that 

hero chosen for convenience. 
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dx/ds,  dy/ds being thecoslnes of the angles which the tangent 
(ds) at any point of the section makes with the axes of 
x and y. 

Equations (2) and (7) are met with in various two-dimen- 
sional problems of mathematical physics. They are the 
equations which determine the free transverse vibrations of a 
stretched membrane whose fixed boundary coincides with 
that of the section¢of the cylinder. The quantity k 2 is limited 
to certain definite values, kl "2, k: ~, . . .~ and to each of these 
corresponds a certain normal function. In this way the 
possible forms of R are determined. A value of R which is 
zero throughout is also possible. 

With respect to P and Q we may write 

d,~, , ~ '  . . . . .  (9) 

d~ d+ 
Q= ~ - ~ ;  . . . . .  (I0) 

where ¢ and ~r are certain functions, of which the former is 
given by 

d~" dQ dR 
V ~ ¢ =  ~ + ~ -- d.~ - imR. (11) 

There are thus two distinct classes of solutions; the first 
dependent upon ~b, in which R has a finite value, while 
~----0; the second dependen~ upon ~,  in which R and 
vanish. 

For a vibration of the first class we have 

P =  d¢/dx ,  Q = d C h h j ,  . . . .  (12) 

and (V2 + k2)qb = 0  . . . . . . .  (13) 

Accordingly by (11) 

~b = F ff' . . . . . .  (14) 

im d R  im d R  (15) 
and P =  k 2 &c' Q =  k ~ dy ~ 

by which P and Q are expressed in terms of R supposed 
already known. 

The boundary condition (7) is satisfied by the value ascribed 
to R, and the same value suffices also to secure the fulfilment 
of (8), inasmuch as 

p d x +  dy im d R  0 
ds Q ds -- k 2 ~S = " 

L 2  
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The functions P, Q, R being now known~ we may express 
a, b, c. From (4) 

da d R  m ~ + k '~ d R  
= i p a = i m Q -  dy - -  k "~ "~y ; 

so that 
m ~ + k  ~ d R  b m 2 + k  : d R  c=O. (16) 

a = -  i2k. ~ @ ,  = ~pk ~ d . '  " 

In vibrations of the second class R = 0  throughout, so 
that (2) and (7) are satisfied, while k: is still at disposal. In 
this case 

P = d , k / 4 ,  , Q =  - d , ~ / & ,  (17) 
and 

(V~+k~)~=O . . . . . . .  (18) 
By the third of equations (4) 

de = ipe=  d P  dQ 
d-~ @ dx = V ~ = - k ~ ?  ; 

so t h a t ~  = - - i p c / k  =, and 

p =  ip dc ip dc 
k2dj, Q =  k~dx , R = 0 .  (19) 

Also by (4) 
im dc im dc b---- . (20) 

a =  k-- V d-xv' ~--dy . . . .  

Thus all the functions are expressed by mean~ of c, which 
itself satisfies 

(V=+k=)c=O . . . . . . .  (21) 
We have still to consider the second boundary condition (8). 
'fhis takes the form 

dcd. a t + - 0  
dy ds dx  ds - -  ' 

requiring that dc/dn~ the variation of c along the normal to 
the boundary at any point, shall vanish. By (21) and the 
boundary condition 

dc/dn=O,  . . . . . . .  (22) 

the form of c is determined, as well as the admissible values 
of k ~. The problem as regards c is thus the same as for the 
two-dimensional vibrations of gas within a cylinder which is 
bounded by rigid walls coincident with the conductor~ or for 
the vibrations of a liquid under gravity in a vessel of the 
same form * 

• Phil. Mag. vol. i. p. 272 (1876). 
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All the values of k determined by (2) and (7), or by (21) 
and (22), are real~ but the reality of k still leaves it open 
whether m in (3) shall be real or imaginary. I f  we are 
dealing with free stationary vibrations m is given and real, 
fi'om which it follows that p is also real. But  if it b e p  that is 
given, m ~ may be either positive or negative In the former 
case the motion is really periodic with respect Lo z ; but in the 
latter z enters in the forms e ~'~, e - " ~  and the motion becomes 
infinite when z - - - - + ~  or when z = - - ~  or in both cases. 
I f  the smallest of the possible values of k ~ exceeds p'~/V "2, m is 
necessarily imaginary, that is to say no periodic waves of the 
frequency in question can be propagated along the cylinder. 

Recta~.qular Section. 
The simplest case to which these formulae can be applied is 

when the section of the cylinder is rectangular, bounded, we 
may suppose, by the lines x = 0 ,  x=a,  y = 0 ,  y----/3. 

As for the vibrations of stretched membranes, ~" the appro- 
priate value of R applicable to solutions of the first class is 

R =e'('~+p e) sin (/,Trx/~) sin (u~ry//3) ; . (23) 

from which the remaining functions are deduced so easily 
by (15), (16) that it is hardly necessary to write down the 
expressmns. In (23) ~ and v are integers, and by (13) 

k~=77 (~ . . . . .  

whence 

- + -~].~, . (25) 

The lowest frequency which allows of the propagation of 
periodic waves along the cylinder is given by 

p~ w ~ 7r ~ 
V e -  e + ~  . . . . . . .  (26) 

I f  the actual frequency of a vibration having its origin at an.y 
part of the cylinder be much less than the above, the resulting 
disturbance is practically limited to a neighbouring finite 
length of the cylinder. 

For vibrations of the second class we have 
c = ~ ( ~ + p 0  cos ( ~ / ~ )  cos (v~y/~),  . (27) 

the remaining functions being at once deducible by means of 
(19), (20). The satisfaction of (22) requires that here again 

' Theory of Sound,' § 195. 
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~, v be integers, and (21) gives 

k~ _ -- ~r ~ [/~ v ~ 
~ +  ~ 1 ,  . . . . .  (~8 )  

identical with (24). 
I f  a >  ~, the smallest value of k corresponds to /~=1 ,  v = 0 .  

When v=0,  we have k=l~r/a , and if  the factor d(~z+p t) be 
omitted~ 

im . 
a = - - - ~ - s m k x ,  b=0 ,  c=eoskx, (29) 

P = 0 ,  Q =  - ~--sinkx, R = 0  ; (30) 

a solution independent of the value of ~. There is no solu- 
tion derivable f rom/~=0,  v--0, k = 0 * .  

Circular Section. 

For the vibrations of the first class we have as the solution 
of (2) by means of Bessel's functions, 

R = J n ( ~ , )  cos  n0,  . . . . .  (31) 

n being an integer, and the factor d,"~z+po being dropped 
for the sake of brevlty. In (31) an arbitrary multiplier and 
an arbitrary addit;on to 0 are of course admissible. The value 
of k is limited to be one of those Ibr which 

J n ( k / ) = 0  . . . . . . .  (32) 

at the boundary where ~'= d. 
The expressions for P, Q, a, b, c in (15), (16) involve only 

dR/dx, dR/@,. For these we have 

dR dR dR . 
~/x = ~ cos O-- rdOSm O=kJJ(kr) cos nO cos 0 

n j  
+ ;: ~(kr) sin nO sin 0 

kr ~+~kcos(n+I)O Jg'-- 

= { k e o s  (n-1)OJ~_l(kr)-~keos (n+l)OJ~+,(kr), (33) 

according to known properties of these functions; and in 

* For (181 would tben become V~b=0 ; and this, with 1he boundary 
condition d~b/dn.=O, would require that P and Q, as welt as R, vanish 
throughout. 
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like manner 
dR dR dR 
~-y ---- ~ sin 0+  ~-0 cos 0=  -½ksin  (n - -D0  J._,(kr) 

-- ½k sin (n+  1)0 a.+,(kr). (34) 
These forms show directly that dR/dx, dR/dy satisfy the 
fundamental equation (2). They apply when n is equal to 
unity or any greater integer. When n-=O, we have 

n=Jo(kr) ,  . . . . . .  (35) 

dR ~-x =dR --kJa(kr) cos 0, ~ =--kg,(kr) sin 0. (36) 

The expressions for the electromotive intensity are some- 
what simpler when the resolution is circumferential and radiah 

im dR  
circumf, component = Q cos 0 -  P sin 0 -  

k ~ r dO 
iml~ 

= -- k~ r J,(kr) S i l l  , ,10 ,  . (37) 

im dR  
radial component = P cos 0 + Q sin O= k. ~ ar 

l i l t  ~ i . . .  = ~ # .  (kr) c o s  n O . .  ( 3 8 )  

If  n=0 ,  (he circumferentM component vanishes. 

Also for the magnetization 
m~ + k 2 d R  

circ. comp. of mag. =b  cos 0--a sin 0 =  ipk 2 d , '  

m2"÷ k ~ T  I , "  " 
_ / ~  o. lkr) cos ~0, (39) 

m2 + k ~ dR  
tad. temp. of mag. --a cos O+b sin 0---- - - - -  

n ( m e  -.{--/~ ' ) . . . .  

i - ~ r  o.(~r) sin nO. (40) 

The smallest value of k for vibrations of this class belongs 
to the series n=0 ,  and is such that kr=2"404, q-being the 
radius of the cylinder. 

For the vibrations of the second class R = 0 ,  and by (21), 
c = J , , ( k , . )  c o s  ~,0,  . . . . .  ( 4 1 )  

k being subject to the boundary condition 
J.'(k/)----O . . . . . . .  (42) 
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As in (33), (34), 

de de de . 
~xx = dv cos O-- r ~ S l n  O-----~k con (n--1)O J~_l(kr) 

--½k cos (n+  1)0 J~+, (kr), (43) 
dc de de ,1 
dg = dr sin 8 + ~ cos v---- - ~ k sin (n-- 1) 0 J~-i (kr) 

- ~ k s i n ( n +  l)SJ.+,(kr) ,  (44) 

so that- by (19); (20) all tile functions are readily expressed. 
When n=O~ we have 

dc dc 
d-~ = --ka,(kr) cos 0, ~yy = --kZl(kr) sin 0. (45) 

For the circumferential and radial components of magnetiza- 
tion we get 

ira de 
circ. comp. of mag. ---- b cos O--a sin O= k- ~ rd-O 

iron Z ( k r )  sin nO, (46) 
- -  ] ~ 2 , p  ° 

im dc 
tad. comp. of mag. = a  cos 0 +  b sin 8---- ~ dr 

im , 
= -k- J" (kr) cos nO, . (47) 

corresponding to (37), (38) for vibrations of the i]rst; class. 
In like manner equations analogous to (39), (40) now give 

the components of electromotive intcnsi~y." Thus " 
, 

dc =  a.'(kr)cos 0, circ. c o m p . =  Q cos 0 -  P sin 0-- k~ 

rad. comp. = P cos 0 + Q sin 6 = - ip de ip n 
k 7 77-d0-- k-~r g~(kr) sin nO. 

. . . .  (49) 
The smallest value of k admissible for vibrations of the second 
class is of the series belonging to n = l ,  and is such that 
kr '=1"8~1, a smaller value than is admissible for any vibra- 
tion of the first class. Accordingly no real wave of any kind 
can be propagated along the cylinder for which p/V is less 
than 1"841/r ~, where Cdenotes  the radius. The transition 
case is the two-dimensional vibration for which 

c=dPtJa(l'841 r/r') cos 8, . . . .  (50) 

2°=1"841Vy  . . . . . . . . .  (.51) 




