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342 Sir W. Thomson on tile _Propagation of Laminar 

power of) error, abstractlonfaite du signe, is 
twice (Mean-square-of-error-- (Mean-E rror) ~) . 

:Number of Observations 
that is, here, 

2(6"4 --4)--25878 = "00019. 

Whence the Modulus is about "014, while the observed 6cart 
is "4--some thirty times larger. This gives odds of nonillions 
to one against the First Exponential. The corresponding 
odds against the Probability-curve are some hundreds to one. 

It should be observed that the sums of powers may be 
taken for integral portions of the curve's extent, rather than 
for the whole. This plan seems theoretically more correct, 
since the fulfilment of the law of error is to be looked for 
rather in the body of the curve than at the extremities. 
There arise, however, practical difficulties about the compu- 
tation in the case of some curves; in the absence of tables for 
the values of Sx~dp(x)dx. The Probability-curve itself affords 
an hlstance. 

Different modes of verification will be appropriate to 
different cases. But it is not the purpose of this paper 
to provide a complete Manual of empirical evidence; but 
rather to show in what sort of way the examination of 
experience may be assisted by the Mathematical Theory of 
Errors and Method of Statistics. 

XLV. On the Propagation of Lamlnar Motion tltrouflh a tur- 
bulently moving Inviscid Liquid. By  Sir WILLIAm THOMSOn, 
LL.D. ,  F.R.S.  ~ 

1. T N  endeavom'ing to investigate turbulent motion of water 
AL between two fixed planes~ for a promised communication 

to Section A of the British Association at its coming Meeting 
in Manchester, I have found something seemingly towards a 
solution (many times tried for within the last twenty years) 
of the problem to construct, by giving vortex motion to an 
incompressible inviscid fluid, a medium which shall transmit 
waves of laminar motion as the luminiferous rather transmits 
waves of light. 

2. Let the fluid be unbounded on all sides, and let u, v, w 
be the velocity-components, and p the pressure at (x, y, z~ t). 
We have 

du dv dw 
~x + ~y + 7z-z = 0  . . . . .  (1/, 

* Communicated by the Author~ having been read before Section A of 
the British Association at its recent Meeting in Manchester. 
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Motion through a turbulently moving Ynviscid Liquid. 343 

d-Y=-- +wd +U  " (2), 

@ +wN+  . . (a), 

dw (u dw + v dw dw (4). 

From (2), (3), (4) we find, taking (1) into account, 

~7 ~ du~ dv ~ dw ~ -- T=~--x~ + d---2y2 +-~-z2 + 2 ( ~  d w + d w d u +  du 

3. The velocity-components u, v, w may have any values 
whatever through all space, subject only to (1). Hence, on 
Fourier's principles, we have, as a perfectly comprehensive 
expression for the motion at any instant, 

u = ~ v . v . ~  (e.f. ~) sin ( rex+e)  cos ( ,~y+/)  cos (qz+g)  (6), ~(m, n, q) 

(e, f ,  g) 
v = EEEE~E/3(m ,., q)cos (rex + e) sin (ny + f )  cos (qz +g) .  (7), 

(e'f' g) (rex + e) w=~ZEEEET(  . . . .  q, cos eos(ny+f)s in(qz+g) (8); 

where a (~'A g) /Q(e,.f, g) (e,.f, g) (m.,.q), t~(,..,, q), 7(~.~. q) are any three velocities satis- 

fying the equation 
(e , f ,g)  . ,,~(e,f,g)__ ~/(e,.f,g) 

= m % , , , . ,  q) -~ up( , . ,  ,,, q) "1- q (m,. ,  q) (9)  ; 

and ~ E ~ E Z Z  summation (or integration) for different values 
of m~ n, q, e ,f ,  g. The smnmations for e,f, g may, without 
loss of generality, be each confined to two values : e=O, and 
e=~Tr ; f = O ,  and f=½7r  ; g=O, and g = ~ r .  We shall admit 
large values, and infinite values of m -~, n-~, q-X, under certain 
conditions [§ 4 (10), (11), (12), and § 15 below], but other- 
wise we shall suppose the greatest value of each of them to be 
of some moderate, or exceedingly small, linear magnitude. This 
is an essential of the averagings to which we now proceed. 

4. Let xav, xzav, xyzav denote space-averages, linear, 
surface, and solid, through infinitely great spaces, defined and 
illustrated by examples, each worked out from (6), (7), (~), 
as follows, L denoting an infinitely great length, or a very 
great multiple of whichever of m -1, n -I,  ~(-1 may be con- 
cerned : - -  
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344 Sir W. Thomson on the _Propagation o f  Laminar  

1 f'~_d ~'~"-"~ (½~' f' g) ~^~ xav u =~-~ x u = z,,~z,~=(o ' ., q) ~ ,  (ng + / )  cos (qz+g)  . (10), 

/ 1 x~/'L gL 
u=z~z,= cos~ny+. f ) .  (11), xzav u =  (~L)  | ] dz dx  f ~  (~.f.o) . 

/ ~ - - L t , ' - - L  n (0, ~, O) 

/ l \ 3 F ~  F ~,FL 
- -  d z d y d x  ¢½~,o,o) (12), U ~  ~(0, O, 

2 z Z (e,f, ~) xav ~ =~ :~ :~  :~[=(=,., ~)] cos (~y +f)  cos~(q~ +g ) .  03) ;  

this with the exceptions that 
in the case of m=O, e=O, we take 0 in place of ½, 

and in the case of re=O, e=½~r ,, 1 ,, , . 

e f ~  
xzavu ~ = ¼ Z ~ Z ~ [ a ( ( : f . ' f , ~ ) ] ' c o s ' ( n y + f )  . (14), 

m n  q 

xzav uv = l  f ~ $ ~ ' ~  (½~'f'~) B (°'I'g) AczSA,~A¢ [ a ( m  ' n, q) (m, n, q) 
~ n n q  

(O,f,g) [.Q(~ ,f,g).] 
--a( . . . .  q) ~.(~.,.q), cos ( n y + f )  sin ( n y + f )  . (15) ; 

with the exceptions for (14) that 

in the case of m = 0  and e=O 
and in the case of f ---0 and g=½~'.t we take 0 instead of ¼; 

in the case of m = O  and e=½~" ~ ± .  

and in the case o f ~ / = O a n d g = O  ) " ½ " ,, 4 , 

in the case ofm--O,e=~Tr, n=O,f=½~r  ,, 1 ,, ,~ ¼; 

and analogous exceptions for (15). 

~fg 
x.yzav u 2 = ~ : ~  Fa ('y'g) 1 ~ . (16), 

m n q  L (m,n ,q) . J  

with exceptions for zeros ofm and 9, analogous to those of (14). 
5. As a last example of averagings for the present, take 

xyzav of (5). Thus we find 

oeg ~ (e,~9} +n~(e,f,9} (e,f, g) " ~ )  
--xyzav V2p---- SZE~ZZE~, q j. ma(=. ,. q) ~( . . . .  q) + qT( . . . .  ~)f ~ (17). 

= 0  by (9). ) 
The interpretation is obvious. 
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Motion through a turbulently moving Inviscid Liquid. 345 

6. Remark~ as a general property of this kind of averaging~ 

xav ~ - = 0  . . . . . .  (18), 

i f  Q be any quantity which is finite for infinitely great values 
ofx.  

7. Suppose now the motion to be homogeneously distri- 
buted through all space. This implies that the centres of 
inertia of all great volumes of the fluid have equal parallel 
motions, if any motions at all. Conveniently, therefore, we 
take our reference lines OX, OY, OZ, as fixed relatively fo 
the centres of inertia of three (and therefore of all) centres of 
inertia, of large volumes ; in other words, we assmne no trans- 
]atory motion of the fluid as a whole. This makes zero of 
every large average of u and of v and of w ; and, in passing, 
we may remark, with reference to our notation of § 3~ that it 
makes, as we see by (10), (1l), (12), 

0 = ~(0, ,, ~) = ~(,~. 0, q)-- ~ . . . .  o) =/3(0, ~. q) = &c. &e. = ~/(~, ,, 0) (19). 

Without for the present, however, encumbering ourselves 
with the Fourier-expression and notation of § 3, we may 
writ% as the general expression for nullity of translational 
movement in large volumes, 

0 = ave u--- ave v = ave w . . . .  (20) ; 

where ave denotes the average through any great length of 
straight or curved line, or area of plane or curved surface, or 
through any great volume of space. 

8. In terms of this generalized notation of averages, homo- 
geneousness implies 

aveu ~-- U ~, avev ~ --V2~ avew~=W ~ . (21)~ 

ave v w = A  ~, ave wu= B2~ ave uv = C 2 . (22) ; 

where U, V, W, A, B, C are six velocities independent of 
the positions of the spaces in which the averages are taken. 
These equations are, however, infinitely shor~ of implying, 
though implied by, homogeneousness. 

9. Suppose now the distribution of motion to be isotropic. 
This implies, but is infinitely more than is implied by, the 
following equations in terms of the notation of § 8, with 
further notation, R, to denote what we shall call THE AVER&GE 
VELOClT:~ of the turbulent motion : - -  

U~=V2:--W2= ½R ~ . . . . .  (23), 

O = A = B = G  . . . . . . .  (24). 
10. Large questions n6~ present themselves as to trans- 

Phil. Mag. S. 5. Vol. 24. No. 149. Oct. 1887. 2 A 
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346 Sir W. Thomson on tlze _Propagation of Laminar 

formations which the distribution of turbulent motion will 
experience in an infinite liquid left to itself with any distribu- 
tion given to it initially. I f  the initial distribution be homo- 
geneous through all large volumes of space, except a certain 
large finite space, S, through which there is initially either 
no motion, or turbulent motion homogeneous or not, but not 
homogeneous with the motion through the surrounding space, 
will the fluid which at any time is within S acquire more and 
more nearly as time advances the same homogeneous distri- 
bution of motion as that of the surrounding space, till ulti- 
mately the motion is homogeneous throughout ? 

11. I f  the answer were yes, could it be that this equaliza- 
tion would come to pass through smaller and smaller spaces 
as time advances ? In other words~ would any given distri- 
bution, homogeneous on a large enough scale, become more 
and more fine-grained as time advances ? Probably yes for 
some initial distributions ; probably no for others. Probably 
yes for vortex motion given continuously through all of one 
large portion of the fluid, while all the rest is irrotational. 

12. Probably no for the initial motion given in the shape 
of equal and similar Helmholtz rings, of proportions suitable 
for individual stability, and each of overall diameter consider- 
ably smaller than the average distance from nearest neighbour. 
Prodably also no, though the rings be of very different volumes 
and vorticities. But probably yes if the diameters of the rings~ 
or of many of them, be not small in comparison with dis- 
fauces fi'om neighbours, or if the individual rings, each an 
endless slender filament~ be entangled or nearly entangled 
among one another. 

13. Again a question : If  the initial distribution be homo- 
geneous and c~olotropic, will it become more and more isotropic 
as time advances, and ultimately quite isotropic ? Probably 
yes, for any random initial distribution, whether of continuous 
rotationally-moving fluid or of separate finite vortex rings. 
Possibly no for some symmetrical initial distribution of vor tex 
rings, conceivably stable. 

14 I f  the initial distribution be homogeneous and iso- 
tropic (and therefore utterly random in respect to direction)~ 
will it remain so ? Certainly yes. I proceed to investigate 
a mathematical formula, deducible from the answer, which 
will be of use to us later (§ 18). By (22) and (24) we have 

xzav uv=O, for all values of t (25). 
But by (2) and (3) we find 

d(xzavuv) { d(uv),  d(uv)_ d(uv),  dp .  dp') 
= - x z a  u---v--#v---r---rw---r-- +v-~ - e u ~  (26). ax ay az ax ay .J 
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Motion through a turbulently moving Tnviscld Liquid.  347 

ttence 
^ ( d(uv) a(uv) d(uv) dp dp 

w--dU z + v ~ + u ~  o =xzav + v- u + } .  (27). 

This equation in fact holds for every random case of motion 
satisfying (30) below, because positive and negative values of 
u, v, w are all equally probable, and therefore the value of the 
second member of (27) is doubled by adding to itself what it 
becomes when for u~ v, w we substitute --u, --v~ --w~ which, 
it may be remarked, and verified by looking at (5), does not 
change the value ofp. 

15. We shall now suppose the initial motion to consist of 
a laminar motion If(y) ,  0, 0] superimposed on a homo- 
geneous and isotropic distribution (tie, Vo, w0); so that we 
have 

when t = 0 ,  u=f(y)+Uo, V=Vo, W=Wo (28);  

and we shall endeavour to find such a funetion~ f (y~ t)~ that 
at any time t the velocity-components shall be 

f (y, t) + U, v, w . . . . .  (29), 

where tt, v, w are quantities of each of which every large 
enough average is zero, so that particularly~ for exampl% 

0 = x z a v  u = x z a v  v = x z a v  w (30). 

16. Substituting (29) for u, v, w in (2) we find 

dr(y, t) + d u _  ( ,, ,du  df(y, t) '~ du du du . d p \  )-( 
Take now xzav of both members. The second term of the 

first member and the second term of the second member dis- 
appear~ each in virtue of (30). The first and last terms of 
the second member disappear) each in virtue of (18) alon~ 
and also each in virtue of (30). There remains 

d f ( y , t )  (It dlI vdtt  +wdl I~  (32). 
dt --  xzav\  ~ +  ~ d~zz] 

To simplify, add to the second member [by (1)] 
/ dv d,q 

0 =  --xzav[ttT-\ ax +U@ +ll dz ] . . . .  (33); 

and, the first and third pair of terms of the thus-modified 
second member vanishing by (18), find 

d / ( y ' t ) - - - - x z a v d ( t t v )  . . . .  (34). 
dt --  " dy " 

It is to be remarked that this result in,~olves~ besides (1)~ 
2 A 2  
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348 Sir W. Thomson on the Propagation of f~aminar 

no other condition respecting (tt, v, w) than (30);  no iso- 
tropy~ no homogeneousness in respect to y ;  and only homo- 
geneousness of rdgime with respect to y and z~ with no mean 
translational motion. 

The x-translational mean component of the motion is wholly 
represented by f(y, t), and, so far as our establishment 
of (34) is coneerned~ may be of any magnitud% great or 
small relatively to velocity-components of the turbulent 
motion. It  is a fundamental formula in the theory of the 
turbulent motion of water between two planes ; and I had 
found it in endeavouring to treat mathematically my brother 
Prof. James .Thomson's theory of the "Flow of Water in 
Umform Rdgzme m Rivers and other Open Channels"*. In 
endeavouring to advance a step towards the law of distri- 
bution of the laminar motion at different depths, I was 
surprised to discover the seeming possibility of a law of pro- 
pagation as of distortional waves in an elastic solid~ which con- 
stitutes the conclusion of my present communication, on the 
supposition of § 15 that the distribution ire, vo, We is isotropic, 
and that dr(y, t)/dy, divided by the greatest value off(q, t), is 
infinitelysmall in comparison with the smallest values ofm~ n, q, 
in the Fourier-formulae (6), (7), (8) for the turbulent motion. 

17. By (34) we see that, if the turbulent motion remained, 
through time, isotropic as at the beginning, f (y,  t) would 
remain constantly at its initial value f(y). To find whether 
the turbulent motion does remain isotropic, and, if it does 
not, to find what we want to know of its deviation from 

d(uv) isotropy, let us find x z a v ~ ,  by (2) and (3), as follows:-- 

First, by multiplying (31) by v, and (3) by It, and adding, we 
~nd 

udC ttv) d(ttv) dp v) +v (35). ~ - ~  - 

Taking xzav of this, and remarking that the first term of the 
first member disappears by (30), and the first term of the 
second member by (18), we find, with V 2, as in §§ 8, 9, to 
denote the average y-component-velocity of the turbulent 
motion, 

d {xzav (ue)~ = - - v ~ d ' f ~  t) - Q  (36), 

* Proceedings of the Royal Society~ Aug. 15, 1878. 
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Motion through a turbulently moving Inviscid Liquid. 349 

w h e r o  

dp dp~ Q:=v{. . 

18. Let 
p = ~ + ~ . . . . . .  ( 38 ) ,  

where p denotes what p would be if f were zero. We find, 
by (5), 

_ V ~  = 2dr(y, t) dv (39), 
@ dx  . . . . .  

and, by (27) and (37), 
( d ~  d ~ ,  

Q = ~ a v  ~ ~ -  + u ~ /  . . . . .  (4o b 

So far we have not used either the supposition of initial 
isotropy for the turbulent motion, or of the infinitesimalness 
of dr/@. We now must introduce and use both suppositions.. 

19. To facilitate the integration of (39), we now use our 
d 

supposition that ~f (y ,  t), divided by the greatest value of 

f(y, t), is infinitely small in comparison with m, n, q, which~ 
as is easily proved, gives 

~ = ~ d/(y, t) 1 d,, 
@ - v  ~ d x  . . . . .  (41) ,  

by which (40) becomes 

Q = _ ~  d/(y,  t) xzav [v d + u  d v-~dv 
(42). 

Now, by (x, z) isotropy, we have 

d d v_2dvo 
2 xzav (v0Txx+ll0 dy) ~-~ 

xzav~v0 d~ d~ d d d 

Performing integrations by parts for the last two terms of 
the second member, and using (1), we find 

(1Io d d \ d ---2 /duo . dwo\ d ---2 x z a v   +WO z) V Vo=--xzavt + / V Vo 
dye d =xzav ~ ~ V-2Vo ; 

and so we find, by (43) and (42), 

df(y, t) xzav { vo (S~ -~z2Jd'\ d'ydv° d Qo= - + + ~c v - %  (4C. 
J 
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350 Sir W. Thomson on the_Propagation of Laminar 

20. Using now the Fourier expansion (7) for Vo, we find 

v,-av - ~ ¢  m(e'/' g) cos (rex + e) sin (ny - i t )  cos (qz + g) 
mnq (m,~,~) m 2+n ~+q~ 

Hence we find (with su~xes &e. dropped), 
d~0 d n ~  ~ 

xzav ~yy V-%0= --1 s ZEZEZZ m~-in~ + q~ (46)*, 
and ~-Y 

, d ~ a ~ _~ _ ( m ~ + q ~ ) B :  

:Now, in virtue of the average uniformity of the constituent 
terms implied in isotropy and homogeneousness (§§ 7, 8, 9), 

~2 
~he second member of (46) is equal to -~sZZ2ZZE -~-, and 

therefore (§ 9) equal to --19R:; and similarly we see that the 
second member of(47) is equal to +~R 2. Hence, finally, by 

( 4 4 ) ,  
, R~ d.f(~, t) (48) ;  

Q0 = - ~  @ . . . . .  

and (36) for t-----0, with ½R ~ for V2 on account of isotropy, 

becomes ~ d x z a v  (ttv) ~ = _ ~ R ~ { d f ( y , t ) ~ t =  ° (49). 
t = 0  d f f  

The deviation fi'om isotropy, which this equation shows, is 
very small, because of the smallness of df/dy; and (27) 
does not need isotropy, but holds in virtue of (30). Hence 
(49) is not confined to the initial values (values fbr t--0) of the 
two members, because we neglect an infinitesimal deviation 
fi'om ~1~ 2 in the first factor of the second member, considering 
the smallness of the second factor. Hence, for all values 
of t, unless so far as the "random " character referred to at 
the end of § 13 may be lost by a rearrangement of vortices 
vitiating (27), 

-~t , ,zav ( .~)  = - ~ R  ~ d/(~,  t) ( 5 0 ) .  
d ~ /  ° o , • 

21. Eliminating the first member flora this equation, by 
(34), we find ~.~f _ ~ R  2 d,~f 

at '--  ~ . . . . . .  (51). 

Thus we have the very remarkable result that laminar dis- 
turbance is propagated according to the well-known mode of 
waves of distortion in a homogeneous elastic solid ; and 

that the velocity o f  propagation is - ~ R ,  or about "47 of the 

Here and henceforth an averaging through y-spaces so small as to 
cover no sensible differences of f(y~ t), but infinitely large in proportion to 
n-J~ is implied. 

• (45). 
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#[otion through a turbulently moving Inviscid Liquid. 351 

average velocity of the turbulent motion of the fluid. This 
might seem to go fa~ towards giving probability to the vortex 
theorv of the luminiferous ether, were it not for the doubtful 
proviso at the end of § 20. 

22. If  the undisturbed condition of the medimn be a stable 
symmetrical distribution of vortex-rings the suggested vitia- 
tion by "rearrangement" cannot occur. For example, let it 
be such as is represented in fig. 1, where the small whim and 

Fig. I. 

R 

4 - - - -  

I 

I 

black circles represent cross sections of the rings : the white 
where the rotation is opposite to, and the black where it is in 
the same direction as, the rotation of the hands of a watch 
placed on the diagram facing towards the spectator. Imagine 
first each vortex-ring to be in a portion of the fluid contained 
within a rigid rectangular box, of which four sides are indi- 
cated by the fine lines crossing one another at right angles 
throughout the diagram ; and the other pair are parallel to 
the paper, at any distance asunder we like to imagine. Sup- 
posing the volume of rotationally moving portion of the fluid 
constituting the ring to be given~ there is clearly one deter- 
minate shape, and diametral magnitude, in which it must be 
given in order that the motion may be steady. Let it be so 
given, and fill space with such rectangular boxes of vortices 
arranged facing one another oppositely in the manner shown 
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352 Sir W. Thomson on the Propagation of Laminar 

in the diagram. Annul now the rigidity of the sides of the 
boxes. The motion continues unchangedly steady. But is 
it stable, now that the rigid partitions are done away with ? 
To proof has yet been given that it is. I f  it is, laminar 
waves, such as waves of light, could be propagated through it ; 
and the velocity of propagation would be R ¢'2/3 if the sides 
of the ideal boxes parallel to the undisturbed planes of the rings 
are square (which makes ave Lie-- - ave w~), and if the dis- 
tance between the square sides of each box bears the proper 
ratio to the side of the square to make ave v~= ave ~---- ave w ~. 

23. Consider now~ for example, plane waves, or laminar 
vibrations, in planes perpendicular to the undisturbed planes 
of the rings. The change of configuration of the vortices in 
the course of a quarter period of a harmonic standing vibra- 
tion, f(y,  t )=  sin ~t cos ~g (which is more easily illustrated 
diagrammatically than a wave or succession of waves), is illus- 
trated in fig. 2, for a portion of the fluid on each side of y = 0 .  
The upper part of the diagram represents the state of affairs 
when t----0 ; the lower when t=Tr/(2o~). But it must not be 
overlooked, that all this §§ 22, 23 depends on the unproved 
assmnption that the symmetrical arrangement is stable. 

24. It is exceedingly doubtful~ so far as [ can judge after 
much anxious consideration from time to time during these 
last twenty years, whether the configuration represented in 
fig. 1, or any other symmetrical arrangement, is stable when 
the rigidity of the ideal partitions enclosing each ring sepa- 
rately is annulled throughout space. It is possible that the 
rigidity of tw% thre% or more of the partitions may be an- 
nulled without vitiating the stability of the steady symmetric 
motion ; but that if it be annulled through the whole of space, 
for all the partitions, the symmetric motion is unstable, and 
the rings shuffle themselves into perpetually varying relative 
positions, with average homogeneousness, like the ultimate 
molecules of a homogeneous liquid. 1 cannot see how~ under 
these conditions, the "vitiating rearrangement" referred to 
at the end of § 20 can be expected not to take place within 
the period of a wave or vibration. To suppose the overall 
diameter of each ring to 1,e very small in proportion to its 
average distances from neighbours, so that the crowd would be 
analogous rather to the molecules of a gas than to those of a 
liquid, would not help us to escape the vitiating rearrange- 
ment which would be analogous to that investigated by Max- 
well in his admirable kinetic theory of the viscosity of gases. 
I am thus driven to admit, in conclusion, that the most 
favonrable verdict I can ask for the propagation of laminar 
waves through a turbulently moving inviscid liquid is the 
Scottish verdict of not proven. 
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Motion through a turbulently moving Inviscid Liquid. 353 

Fig. 2. 

Y 

(uv) neg. 

(uv) pos. 

0 

IIII 
I I I ! f=O 

passim. 

X 

Y 

d•neg. 

fpos. 

~ pos. 

0 

, (uv)=0 
passim. 

X 
Here (uv) means an average of the kind described in the footnote on (46). 
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