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XXXIX.  On the Electromagnetic E~ects due to the Motion 
of Electrification through a Dielectric. By  OLIVER 
HEAVISIDE ~. 

1. ~ H E  following paper consists of, First, a short discussion 
I o f  the theory of the slow motion of an electric charge 

through a dielectric, having for object the possible correction 
of previously published results. Secondly, a discussion of 
the theory of the electromagnetic effects due to motion of a 
charge at any speed, with the development of the comp]ete 
solution in finite form when the motion is steady and recti- 
linear. Thirdly, a few simple illustrations of the last when 
the charge is distributed. 

Given a steady electric field in a dielectric, due to electri- 
fication. It is sufficient to consider a charge q at a point, as 
we may readily extend results later, i f  this charge be 
shifted from one position to another, the displacement varies. 
In accordance, therefore, with Naxwell's inimitable theory of 
a dielectric, there is electric current produced. Its time- 
integral, which is the total change in the displacement, admits 
of no question ; but it is by no means an elementary matter 
to settle its rate of change in general, or the electric current. 
But should the speed of the moving charge be only a very 
small fraction of that of the propagation of disturbances, or 
that of light, it is clear that the accommodation of the dis- 
placement to the new positions which are assumed by the 
charge during its motion is practically instantaneous in its 
neighbourhood, so that we may imagine the charge to carry 
about its stationary field of force rigidly attached to it. This 
fixation of the displacement at any moment definitely fixes 
the displacement-current. We at once find, however, that to 
close the current requires us to regard the moving charge 
itself as a current-element, of moment equal to the charge 
multiplied by its velocity ; understanding by moment, in the 
case of a distributed current, the product of current-density 
an ! volume. The necessity of regarding the moving charge 
as an element of the "true current" may be also concluded 
by simply considering that when a charge q is conveyed into 
any region, an equal displacement simultaneously leaves it 
through its boundary. 

Knowing the electric current, the magnetic force to corre- 
spond becomes definitely known if the distribution of indue- 
tivity be given; and when this is constant everywhere, as 
we shall suppose now and later, the magnetic force is simply 

* Communicated by the Author. 
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the vector of no divergence whose curl is 47r times the electric 
current ; or the vector-potential of the curl of the current ; 
or the curl of the vector-potential of the current, &c. &c. Thus, 
as found by J.  J. Thomson*, the magnetic field of a charge 
moving at a speed which is a small fraction of that of light 
is that which is commonly ascribed to a current-element 
itself. I think it, however, preferable to regard the magnetic 
field as the primary object of attention; or else to regard 
the complete system of closed current derived from it by 
taking its curl as the unit, forming what we may term a 
rational current-element, inasmuch as it is not a mere mathe- 
matieM abstraction, but is a complete dynamical system 
involving definite forces and energy. 

2. Let the axis of z be the line of motion of the charge q 
at the speed u ; then the lines of magnetic force IT are circles 
centred upon the axis, in planes perpendicular to it, and its 
tensor H at distance r from the charge, the line r making an 
angle t? with the axis, is given by 

q 
H =  # u s i n  O=cEuv~ . . . . .  (1) 

where v----sin 0, E the intensity of the radial electric force, c 
the permittivity such that /~0cv~=l, if t~0 is the other specific 
quality of the medium, its inductivity, and v is the speed of 
propagation. 

Since, under the circumstance supposed of u/v being very 
small, the alteration in the electric field is insensible, and the 
lines of E are radial, we may terminate the fields represented 
by (1) at any distance r = a hem the origin. We then 
obtain the solution in the case of a charge q upon the surface 
of a conducting sphere of radius a, moving at speed u. This 
realization of the problem makes the electric and magnetic 
energies finite. Whilst, however, agreeing with J .  J.  
Thomson in the fundamentals, I have been unable to corrobo- 
rate some of his details ; and since some of his results have 
been recently repeated by him in another place t, it may be 
desirable to state the changes I propose, before proceeding to 
the case of a charge moving at any speed. 

3. First, as regards the magnetic energy, say T. This is 
the space-summation ~.#0tI~/8~r ; or, by (1) $, 

aoq u £ C £ v  . . . . .  ~oq u 

* Phil. Mag. April 1881. 
J" 'Applications of Dynamics to Physics and Chemistry,' chap. iv. 

pp. 31 to 37. 
$ ' Electrician,' Jan. 24, 1885~ p. 220. 
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The limits are such as include all space outside the sphere 
~'----a. The coefficient ½ replaces 325. 

4. Next, as regards the mutual magnetic energy BI of the 
moving charge and any external magnetic field. "This is the 
space-summation ~totIoIt/47r , if It o is the external field ; and, 
by a well-known transformation, it is equivalent to ~Aor , if A0 
is any vector whose curl is/~0It0, whilst r is the current-density 
of the moving system. Further, if we choose A0 to have no 
divergence, the polar part of r will contribute nothing to the 
summation, so that we are reduced to the volume-integral of 
the scalar product of the divergenceless A 0 of the one system 
and the density of the convection-current in the other. Or, 
in the present case, with a single moving charge at a point, 
we have simply the scalar product A0uq to represent the 
mutual magnetic energy ; or 

M = A o U ~ ,  . . . . . . .  ( 3 )  
which is double J. J.  Thomson's result. 

5. When, therefore, we derive from (3) the mechanical 
force on the moving charge due to the external magnetic 
field, we obtain simply Maxwell's "electromagnetic force" on 
a current-element, the vector product of' the moment of the 
current and the induction of the external field ; or, if P is this 
mechanical force, 

1~= tt0qVult0, . . . . . .  (4) 

which is also double J. J.  Thomson's result. ~qotice that in 
the application of the " electromagnetic force" formula, it is 
the moment of the convection-current that occurs. This is 
not the same as the moment of the true current, which 
varies according to circumstances ; for instance, in the case 
of a small dielectric sphere uniformly electrified throughout 
its volume, the moment of the true current would be only 

of that of the convection-current. 
The application of Lagrange's equation of motion to (3) 

also gives the force on q due to the electric field so far as it 
can depend on M ; that is, a force 

dXo --~? --d/-' 

where the time-variation due to all causes must be reckoned, 
except that due to the motion of q itself, which is allowed for 
in (4). And besides this, there may be electric force not 
derivable from Ao, viz. 

-qXT~o, 
where ~o is the scalar potential companion to A o. 
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6. Now if the external field be that of another moving 
charge, we shall obtain the mutual magnetic energy from (3) 
by letting Ao be the vector-potential of the current in the 
second moving system, constructed so as to have no diver- 
gence. . . Now the vector-potential of the convection-current. . qu 
is simply qu/r ; this is sufficient to obtain the magnetic force 
by curling ; but if used to calculate the mutual energy, the 
space-summation would have to include every element of 
current in the other system. To make the vector-potential 
divergenceless, and so be able to abolish this work, we 
must add on to qu/r the vector-potential of the displacement 
current to correspond. Now the complete current may be 
considered to consist of a linear element qa having two poles ; 
a radial current outward from the + pole in which the current- 
density is qu/47rrl*; and a radial current inward to the -- pole, 
in which the current-density is --qu/47rr2 ~ ; where rl and r~ are 
the distances of anypoint from the poles. The vector-potentials 
of these currents are also radial, and their tensors are ½qu 
and --½qu. We have now merely to find their resultant 
when the linear element is indefinitely shortened, add on to the 
former quit, and multiply by/~0, to obtain the complete diver- 
genceless vector-potential of qu, viz. : - -  

. . . . . .  

where r is the distance from q to the point P when Ais reckoned, 
and the differentiation is to s the axis of the convection- 
current. Both it and the space-variation are taken at 1 ) . 
The tensor of u is u. Though different and simpler in form 
(apart from the use of vectors) this vector-potential is, I be- 
lieve, really the same as the one used by J .  J .  Thomson. 
From it we at once find, by the method described in § 4, the 
mutual energy of a pair of point-charges ql and q~. moving at 
velocities ul and u 2 to be 

M = I~oqlq~ [ 1 d~r \ ( ulu - u,u  . . . .  (6) 

when at distance ~" apart. Both axial differentiations are to 
be effected at one end of the line r. 

As an alternative form, let e be the angle between Ul and 
us, and let the differentiation to sl be at dsl, that to s2 at ds2, 
as in the German investigations relating to current.elements ; 
t h e n  $ 

' Electrician,' Dec. 28, 1888~ 13. 230. 
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Another form, to render its meaning plainer. Let  Xl,/zl, vl 
and X2, tt2, v~ be the direction-cosines of the elements referred 
to rectangular axes, with the x-axis, to which ~1 and ~ refer, 
chosen as the line joining the elements. Then * 

]~/~ I~Oqlq ~ulu~ 2,. (2X,X~ + ~1~2 + v,v2). (8) 

J .  J .  Thomson's estimate is t 
~V~ x COS 6 

= 3~oqlq2ulu~ . . . . . .  ( 9 )  
r 

Comparing this ~dth (8) we see that there is a notable 
difference. 

7. The mutual energy being different, the forces on the 
charges, as derived by J .  J .  Thomson by the use of La- 
grange's equations, will be different. When the speeds are 
constant, we shall have simply the before-described vector 
product (4) for the "electromagnetic force ;" or 

F I ~  ~0~lVUlIT2, F2 ~ ~b0q2Vu2]~l . (10)  

if FI is the electromagnetic force on the first and F~ that on 
the second element, whilst II1 and tt~ are the magnetic forces. 
Similar changes are needed in the other par~s of the complete 
mechanical forces. 

I t  may be remarked that (if my calculations are correct) 
equation (7) or its equivalents expresses the mutual energy of 
any two rational current-elements [see § 1] in a medium of 
uniform inductivity, of moments qlu I and q2u~, whether the 
currents be of displacement, or conduction, or convection, or 
all mixed, it being in fact the mutual energy of a pair of 
definite magnetic fields. But, since the hypothesis of instan- 
taneous action is expressly involved in the above, the applica- 
tion of (7) is of a limited nature. 

8. Now leaving behind altogether the subject of eurrent~ 
elements, in the investigation of which one is liable to be led 
away from physical considerations and become involved in 
mere exercises in differential coefficients, and coming to the 
question of the electromagnetic effects of a charge moving in 
any way, I have been agreeably surprised to find that my 
solution in the case of steady rectilinear motion, originally an 
infinite series of corrections, easily reduces to a very simple 
and interesting finite form, provided u be not greater than v. 
Only when u > v is there any difficulty. We  must first settle 

' Electrician,' Jan 24, 1885, p. 221. 
? ~ Applications of Dynamics to Physics and Chemistry,' chap. iv. ; and 

Phil Mug. April 1881. 
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upon what basis to work. First the Faraday-law (p standing 
for d/dt), 

--curl E----/~0pH, . . . . .  (11) 

requires no change when there is moving electrification. But 
the analogous law of Maxwell, which I understand to be really 
a definition of electric current in terms of magnetic force, (or 
a doctrine), requires modification if the true current is to be 

C+pD+pu; . . . . . .  (12) 

viz. the sum of conduction-current, displacement-current, and 
convection-current pu, where p is the volume-density of elec- 
trification. The addition of the term pu was, I believe, pro- 
posed by G. F. Fitzgerald *. 

[This was not meant exactly for a new proposal, being in 
fact after Row]and's experiments; besides which, Maxwell was 
well acquainted with the idea of a convection-current. But 
what is very strange is that Maxwell, who insisted so strongly 
upon his doctrine of the quasi-incompressibility of electricity, 
never formulated the convection-current in his treatise. Now 
Prof. Fitzgerald pointed out that if Maxwell, in his equation 
of mechanical force, 

F = VCB-- eVW - m~7~, 

had written E for --V~, as it is obvious he should have done, 
then the inclusion of convection-current in the true current 
would have followed naturally. (Here C is the true current, 
II the induction, e the density of electrification, m that of 
imaginary magnetic matter, • the electrostatic and t2 the 
magnetic potential, and E the real electric force.) 

~qow to this remark I have to add that it is as unjustifiable 
to derive H from t2 as E from ~ ;  that is, in general, the 
magnetic force is not the slope of a scalar potential ; so, for 
--Vt2 we should write II, the real magnetic force. 

But this is not all. There is possibly a fourth term in F, 
expressed by 49rVDO, where D is the displacement and 0 the 
magnetic current; I have termed this force the "magneto- 
electric force/' because it is the analogue of Maxwell's "elec- 
tromagnetic force" VCB. Perhaps the simplest way of 
deriving it is fi'om Maxwell's electric stress~ which was the 
method i followed t. 

Thus, in a homogeneous nonconducting dielectric free 
from electrification and magnetization, the mechanical force 
is the sum of the " electromagnetic " and the "magnetoelec- 

• Brit. Assoc., Southport, 1883. 
'f "EL Mug. Ind. and its Prop." xxii. ~ Electrician/Jan. 15,1886~ p. 187. 
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tric," and is given by 
l d W  
V ~ d t  ' 

where W=VEH/4~r is the transfer-of-energy vector. 
It  must, however, be confessed that the real distribution of 

the stresses, and therefore of the forces, is open to question. 
And when rather is the medium, the mechanical force in it, 
as for instance in a light-wave, or in a wave sent along a 
telegraph-circuit, is not easily to be interpreted.] 

The companion to (11) in a nonconducting dielectric is now 
curl H----cTE+47rpu . . . . . .  (13) 

Eliminate E between (11) and (13), remembering that H 
has no divergence, because/~0 is constant, and we get 

( p y v ~ - - V ~ ) H = c u r l  4~pu ,  . . . .  (14) 
the characteristic of H. ttere V 2 -  - d~/dx ~ + . . . ,  as usual. 

Comparing (14) with the characteristic of H when there is 
impressed force e instead of electrification p, which is 

= c u r l   pe, 
we see that pu becomes c~ve/4~r. We may therefore regard 
convection-current as impressed electric current. From this 
comparison a]so~ we may see that an infinite plane sheet of 
electrification of uniform density cannot produce magnetic 
force by motion perpendicular to its plane. Also we see that 
the sources of disturbances when p is moved are the places 
where pu has curl ; for example, a dielectric sphere uniformly 
filled with electrification (which is imaginable)~ when moved, 
starts the magnetic force solely upon its boundary. 

The presence of " curl " on the right side tells us, as a 
matter of mathematical simplicity, to make H/curl the variable. 
Let I-I = curl A, . . . . . .  (15) 

and calculate A, which may be any vector satisfying (15). 
Its characteristic is 

( p 2 / v ~ - - V ~ ) A = 4 ~ r p u  . . . . .  (16) 

The divergence of A is of no moment, and it is only vexatious 
complication to introduce ~I'. The time-rate of decrease of A 
is not the real distribution of electric force, which has to be 
found by the additional datum 

div cE = 4~rp, . . . . . .  (17) 
where E is the real force. 

9. " Symbolically" expressed, the solution of (16) is 

47rp~ - - 4 7 r p u / V ~  . . . .  (18) 
A =  ~ ~  - l_p~/v~V ~, 
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Here the numerator of the fraction to the right is the vector- 
potential of the convection-current. Calling it A0, we have 

47rpu pu (19) 
= - V  ~ , = ~ ~  V "  " " 

Inserting in (18) and expanding, we have 
i = {1 + (plvv) ~ + (plvv) 4 + ...}Ao.. (20) 

Given then pu as a function of position and time, A0 is known 
by (19), and (20) finds A, whilst (15) finds H. 

10. When the motion of the electMfication is all in one 
direction, say parallel to the z-axis, 11, Ao, and A are all parallel 
to this axis, so that we need only consider their tensors. 
When there is simply one charge 9 at a point, we have 

Ao = qu/r, 
and (20) becomes 

h = q i l  +(plvV)~+(p/vV)4+ . . .}(u/r) (21) 
at distance r from q. When the motion is steady, and the 
whole electromagnetic field is ultimately steady with respect 
to the moving charge, we shall have, taking it as origin, 

p =  - -u (d /dz )  = - - , D  
for brevity; so that 

A=qu{l+ (uD/vV)2+ (uD/vV)4+ ...it-'.. (22) 
Now the property 

V2r'+~=(n-4- 2)(n-t-3)r n . . . .  (23) 
brings (22) to 

A = q u {  1 + u2"~r  u4 1-) 4ra } (24) 
~ ~ + ~ - 4 !  +' ' '  ; .  

and the property 
O~r~'-' = 1~.3:.52... (2~- ly,*'/~, (25) 

where v=sin 0, 0 being the angle between r and the axis, 
brings (24) to 

~2 i/2 

which, by the Binomial Theorem, is the same as 

A=(~tu/r){1--u~r~/v2}-½,. , (27) 
the required solution. 

11. To derive H, the tensor of the circular H, let rv=h, the 
distance from the axis. Then, by (15), 

dA dA .~ dA quv;1 d ~(I-- u~ v~"l-½ H = - ~ = - ~ + ~ - 3 - ~ = p -  \ + ~ ] ~ ,  ~ ] ,.(28) 
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by (27), if t~=cos 6. Performing the differentiation, and also 
getting out E the tensor of the electric force, we have the final 
result that the electromagnetic field is fully given by* 

cE = q 1 --u~/v ~  =cEuv, (29) 

with the additional information that E is radial and ]t circular. 
Now, as regards ~ ,  if we bring it in, we have only got to 

take it out again. When the speed is very slow we may 
regard the electric field as given by --~7~ plus  a small cor- 
recting vector, which we may call the electric force of inertia. 
But to show the p]~y.~ical inanity o f ~ ,  go to the other extreme, 
and let u nearly equal v. It is now the electric force of inertia 
(suppgsed) that equals -t-VW nearly (except about the equa- 
torial plane), and its sole utility or function is to cancel the 
other - - V ~  of the (supposed) electrostatic field. It is surely 
impossible to attach any physical meaning to • and to pro- 
pagaoe it, for we reqmre two • s, one to cancel the other, and 
both propagated infinitely rapidly. 

As the speed increases, the electromagnetic field concentrates 
itself more and more about the equatorial plane, ~ =-~'.  To 
give an idea of the accumulation, let u~/v~-~'99. Then cE is 
• 01 of the normal value q/r u at the pole, and 10 times the 
normal value at the equator. The latitude where the value is 
normal is given by 

v = ( v / u ) [ 1 - - ( 1 - - u y v ~ ) ~ ]  ~ . . . . .  (30)  

12. When u = v ,  the solution (29) becomes a plane electro- 
m~gnetic wave, E and t t  being zero everywhere except in the 
equatorial plane. As, however, the values of E and H are 
infinite, distribute the charge along a straight line moving in 
its own line, and let the linear-density be q. The solution is 
then 

I t ----Ecv=2qv/r  . . . . . .  (31) 

at distance r from the line, between the two planes through 
the ends of the line perpendicular to it, and zero elsewhere. 

To further realize, let the field terminate internally at r~. a, 
giving a cylindrical-surface distribution of electrification, and 
terminate the tubes of displacement externally upon a coaxial 
cylindrical surface; we then produce a real electromagnetic 
plane wave with electrification, and of finite energy. We have 
supposed the electrification to be carried through the dielectric 
at speed v, to keep up with the wave, which would of course 

' Electrician,' Dec. 7, 1888, p. 148. 
t Ibid. Nov. 23, 1888, p. 84. 
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break up if the charge were stopped. But if perfectly- 
conducting surfaces be given on which to terminate the dis- 
placement, the natural motion of the wave will itself carry the 
electl~ification along them. In fact we now have the rudi- 
mentary telegraph-circuit, with no allowance made for absorp- 
tion of energy in the wires, and the consequent distortion. 
I f  the conductors be not coaxial, we only alter the distribution 
of the displacement and induction, without affecting the pro- 
pagation without distortion ~. 

I f  we now make the medium conduct electrically, and 
likewise magnetically, with equal rates of subsidence, we shall 
have the same solutions, with a time-factor e-p t producing 
ultimate subsidence to zero ; and, with only the real electric 
conductivity in the medium the wave is running through, it 
will approximately cancel the distortion produced by' the 
resistance of the wires the wave is passing over when this 
resistance has a certain value t. We should notice, however, 
that it could not do so perfectly, even if the magnetic retar- 
dation in the wires due to diffhsion were zero; because in 
the case of the unreal magnetic conductivity its correcting 
influence is where it is wanted to be, in the body of the 
wave; whereas in the case of the wires, their resistance, 
correcting the distortion due to the external conductivity, is 
outside the wave ; so that we virtually assume instantaneous 
propagation laterally from the wires of their correcting influence 
in the elementary theory of propagation along a telegraph- 
circuit which is symbolized by the equations 

dV = ( R + L p ) C ,  dC = ( K +  Sp)V, (32) 
dz dz 

where R, L, K, and S are the resistance, inductance, leakage- 
conductance, and permittance per unit length of circuit, C the 
current, and V what I, for convenience, term the potential- 
difference, but which I have expressly disclaimed :~ to represent 
the electrostatic difference of potential, and have shown 
to represent the transverse E.M.F.  or line-integral of the 
electric force across the circuit from wire to wire, including 
the electric force of inertia, b~ow in case of great distortion, 
as in a long submarine cable, this V approximates towards 
the electrostatic potential-difference, which it is in Sir W. 
Thomson's diffusion theory ; but in ease of little distortion, as 

* ' Electrician,' Jan. 10,1885. Also "Self-Induction of Wires~" part iv. 
Phil. Mag. Nov. 1886. 

t "Electromagnetic Waves~" § 6~ Phil. Mag. Feb. 1888. ' Electrician,' 
June 1887. 

:~ "Self-Induction of Wires~" part it. Phil. Mag. Sept. 1886. 
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in telephony through circuits of low resistance and large in- 
ductance, there may be a wide difference between my V and 
that of the electrostatic force. Consider, for instance, the 
extreme case of an isolated plane-wave disturbance with no 
spreading-out of the tubes of displacement. At the boundaries 
of the disturbance the difference between V and the eIeetro- 
static difference of potential is great. 

But it is worth noticing, as a rather remarkable circum- 
stance, that when we derive the system (32) by elementary 
considerations, viz. by extending the diffusion-system by the 
addition of the E.M.F. of inertia and leakage-current, we 
apparently as a matter ef course take V to mean the same as 
in the diffusion-system. The resulting equations are correct, 
and yet the assumption is certainly wrong. The true way 
appears to be that given by me in the paper last referred to, 
by considering the line-integral of electric force in a dosed 
curve. We cannot, indeed, make a separation of the electric 
force of inertia from --A'¥ without some assumption, though 
the former is quite definite when the latter is suitably defined. 
But, and this is the really important matter, it would be in 
the highest degree inconvenient, and lead to much complica- 
tion and some conihsion, to spht V into two components, in 
other words, to bring in • and A. 

In thus running down ~', I am by no means forgetful of 
its utility in other cases. But it has perhaps been greatly 
misused. The dearest course to pursue appears to me to 
invariably make E and IT the primary objects of attention, 
and only use potentials when they naturally suggest them- 
selves as labour-saving appliances. 

13. Returning to the solutions (29), the following are the 
special tests of their accuracy. Let E l and E~ be the z and 
h components of E. Then, by (11) and (13), with the special 
meaning assumed by p, we have 

l d hH=--cudd~,  
h 
dH dE2 
dz =--cu --~z ' or H=cuE.2, (33) 

dE1 dE~_ dIt dE1 ( u2)dE, 
dh dz --i~oU~yz, or--~- = 1-- v~ -~-z" 

In addition to satisfying these equations, the displacement 
outward through any spherical surface centred at the charge 
may be verified to be q ; this completes the test of the accu- 
racy of (29). 
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But (33) are not limited to the case of a single point-charge, 
being true outside the electrification when there is symmetry 
with respect to the z-axis, and the electrification is all moving 
parallel to it at speed u. 

When u = v, E1 "~ O, and E~--- E =ttvH, so that we reduce to 

i d ~ H =  0 (34/ 
h . • . . • • 

outside the electrification. Thus, if the electrification is on 
the axis of z, we have 

E / , v  = H = 2q#r ,  . . . . .  (30)  

differing from (31) only in that q, the linear density, may be 
any function of z. 

14. If, in the solutions (29), we terminate the fields inter- 
nallv at r = a, the perpendicularity of E and the tangentiality 
of It to the surface show that (29) represents the solutions in 
the case of a perfectly conducting sphere of radius a, moving 
steadily along the z-axis at the speed u, and possessing a total 
charge q. The energy is now finite. Let U be the total 
electric and T the total magnetic energy. By space-integra- 
tion of the squares of E and H we find-that they are given by 

1 U/V tan- - -  
¢ 1 (36) 

U =  2c---a. ~ l + l _ u ~ / v  ~ + ~ ~ ~ J '  (ulv)(1-u Iv ) 

2q_~a" 1 --u~lv ~ r 2u2/vU---~ (2u~/v~--½) tan-~ 
4" L 1 + ~ -I" (u/v)(1-u~(1-u~/v~)~]J' T =  

in which u < v. When u ~- v, with accumulation of the charge 
at the equator of the sphere, we have infinite values, and it 
appears to be only possible to have finite values by making a 
zone at the equator cylindrical instead of spherical. The 
expression for T in (37) looks quite wrong ; but it correctly 
reduces to that of equation (2) when u/v is infinitely small. 

15. The question now suggests itself, What is the state of 
things when u > v ? It is clear, in the first place, that there can 
be no disturbance at all in front of the moving charge (at a point, 
for simplicity), l%xt, considering that the spherical waves 
emitted by the charge in its motion along the z-axis travel at 
speed v, the locus of their fronts is a conical surface whose 
apex is at the charge itself, whose axis is that of z, and whose 
semiangle 0 is given by 

sin e=v/u . . . . . . .  (38)  
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The whole displacement, of amount q, should therefore lie 
within this cone. And since the moving charge is a convec- 
tion-current qu, the displacement-current should be towards 
the apex in the axial portion of the cone, and change sign at 
some unknown distance, so as to be away from the apex either 
in the outer part of the cone or else upon its boundary. The 
pulling back of the charge by the electric stress would require 
the continued application of impressed force to keep up the 
motion, and its activity would be accounted for by the con- 
tinuous addition made to the energy in the cone; for the 
transfer of energy on its boundary is perpendicularly outward~ 
and the field at the apex is being continuously renewed. 

The above general reasoning seems plausible enough~ but I 
canpot find any solution to correspond that will satisfy all the 
necessary conditions. ]t is clear that (29) will not do when 
u > v. 1Nor is it of any use to change the sign of the quantity 
under the radical, when needed, to make real. It is suggested 
that whilst there should be a definite solution, there cannot 
be one representing a steady condition of E and ]t with respect 
to the moving charge. As regards physical possibility~ in 
connexion with the structure of the rathe b that is not in 
question. 

16. Let us now derive from (29), or from (27), the results 
in some cases of distributed electrification, in steady rectilinear 
motion. The integrations to be effected being all of an ele- 
mentary character, it is not necessary to give the working. 

First, let a straight line 
A B be charged to linear P 
density q, and be in motion _ ~ 
at speed u in its own line ~ / / ~  h 
from left to right. Then at 
P we shall have A B ~-~ 

_ _ _  ( 1 - -  v, ~ u~/v~) ~ , A = qu log (~'i .  lit + 1- -  v. 2 u~/v~)i\ 
w2 ~ + (1-v~2uVv~) ~/' 

from which H-----dA/dh gives 

( % . ,  
H=qu I-- ~ l(1-v:h'V v=) +rl#i(l-- i .~' ] v.2 u~lo 2~ 

-- same function of r2, P2, v2], 
J 

where/z---- cos 8, v---- sin 8. 
When B is vertically over B, 

distance, we shall find 
H = qu/h, 

(39) 

(40) 

and A is at an infinite 

. . . . . . .  (41) 
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which is one half the value due to an intqnitely long (both 
ways) straight current of strength qu. The notable thing is 
the independence of the ratio u/v. 

But if u=v  in (40), the result is zero, unless v l = l  , when 
we have the result (41). But if P be still further to the left, 
we shall have to add to (41) the solution due to the electrifi- 
cation which is ahead of P. So when the line is infinitely 
long both ways, we have double the result in (41), with 
independence of u/v again. 

But should q be a function of z, we do not have indepen- 
dence of u/v except in the already considered case of u=v, 
with plane waves, and no component of electric force parallel 
to the line of motion. 

17. Next, let the electrified line be in steady motion per- 
endicularly to its length. 
et q be the linear density 

(constant), the z-axis that of 
the motion, the x-axis coin- 
cident with the electrified 
line and that o f y  upward 
on the paper. Then the A 
at P will be 

~zL 

qu lo A =  (1-uyv i  g + + 

where y and z belong to P, and xl, x~ are the limiting values of 
x in the charged line. From this derive the solution in the 
ease of an infinitely long line. It  is 

c E =  2~/ (1-u'~/v2) ½ ¥ . l_v%2/v~ , t t = c E u . ,  . . . .  (43) 

where v=sin 0; understanding that E is radial, or along qP in 
the figure, and It rectilinear, parallel to the char~ed line. 

Terminating the fields internally at r----a, we nave the case 
of a perfectly conducting, cylinder of radius a, charged with 
q per unit of length, moving transversely. When u- 'v  there 
is disappearance of E and t t  everywhere except in the plane 
0=½~r, as in the case of the sphere, and consequent infinite 
values. It  is the curvature that permits this to occur, i. e. 
producing infinite values ; of course it is the self-lnduction 
that is the cause of the conversion to a plane wave, here and 
in the other cases. There is some similarity between (43) and 
(29). In fact, (43) is the bidimensional equivalent of (29). 

18. Coming next to a plane distribution of electrificationj 
~hil. Mag. S. 5. Vol. 27. No. 167. April 1889. Z 
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let q be the surface density, 
and the plane be moving 

erpendieularly to itself. 
et it be of finite breadth 

and of infinite length, so 
that we may calculate H 
from (43). The result at 
P is 

.~otion of Electrification through a Dielectric. 

-Ya 

z p 

qu 1 rl~-v~u~/v~ (44 )  
H =  (l_u~/v~)½ 0g rs~_y2%~/v~. 

When P is equidistant from the edges~ H is zero. There is 
therefore no H anywhere due to the motion of an infinitely 
large uniformly charged plane perpendicularly to itself. The 
displacement-current is the negative of the convection- 
current and at the same place, viz. the moving plane~ so 
there is no true current. 

Calculating El, the z-component of E, z being measured 
from left to right~ we find 

The component parallel to the plane is ~/cu. Thus, when 
the plane is infinite, this component vanishes with H ,  and 
we are left with 

cEi=cE=2~rq, . . . . . .  (46) 
the same as if the plane were at rest. 

19. Lastly, let the charged plane be moving in its own 
plane. Refer to the first figure, in which let AB now be the 
trace of the plane when of finite breadth. We shall find that 

H = 2qu Etan- l z "] ~ 1,(1-u2/v~)~] ~ (47) 

zi and z~ being the extreme values of z, which is measured 
parallel to the breadth of the plane. 

Therefore, when the plane extends infinitely both ways, we 
have 

H = 27rqu . . . . . . .  (48 )  

above the plane~ and its negative below it. This differs from 
the previous case of vanishing displacement-current. There 
is ]:I, and the convection-current is not now cancelled by co- 
existent displacement-current. 

The existence of displacement-current, or changing dis- 
placement~ was the basis of the conclusion that moving elec- 
trification constitutes a part of the true current. Now in the 
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problem (48) the displacement-current has gon% so that the 
existence of ~ appears to rest merely upon the assumption 
that moving electrification is true current. But if the plane 
be not infinite~ though large~ we shall have (48) nearly true 
near it~ and away from the edges ; whilst the displacement- 
current will be strong near the edges and almost nil where 
(48) is nearly true. 

But in some cases of rotating electrification~ there need be 
no displacement anywhere: except during the setting up of 
the final state. This brings us to the rather curious question 
whether there is any difference between the magnetic field of 
a convection-currentproduced by the rotation of electrification 
upon a good nonconductor and upon a good conductor re- 
spectively~ other than that due to diffusion in the conductor. 
For in the case of a perfect conductor~ it is easy to imagine 
that the electrification could be at rest~ and the moved con- 
ductor merely slip past it. Perhaps Professor Rowland's 
forthcoming experiments on convection-currents may cast 
some light upon this matter. 

December 27~ 1888. 

XL. The Rotation of the Plane of Polarization of Light by 
the Discharge of a Leyden Jar. By Dr. OLIVER LODGE +. 

T HE current produced by the discharge of a Leyden jar is 
so violent while it lasts~ that those phenomena which 

depend upon the value of a current independently of its 
duration are well excited by it. Such are the induction of 
currents~ the production of magnetism~ and the rotation of 
the plane of polarization. 

Nothing is easier than to wind a quantity of thin gutta- 
percha-covered wire round a piece of heavy glass~ and to 
witness the bright flashing of a dark field between polarizer 
and analyser whenver a large Leyden jar is sparked 
through the coil~ the source of light being a paraffin-lamp or 
gas-flame. The suddenness of the effect suggests, of course 
erroneously, that it is an illumination caused by the light of 
the spark which one is looking at. 

The fact that the discharge is oseillatory~ and that the 
restoration of light in the dark field is oscillatory to% is 
proved by the fact that an adjustment of the analyser to one 
side or the other of complete darkness has just the same effect 
on the result. It is proved also by the fact that a biquartz 

+ Communicated by the Physical Society : read March 9, 1889. 
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