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XVI. On. tl~e Instability of a Cylinder of Viscous Liquid under 
Capillary Force. By  Lord R•YgEIaE, Sec. R.S.* 

T HE main outline of the theory of the instability of a long 
cylinder of liquid is due to Plateau, who showed that if 

the equilibrium surface ~=a  be slightly deformed so as to 
become 

r=a+oteoskz,  . . . . . .  (1) 

in which z is measured parallel to the axis, the deformation is 
stable or unstable according as ka is greater or less than unity; 
that is, according as the wave-length X of the varicosity is less 
or greater than 2~ra, the circumference of the cylinder. The 
solution of the merely statical question is, however, insufficient 
for the application to the important problem of the disin- 
tegration of a jet  of liquid. A deformation of any wave- 
length exceeding 2~ra increases exponentiaUy with the time 
(eqt) i and what we require to know is the relation between q 
and k. A value of k~ if any, for which q is a maximum, 
determines the mode of maximum instability; and this in 
general tends more and more to be the actual mode of disin- 
tegration as the initial disturbances are reduced without limit. 

As resisting the capillary force, Plateau seems to have had 
in view only viscosity. "Par  suite des viscositds intdri3uro 
et superficielle, le rapport entre la longueur normale des 
divisions et le diam~tre du cylindre surpasse toujours la 
limite de la stabilitd. 11 se rdduirai~ sans doute ~ cette limito 
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146 Lord Rayleigh on tTte Instability of  a Cylinder 

m~me si le liquide ~tait exempt de route viscositd "*. In the 
case of jets composed of liquids such as water, the influence 
of viscosity might be expected to be small, but it would be 
erroneous to conclude that the limit ka=  1 would then corre- 
spond to the mode of maximum instability, lnertia would 
necessarily play a leading part, and from a complete investi- 
gationt it appears that the mode of maximum instability 
corresponds with ~=4"51 × 2a, exceeding very considerably 
the circumference of the cylinder. 

The importance attached by Plateau to viscosity suggested 
an investigation in which this property should be included ; 
and the results would at any rate find application to threads 
of materials like glass and sealing-wax, in which viscosity 
would predominate over inertia. Having in my mind some 
old experiments upon the behaviour of fine threads of treacle 
deposited upon paper, which slowly resolve themselves into 
drops having a very similar appearance to those obtained 
from a jet of water, I rather expected to find that. under the 
influence of viscosity alone the mode of resolution would be 
nearly the same as under the influence of inertia alone. This 
anticipation proved to be wide of the mark, the result showing 
that under viscosity alone the value of ~, for maximum insta- 
bility would be very great. And a little consideration shows 
that the retarding forces exerted by the paper support may well 
be of quite a different character From those due to mere fluid 
viscosity. In the latter case the gathering together from con- 
siderable distances is but little resisted, the motion not differing 
greatly from that of a solid body, whereas such a mode of 
resolution would be greatly impeded by the contact with 
paper. In order better to represent such contact forces, 1 
have considered the problem in the form which it assmnes 
when the resistances are proportional to the absolute velocities 
of the parts. This admits of easy solution, and the result 
illustrates the behaviour of the thread of treacle in contact 
with paper, and shows that there is a marked difference between 
this case and that of a thread whose disintegration is resisted 
by true fluid viscosity. 

The introduction of resistances proportional to absolute 
velocities does not interfere with the irrotational character of 
the motion of otherwise frictionless fluidS. The radial and 
axial velocities u, w may thus, as usual, be regarded as derived 
from a velocity-potential according to the equation 

Statlque expdrimentale et~.thdorlque des liguides soumis aux seules 
forces moldculaires, 1873, vol. it. p. 231. 
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of Viscous L iqu id  under Capillary Force. 147 

u---- d~b/dr, w = ddp/dz . . . . . .  (2) 

If the resistance is/# times the velocity, the general equation 
of pressure, viz. 

p /p=R- -ddp /d t - - -~  U ~, . . . . .  (3) 
becomes for the present purpose, where U'  may be neglected, 

p =  d /dt . . . . . .  

The quantities defining the motion are as functions of z pro- 
portional to d k~, and as functions of t proportional to dn*, 
where k is real, burn  may be complex. The general equation 
for the velocity-potential o f  an incompressible fluid, viz. 
V~b = 0, thus becomes 

d2~b 1 d~b _ k~b _ 0,  
dr --~ + -~ -~r 

of which the solution, subject to the conditions to be imposed 
when r = 0 ,  is 

= A J0 (ikr), 
or rather 

¢=n d("*+~z) Jo(ikr) . . . . . .  (5) 

At the same time p is given by 

p = - - ( • '  + inp)¢ . . . . . . .  (6) 

We have now to consider the boundary condition, applicable 
when r = a .  The displacement ~ at the surlkce is connected 
with ~b by the equation 

~ = S u d t =  dt = in  dr"  . . . .  (7) 

The variable part of the pressure is due to the tension T, 
which is supposed to be constant, as is practically the case in 
the absence of surface-contamination. The curvature in the 
plane of the axis is --d2~/dz ~, or k~. The curvature in the 
perpendicular direction is (a +~)-1  or 1/a- -~/a  ~. Thus 

T~(k~a~-- 1) ; . . . . . .  (8) 
jO ~ - a ~  

and the boundary condition is 

T(~a ~- 1) d~b 
ina" dr = --  (t~t + inp )~ ; 

or by (5), 
T 

pa ~ 
(ken ~ -  1)ika. Jo' (ika) + in (in + WIp) = o, 

Jo(ika) 
a quadratic equation by which n is determined. 

L 2  

(9) 
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I f ~1 = O, 

( i n ) ~ _ T  3(1-k2a~)Jo ikaJo', . . . . (10) 

as found in the former paper. In this expression ika Jo~/Jo is 
a real positive quantity for all (real) values of ka ; so that the 
displacement is exponentially unstable if ka < 1, and periodic 
if ka > 1, as was to be expected. I~  the former case the 
values of in are numerically greatest when ka----~r/4"5. 

In the other extreme case where inertia may be neglected 
in comparison with viscosity, we have 

T (1--k~a:)J°' ,  . . . . . (11) 
in--  Pa 8 F'/P . Jo 

so that the instability is greatest when ]ca has the same value 
as in the first case. 

The general form of the quadratic is 

( in) '÷in . l~ ' /p- l -H(k 'Ja ' - - l ) .~O,  . (1"2) 

where H is positive. 
I f  ]ca < 1, both values of in are real, one being positive and 

the other negative. The displacement is accordingly unstable, 
and the greatest instability occurs with the above-defined 
value of ]ca. If, on the other hand, ka > 1, the values of in 
may be either real or imaginary. In the former case both 
values are negative, and in the latter the real parts are nega- 
tive, so that the deformations are stable. 

The investigation applicable to a real viscous liquid of vis- 
cosity/~, or pv, is much more complicated than the foregoing, 
mainly in consequence of the non-existence of a velocity- 
potential. But  inasmuch as the motion is still supposed to be 
symmetrical about the axis, the equation of continuity gives 

1 d ~  1 d ~  
u = - w =  (13) r -~z' r d r '  . . . .  

where ~ is Stekes's current function. For  small motions 
satisfies the equation* 

( d  ~ l d d 2 l d ) ( ~  1 d d 2 )  0 . 
~7~- - ;~+dz  * v~  ~ ~d + ~  , / ,= .  (14) 

In the present question ~ as a function of z and t is propor- 
tional to d("t+k*), and it may be separated into two parts, ~1 

• Camb. Trans. 1850. See also Basset's C Hydrodynamics,' vol. it. 
p. 259. 
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and 42, of which ~1 satisfies 

d (1 ~ r ' ) - - k ' ~ x = O  , (15) d ~ l  l d@l k ~ l = r ~ r  r 
dr ~ v dr 

and ~ satisfies 

d-~ - ;  d--V--k ~ = r ~ ( ;  - .--k'~=O' (16) 
where 

k'~=P +in/v . . . . . . .  (17) 

At the surface we have to consider the normal stress P~ and 
the tangential stresses. Of the latter one vanishes in virtue 
of the symmetry~ and the other is to be made to vanish in con- 
formity with the condition that there is to be no impressed 
tangential force*. Thus 

d~ d ~ _ O  . . . . . .  (lS) 
dz + dr - ' 

or in terms of ~ by (13) 

d ~  I d~  
dr ~ rd r  +k~----O . . . . .  (19) 

Introducing ~ ,  ~ ,  and having regard to (15)~ (16), we 
may express this condition in the form 

2k'¢~ + (~'~ + k~)¢~=O, . . . .  (20) 

which is to be satisfied when r--a .  
Again~ for the normal stress~ 

P = --p + 21~ du/dr 

(u v ) du 
=O ~ w - - ~ V ~ w  +21~ 

Herein 

For ~1~ 

[ ld4 f  ) l d r d [ l  d@~ k ~ d@ 
v ~ 

I d / d 1 ~ , ~  ~ d ¢ ~ _  o 
r dr~r~rr  dr ] r dr -- ' 

* It is here assumed that there is no "superficial viscosity." 
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for ~ ,  
l d ( d l d%'~ ~ dq,~ ~'~ k~d .'. 
~" dr \ ~ d r r  dr ] r dr r d r '  

so that 
f k '~- -Pd~ 2ik d q/a+~:~ npd(~,+qF2) (22) 

The variable part of the capillary pressure i% as we have 
already seenj 

T$(k~a'--l) 

in which 
k2, 

Thus, the condition to be satisfied when r = a  is 

T( 1--k~a ~) k ~  f k ' ~ -  k ~ d ~  + d 5k "[ np dq/" 
a 2 na =l~ "[ ~ a  -~r 2ik dr r [  ka dr . (23) 

The forms of ~1, ~ are to be determined by the equations 
(15), (16), and by the conditions to be satisfied when r = 0 .  
It  will be observed that qF1 satisfies the condition appropriate 
to the stream function when there is a velocity-potential. 
This would be of the form 

¢ = ~ J o ( i k r ) ,  . . . . .  (24) 
so that 

iTr d4~d_7 re~k~ Jo'(ikr). 'ki =~(r~) d~ = = 

Thus 
q'1--ArJo'(i~r) . . . . . .  (25) 

is the most general form admissible, as may be verified by 
differentiation. In this Jo(ikr) satisfies the equation 

1 , . 
Jo"(ikr) + ~ Jo (,kr) + Jo (ikr) = o. (26) 

Since (16) differ from (15) only by the substitution of k' for 
k, the general form tbr ~ is 

% = B r Jo' ( i~r)  . . . . . . .  (27) 
By use of these values the first boundary condition (20) 
becomes 

2k ~A ao' (ika) + (k ~ + P)B go' (ik'a) = O. (28) 
We have next to introduce the same values into the second 
boundary condition (23). In this 
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by (26). In like manner, 

d@~ _ _ B ilda Jo( ik'a). 
dr 

Thus 
T ( 1 -- ]~a ~) ka 

- ~  n [AJo'(ika) +BJo'(ik'a)] 

+ ~ [Aika Jo(ika) +B ik'a Jo(~k'a)] . . . .  (29) 

Between (28) and (29) we now eliminate the ratio A/B,  and 
thus obtain as the equation by which [in conjunction with 
(17)] the value of n is to be determined 

T(1--k~a ~)kak '~-k  2 , . 

=-2k~v{Jo"(ika)-- 2kk' Jo'(ika) T,, , . , ,  , 
k~-~-k~ ~ )  Oo (~ a) 

k'(~,~- k,) Jo'(ika) Jo (ik'a) } 
k(k '~ + k ~) Jo'(ik' a) 

n { i kaao( ika)_  2]c ~ J0'(ika) } + V~ k'~+ k~ Jo'(ik'a) ik'aJo(ik'a)  . (3O) 

We shall now apply this result to the particular case where 
the viscosity is very great in comparison with the inertia. 
The third part of (30) may then be omitted, and we have to 
seek the limiting form of the remainder when k ~ is nearly 
equal to k~ as we see must happen by (17). In the first part, 

k '2 - -  k ~ S k  

k ''~ + k ~ -- k" 
In the second, 

2kk' Jo'(ika) . . . . . .  ika{go"~--Jo'Jo'"}~k Jo"(~ka) - k,%--~ ~ )  Jo (-~ a) = 
and 

k'(ki~--k~) Jo'(ika) , . , , ,  
j ~  Jot*~ a) - -  

k Jo  / -J 

Jo Sk 
k " 

Thus the limiting form is 

T(1--k~a ~) 2ka. ika J-jo,, ~_Jo,Jo,,, JoJo' 
~a .  n = -- Jo ' ~  ~. ika J "  
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in which, however, we may effect further simplifications by 
means of the properties of Jo. We find by use of (26) 

Jo'-- JorJo"'- J~Ja°' = Jo' + Jo'~ (i + ~a~), 
so that, finally, 

in= - -  T(1-- k~a~) 
21~a. k~a~{Jo2/Jo'~ + 1 + 1/k~a~}" . (31) 

In (31) the argument of Jo, Jo' is ika, or z as we will call it  
for brevity. And by a known property Jo '=  - J x .  Now 

Z ~ Z4 
Jo(z) = 1 - -  ~ + 2~ " 4---- q - - . . . ,  

1 - 2 - - ~ - +  2 . 4 ~ . 6  . . .  ; 
so that if x = k a  

,~2 ,~4 
J o ( i x ) = l + ~ +  2~.4 ~ . . . ,  

i,.~ { ~2 X 4 } 
J~(ix)= ] 1+ ~ + 2.4 ~.-----6 + ' ' "  • 

These functions have been tabulated by Prof. A. Lodge* 
under the notation i0(x), Ix(x), where 

X ~ 334 
I o ( x ) = J 0 ( i x ) = l +  ~ + ff-.-.-.~ + . . . . . . . .  (32) 

~ {  x, x' } 
I~(~) = - iJ~fix) = 1 + ~ + e .  ~-----~6 + . . . .  ( ~ )  

In this notation 
~{J0~ (ix)/J1 ~ (ix) + 1 + 1/x ~} = ~ + 1 -- x~I : (x) / I?(x) ,  (34) 

and we have to consider the march of (34) as a function of x. 
When x is very small, 

I0(x)=l--¼.v ~, I i (x )=½x+T~ 3, 
so that 

(34) = - 3 + terms in x 4 ; 

and then from (31) 
T 

in= ~ . . . . . . .  (35) 

* Brit. Ass. Report, 1889~ p. 28. 
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We shall see that this corresponds to the maximum insta- 
bility, and it occurs when the wave-length of the varicosity 
is very large in comparison with the diameter of the cylinder. 
The following table gives the values of (34:) for specified 
values of x :--  

X. 

0"0 
0"2 
0'4 
0"6 

(84). 
--3"0000 
- -  3"0000 
-- 3"0004 
--3"0023 

3C. 

1"0 
2"0 
4"0 
6"0 

( 8 4 ) .  

--3"0188 
--3"'2160 
--4'458 
--6"24? 

It  will be seen that the numerical value of (34) is least when 
x = 0, which is also the value of x for which the numerator of 
(31) is greatest. On both accounts, therefore, in is greatest 
when x or ka=0.  But over the whole range of the insta- 
bility from ka=O to/ca-----1, (34:) differs but little from - 3 ,  
so that we may take as approximately applicable 

in= T(1--k~a ~) (36) 
6tta . . . . . .  

The result of the investigation is to show that when vis- 
cosity is paramount long threads do not tend to divide 
themselves into drops at mutual distances comparable with 
the diameter of the cylinder, but rather to give way by 
attenuation at few and distant places. This is, I think, in 
agreement with the observed behaviour of highly viscous 
threads of glass or treacle when supported only at the ter- 
minals. A separation into numerous drops, or a varicosity 
pointing to such a resolution, may thus be taken as evidence 
that the fluidity has been sufficient to bring inertia into play. 

The application of (31) to the case of stability (]ca>l) is 
of less interest, but it may be worth while to refer to the 
extreme case where the wave-length of the varicosity is 
very small in comparison with the diameter. We then fall 
upon the particular case of a plane surface disturbed by waves 
of length X. The result, applicable when the viscosity is so 
great that inertia may be left out of account, is the limit of 
(31) when a, or x, is infinite, while k remains constant, or 

Tk in= ~ - -  Lira X{Jo~(ix)/Jl~(ix) + 1}. 

By means of the expressions appropriate when the argument 
is large, the limit in question may be proved to be --1 ; so 
that 

i n =  - . . . . . . .  ( 3 7 )  
2t~" 
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If  gravity be supposed operative in aid of the restoration of 
equilibrium, we should have to include in the boundary con- 
dition relative to pressure a term gp~ in addition to Tk~$ ; so 
that the more general result is obtainable by adding gp/k ~ to 
T. Thus 

k / T +  gP~ in (3S) V ) '  . . . .  

giving the rate of subsidence of waves upon the surface of a 
highly viscous material. It could of course be more readily 
obtained directly. 

When gravity operates alone, 

~ P  
g ,  . . . . . .  (39) in = -- 21zk = 2uk 

which agrees with a conclusion of Prof. Darwin*. A like 
result may be obtained from equations given by Mr. Bassett. 

XVII.  Rotating Elastic Solid Cylinders of Elliptic Section. 
By C. CBREE, M.A., Fellow of King's College, Cambridge,. 

PART II . - -The Long Elliptic Cylinder. 
§ 35. - ] ~ Y  a long cylinder is here meant one whose length 

1 )  21 bears to its greatest diameter 2a a ratio such as 
is required for the legitimate application of Saint-Venant's 
solution for beams. What this ratio may be depends on the 
degree of accuracy aimed at, but the best authorities seem 
satisfied with values of l/a which are not markedly less than 
10. The cylinder is supposed to be rotating uniformly, and 

in the Quarterly Journa,1 flreadv r a r  y ef(rr,e ed to, I obtained a 
solution for a rotating elliptic cylinder, but its length was 
supposed to be maintained constant by the application of suit- 
able forces over the ends. This is a totally different case from 
the present~ in which the cylinder is supposed free from all sur- 
face forces and capable of altering alike in length and diameter. 
The present solution is thus completely new, except for the 
case of a circular section which I have already treated else- 
where §, and for the limiting value 0 of ~ when the alteration 

Phil. Trans. 1879, p. 10. In equation (12) wri~oi/a=k, and make 
$ = Q O  . 

t Hydrodynamics, vol. it. § 520, eqaations (21), (27). See also Tait, 
Edinb. Prec. 1890, p. 110. 

J~ Communicated by the Author. 
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