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On Certain Problems of Two-1)~mensional Physlcs. 761 

electron or even a positive ion (of smaller radius so as to 
possess greater mass) could rotate and something like a 
magneton would be the result, even if the elastic constants 
were not supposed to be infinite. Actually, however, the 
electromagnetic " potential " energy will produce effects 
analogous to those due to a mass density varying from the 
centre to the circumference. By supposing X and t~ to 
be infinite, the " semirigid " rotating electron (electron- 
magneton) could still be used as an hypothesis consistent 
with the Principle of Relativity. 

LXXXII .  On the Solution of Certain _Problems of Two- 
.Dimensional .Physics. ~.V J. R. WILTON, ~/[.A., D.Sc., 
Assistant Lecturer in Mathematics at the University~ of 
Shea~eld *. 

1. ~ GENERAL method of solution of certain types of 
physical problem, in which the boundary considered 

consists of a single analytical curve, may be founded on the 
obvious remark t that the transformation 

,~+ ~ =X(~) + ~Y(T), 
in which ~-=7/--~, and X and Y are real when ~" is real, 
makes the real axis in the ~" plane correspond to the curve 

x=X(~) ,  , l=~(V), . . . . .  (1) 
in the x+t?j plane. We may therefore take the equation 
of any analytical boundary in file form 

. . . . . . . .  

or, if 0= .1+  t~, we have or, if 0=.1+ t~, we have 
[9 ~ q'o 

For the sake of brevity, we shall denote X(V ) by X, X(~) 
by Xx, and X(0) by X~, with a similar notation in the case 
of Y. 

In the simplest type of problem we are required to deter- 
mine a function ~ from 

V2 k = 0, 

with the conditions ~ = f ( v ) ,  ~ - ~ = F ( v )  on the together 

boundary, where dn is an element of the outward drawn 
normal. The solution is 

1 
~b= �89 + f ( r )}  + ~,_r 

Communicated by the Author. 
,4" Cf. Forsyth, ' Theory of Functions,' w 265, p. 624 (2rid edition) ; also 

Jeans, ' Electricity,' p. 264. 
2hil. May. S. 6. u 30. No. 180. Dec. 1915. 3 D 
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762 Dr. J. R. Wilton on the Solution o] 

But, in general, the boundary conditions are not alone 
sufficient to determine ~ ,  and we have to resort to other 
means in order to obtain the final form of the solution. 

In the examples that follow the endeavour has been to 
give a consistent exposition of the mode of attack on the 
problems of most frequent, occurrence; hence the inclusion 
of a number of well-known results. 

TTydrodynamical Problems. 
2. If in hydrodynamical steady motion under forces whoso 

potential is ~2(x; ~/) the e,rve (1) is a free surface, we obtain 
the stream function (Earnshaw's) ~ by means of the 
boundary conditions ~---- 0, 

~x ] + \ by  

where (], is constant, together with V : ~ = 0 .  The result is 

if 

The theory of plane progressive waves may be based on 
this result, but the work is practically identical with that 
of the well-known method due to Stokes. 

3. The motion of a cylinder of any form in perfect fluid 
at rest at infinity may be obtained with equal ease. 

Let the cylinder be moving with a velocity whose com- 
ponents parallel to the axes are U and V, and let it be 
rotating with angular velocity ~. Then we have V 2 ~ = 0 ,  
and on the cylinder 

i. e. 4/---- U y - -  Vx - -~o(x~  + y ~) 

when O=v. And thus 

, = ~ {F (0) -- ~(~) } + �89 + Y~) - ~V(X~ + X,) 

_�88 (X~ + X~2 + yl: + y2) ,  
where the function F is to be determined from tho fact that 

is nowhere infinite and vanishes at infinity. 
As an illustration we take the familiar case of the elliptic 

cylinder, for which 

X = c cosh X cos ~, Y = c sinh X sin 7. 
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Certain Problems o] Two-Dimensional Physics. 763 

So that 

= 1 {F09 ) _ F(~') } + �89 0 + sin ~') --�89 0 + cos ~') 

- - ~ c ~ ( 2  cosh 2 k +  cos 2 0 +  cos 2T), 

where a=c cosh)% b=c sinhX. 

]:[once, finally, omitting a constant, 

= e-*(bU sin v -  aV cos 7) --�88 ~c~ e-25 cos 27. 

4. In  the case of a vortex filament bounded by the curve 
(1), we }lave, within the vortex V2+~----2~,and without the 
vortex V 2 ~ o = 0 ,  where ~, supposed constant, is the vorticity. 
And on the boundary we have 

b ~ -  b ~ '  ~~ 

where it is assumed that the vortex rotates with constant 
angular velocity o~. At infinity ~0 must take Lhe same form 
as the gravitational potential of a cylinder of the same form 
and of density --2~r~. Further,  in order to avoid infinite 

velocities, ~ -  and must vanish at the singular points 

of the transformation 

z - -  x + ~y = X(T)  + W (T), 

dz 
namely, the points where ~ = 0, i. e. 

X'(~) = --~Y'(r),  

and therefore X'(O) = ~Y'(O). 

W e  easily find 

o,= ~ ~(~ § ~ ) -  ~ (x~+ x~ + Y~ + Y~)+ ~, {r(~)-F(a)}, 

(xY'-x ,Y)d,  + }, {r(,)-F(O)} 

where F is to be determined bv the conditions given above. 
The case of variable vortic{ty may be treated in the same 

way. I t  is evident, however, that the problem is precisely 
the s~me as that of determining figures of equilibrium of 
rotating fluid, where co is put for --o~ 2 and ~ for --2~rp. 
(See w w 10 and 11 infra.) 

3 D 2  
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764: Dr. J .  R. Wil ton on the Solution of 

W e  take, by way of illustration, the hypotrochoid of n 
oscillations, 

�9 = ~  cos 7 +  b cos ( n - - 1 ) ~ , )  (2) 
y----a sin ~/--b sin ( n - -  1)~/.) . . . .  

This includes the ellipse when n----2, and when b is not too 
l a rge - - the  greatest  possible value for b is 1 ] (n - -1 ) - - i t  
represents a circle disturbed by an harmonic inequality with 
n maxima. W e  have, in fac~, 

~2= aS+ b2 + 2ab cos nv, 

and if b is so small that squares of b/a may be neglected, 

q~----a .+ b cos n~7, 

and y differs from 0 by a multiple of b/a, where r and 0 are 
polar coordinates. 

In  general, we have 

x + ty---- a e ~+~n + b e -  (~- 1)(~+,n), 

x 2 + ye = a ~ e ~$ + b ~ e -2 (~-  1)~ + 2ab e-(~ - 2)~ cos n% 

1 2 2 2 2 _ _  2 _ l .  ~(X1 + X2 + Y1 "t- Y :  ) -- a , b ~ + 2ab cosh n$ cos n~?, 

~ j i O ( X Y ' - -  X ' Y ) d , =  { a ' - -(n--1)b~ } ~--  (1-- 2/n)ab sinh n~ cos nv. 

And therefore, provided that  the boundary does not cross 
itself, i. e. provided that b ~, 1 / ( n - l ) ,  

r189 ~ -  a~--b2--2ab cosh n~: cos nT/) 

+ ooab e-n$ cos nv + (1 -- 2/n)~ab sinh ~ff cos ~*V 

4Fo=toab e-"$ cos n v + {a 2 -  (n-- 1)b2}~'$. 

The singular points of the transformation are given by 

n ~ =  log{ (n - -1 )b / a} ,  n~=2k ~ ,  

where k is an integer or zero. Thus to is determined by the 
condition th:~t ~ i / ~ : ~ - 0  at tl~ese points. W e  have 

~ ' = 1  1 (~--1)  ~b ~ 
'~Z a 2 ~ 

" t n d  

~ .--�89 ~(x ~ + y~--a ~ -  b ~) -- ~(ab/n) {e'~ + (n -- 1)~(be]a ~) e-'$} cos n~, 

�9 0 = g{~-~- ( ~ -  ~)~} {~+ [ (,~- ~)~/,~] ~-'~ cos ,~,}. 
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Certain -problems of Two-Dimensional .Physics. 765 

In the case of the ellipse, n=2, we have the well-known 
result 

~/~= {(a~ + b~)/a ~, 

where a t b ,  a--b a~e the semi-axes. And in the case of the 
n-cusped hypoeycloid, for which b =a/(n-- 1), 

As a corollary to the general case we notice that 

= �89 ~ +,v 2 -- 2 [a ~ -  (n-- 1)b ~] ~:-- 2ab [e-n~ + (4/n) sinh n~:] cos m/] 

satisfies the equation V~-----2~, which is a particular form 
of V~@=f(q/ ') ,  and is such that the velocity vanishes on 
the cylinder (2). It therefore represents a possible motion 
of viscous fluid within this cylinder. 

5. In the case of viscous fluid me,ions so slow tha~ the 
squares of the velocities may be neglected, we have 

~ u _  l ~ p  ~v 1 ~p +vV2v. 

And in the case of steady motions this leads at once to 

v , r  . . . . . . .  (3) 

with the conditions u = v = 0  on the boundary. 
The general solution of (3) subject to these conditions is 

easily seen to be 

r  { X- 

together with a similar term, with y, Y in place of x, X, 
which may be written down by symmetry. 

In the case of the ellipse, for which 

x +~y=c cosh (~-+~+~v), 
we have 

--sech X cos V cosh (X+ ~:)y F/(~/) see ~/d~/} + &c. 

,1--t~ 

In accordance with a result first given by Stokes, it appears 
to be impossible to determine a solution corresponding to the 
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766 Dr. J. R. Wilton on the Solution of 

case of the elliptic cylinder in a steady stream. Consider, 
however, the stream function 

,=(A see, + )  cosec,) d, 

Ax (sinh $) tan_l (sinh ~) 
= ( A + B ) ~ -  ~-- tan -1 k c-c77v-/-- ~ ,, s i n * / /  

We obtain the velocity at any point from the formulm 
5q.5~ 5+b~ b,kbe 5q. 5~ 

u =  ~ -  ~ + b*/ 5,~' ~'= be 5.~ + b ,  by" 
And we have immediately 

5'@ - - A T  Ac . _i/sinh~:\ cosh~cosh (~+~) U -  B-- - -{s inh(X+~:)cos*/~an  . ~ . +  . . . . .  } a \ cos V ] 1 + (sinh 2 ~/eos ~*/) 

" eosh ~: sinh (~, 4 ~:) "( BCb cosh (A.+ ~) sin , / tan-l(  siph\ sm V ~ / +  i T ( ~ ~  ~-) J '  

b *  Ac cosh (X, + ~) sin */{ tan-l( sinh ~:~ _ sinh ~ c o s ,  "~ 
5*/ -- a \ c o s y /  s i n h ~ + c o s  ~ / j  

_ B_e~ sinh (A, + ~:) cos,  ~" tan_~(slnh {~ sinh ~:sin, ~ .  
b ( \ sin V / - -  sinh ~ ~+ sin s */J 

At infinity we have 

~)~: = -- 4 \a  b- sin ,1_, 

b+ sin */_ cos , ) .  

And therefore 
7rB ~rA 

u=-2K'  V=2a 
Further, on the ellipse ~=0  we have u = v = 0 ,  provided 

that neither cos */nor sin */vanishes. 
In the neighbourhood of the extremities o~ the minor axis 

put 
sinh ~:= tan {it cos */. 

Then, at these points, 
A A B 

u =  ,~(tt-- sin t*), v=~-b( l+  eos/~)-Tb-, 

where --Tr ~ tt < 7r, but t* is otherwise arbitrary. 
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Certain _Problems oJ Two-.Dimensional _Physics. 767 

Similarly, in the neighbourhood of the extremities of the 
major axis, put 

sinh ~-- tan �89 sin v, 
Then at these points, 

B B (v-- sin v), u=+_-a - - 2 a ( l +  cosy), v = - -  

where, again, - - ~ ' < v  < 7r, but v is otherwise arbitrary. 
And in each case the upper sign corresponds to the positive 
end of the axis, the lower to the negative. 

The velocity is thus indeterminate, and it is easy to verify 
that the vorticity is infinite, at the extremities of the axes. 
In of her words, eddies are formed at these points. The eddies 
do not disappear when the ellipse becomes a circle. And 
this appears to be the true explanation of the result obtained 
by Stokes in attempting to find a slow steady motion of an 
infinite cylinder in viscous fluid--namely, that such a motion 
is impossible. 

If' the cylinder is moving, with a velocity whose com- 
ponents parallel to the axes are U and V, in fluid at rest at 
infinity, we have 

,k=uv-v,~+ ~@U-aV)~ 
2V _l(Slnh $] 2U tan_~(si.nh ~:). 

+ ~ - x t a n  ' . ~ / - -  ~-'Y \ s i n v /  

In the case of a circular cylinder moving with velocity V 
parallel to the axis of y this becomes 

( 2  x ' + y  ~ q / = - - V x  1+ tan-lX~+y~--a~'~ aV log a2' 
2ax ] --'-~- 

6. For a cylinder slowly rotating with angular velocity o, 
in viscous fluid at rest at infinity, we have 

1 c C~ ' .~ 
= f, ~ F(O)-~(~) -~j~ X~V �89 + y~). 

In the case of the ellipse it is easy to verify that the stream 
function is 

= - �88 cosh 2X + e -  2(~ +x) + cos 2v }, 

which, in the case of the circle, reduces to the obvious result, 

4/" = - - � 8 8  2 log r .  
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768 Dr. J.  R. Wilton on the Solution of 
6a. In the case of a problem somewhat similar to that of 

motion in a viscous fluid, which it may sometimes be taken 
to replace, namely, motion (not irrotational) in a perfect 
fluid, with the condition that the velocity should vanish on 
the boundary, the solution may be written down. 

Let VN" = 2~= V~X, say. 

And let the cylinder bounded by the curve (1) be moving 
with velocity components U and V, and rotating with 
angular velocity o. Then, ~hen 0 = %  we have 

4p=vv-w-~(~+~) ,  
~,k/~x= -V-oox, ~,l,/bv= U-,,~. 

Thus, after reduction, we find 

=:g(x,y)_~. {x(X,,y1)+x(X2, y2) } I ll~ x X, bX~d 

+ u , -  v x - / ~ ( x l ,  + x ~ +  Y,~+ y~)_~,~-~ 
" ~u2T 

Remembering that 

?q" _ x ( ? ~  3~k] (X , + , y  ,)__= 1 

we may write down the velocity in the form 

~X d.. ,.~X ~Xl bXl U _  i ,V_ r + , X l ) ,  ~ - ' ' =  b~ -'~,~ - ~  - ' ~ x ~  * 
where X:=x(X1, Ya). 

I f  it is possible to choose X so that this expression vanishes 
at infinity, we obtain a solution for the case in which the 
cylinder moves through the fluid at rest at infinity. (Cf. 
w w 5 and 6.) 

If  in addition to making ~ vanish at infinity X s~tisfies 
the equation V4X-----0, we have V4~----0, and the analytical 
form of the solution is precisely the same as in the case 
of slow motion of viscous fluid with the same boundary 
conditions. In the problem under consideration in the 
present paragraph we are not limited to ~he case of slow 
motions, but it must not therefore be supposed that the 
solution may be applied to problems of viscous fluid motion 
in which the velocities contemplated are not small. I t  is 
only in exceptional cases that this is true. 
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Certain Problems of Two-Dimenslonal Physics. 769 

Electrical Problems. 
7. The potential of a freely electrified cylinder is 

evidently 

r 
whore F is so chosen that, at infinity 

~ =  - -2E logr ,  

E being the charge per unit length. 
Take, for instance, the ease of the cylinder 

X = a  eosn~7, u  sin'~v, . . . .  (4) 

in which n must be a positive integer. 
We have x + ~j = a cos ~ (V - ~)  § ~b sin '~ (~ - t~) ; 

and at $ = + ~ ,  
a + b  n(~+L~) 

x+~y= ~2~-e 

log r = uS, so that 

approximately. 
Thus the potential of the cylinder bounded by the curve 

is 
~b=V--2nE$,  

provided that  the singular points of the transformation do 
not fall within the fieht of variation of gb. I f  n > 1 there 

3~r 
al'e singular points at ~: = 0, V = 0, 2 ' ~ '  2-  ; i. e. the electric 

density is infinite at these points. 
8. The potential of a cylinder magnetized transversely 

may be determined in the same way. 
For  simplicity we shall assume that the components of 

the intensity of magnetization are derivatives of a single 
function J,  so that 

~-~., B= By" 
We then have 

V'~20=0, XT~(l~i+47rJ) = 0 ,  
and on the boundary 

t2o=ll i ,  ~12~ ~ (gti+4~rJ), 

where /2  o is the external, l-l~ the internal magnetic potential. 
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770 Dr. J .  R. Wilton on tile Solution of 

In  addition we have f~0-----0 at infinity, and 

at the singular points of the transtbrmation. 
We have immediately 

ao=~ { f(.)-~a(xl, Y1)+/(o)-4~a(x,, Y~) } 
+ ~(F(e).-~(,)}, 

a,=-~ i j  (.)+/(0)}- 4~a(., y)+ ~ it(e)-F(.)}. 
where F and f are to be determined by the conditions stated 
above. 

As a very simple illustration take the case of an elliptic 
cylinder uniformly magnetized. We have, in this case, 

J =  "- Ax--  B~d. 

And it immediately follows that 

f~o= e-$ { (E + 47raA) cos V + (F  + 4~rbB) sin V}, 

~ i  = ~o--  47r sinh $(bA cos V + aB sin 7). 

In this result E and F are constants to be determined from 
the values of b f ~ / b ~  and BfZ~/Bv at the singular points. 
We have 

~'-~_- ~-~ ~(~ + ~ a ) c o s ,  + (F + ~ ,  ~B)sin ,} 
--47r cosh ~:(bA cos ~? + aB sin ~/), 

~ a , = ~ ,  { - (E + 4.~a) sin , +  (F + ~.bB) co~ , }  

+ 4~r sinh ~(bA sin v - - a B  cos V). 

And these must both vanish when $ = - - k ,  s i n v = 0 .  Thus 
we have 

E = --4~rA(a + b e-" cosh k) = -- 4rraA(a + 2b)/(a + b), 

F = -- 4wB(b + a e -~ sinh k) = -- 4vbB(2a + b)/(a + b). 

And, finally, 

~2o= --4~r{ab/(a+b)}e-~(A cos ~ + B sin ~7), 

~2~= --4~r sinh ~(bA cos V + aB sin */) + 12~. 
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Certain Problems of Two-Dimenslonal Physics. 771 

9. In the case of a cylinder of dielectric material, we have 
directly 

K~ ~F (O) - - F ( , ) } ,  Vo=  {/(0) +r(,) } + 

K~ 
where Vo, Ko are the external, Vi, Ki the internal potential 
and specific inductive capacity, and f and F are to be deter- 
mined from the usual conditions of finiteness, &c. For the 
boundary conditions are 

K ~v~ bV Vo=Vi, o - ~  = K~-N~ 
when 0=•. 

If, however, the boundary be charged to sur[ace-density (r, 
we mus~ add to Vi the term 

27r ('~ "-,2 
. T ~  ~ a ( x  +Y'~)~d~. 
~b~iJr 

Let us consider the simple case of an uncharged elliptic 
cylinder of radius a and specific inductive capacity K, 
surrounded by air, and in the presence of a line charge, E 
per unit length, cutting the .z'~j phme at the point whose, 
coordinates are Xo, Yo. Let 

r , =  i (x-- .~y + (Y - Y~)~} ~, 
be the distance of the point x, y from the line charge. Then 
in the neighbourhood of r l = 0  we have 

Vo---- -- 2E log rl. 
But, putting 

Xo + ~Yo = c cosh (X + $o + rye), 
we have 

~'?= (~-~o) '~ + Cv-vo) ~ 
= e'{oosh (x + ~ + ~ ) -  cosh (X + 5 + ,~o) }~ 

---- c2{ cosh (~-- $o) --cos (V--re)} {cosh (2X + $ + ~o)--cos (v + ~o) }. 

And therefore, in the neighbourhood of the point $o, ~o, 

log ~1=�89 log {eosh ($--$o) --cos (~--Vo)} 

= �89 log {2 sin �89 o-- '~o) sin �89 + '~o) } 

= �88 log { [cosh ( t : -  ~o)--cos (~-~o)3 [eosh (~ + ~o)- eo~ ('~--~o)] } 

cosh ( ~ -  to) - cos (~ - 70) 
�88 log co~ (~:+ ~:o) - c o ~  ('/-- %) ; 
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772 Dr. J. R. Wilton on the 8olution of 

and to get the corresponding term of Vi we have to divide 
the coefficient of the second logarithm in the expression last 
printed by K. Hence a term of Vo is 

- -E log {cosh @--$o) --cos (~--To)}, 

and the corresponding term of V~ is 

- -  �89 + l /K) log {cosh (~-- ~o) --cos (T--To) } 

- �89 (1-- l/K) log {cosh (~ + &) - cos (T-- To) }. 

But we must remove the second logarithm, since (if ~o < k) 
it becomes infinite at --~o, To. By precisely the same 
analysis as that just used we thus find a term of Vi in the 
reFill 

- -~E(I+  l/K) log {cosh (~--~o)--cos (T - ~o)}, 
and the corresponding term of V o is 

- { ( K  + 1):/4K}E log {oosh (~--~o~--cos (T--To)} 

+ {(K s -  1)/4K}E log {cosh ($ + 5 )  --cos (7--To) }. 

In order that t~his last term should take the correct form 
at $o, To we must divide through by ( K + I ) ~ / 4 K ;  and we 
thus obtain a term of V o equal to 

- -E  log {cosh (~--$o)--cos (T--T0)} 

+ { (K- -1 ) / (K+  1) }E log {cosh (~+ ~o)--cos (T--T0)}, 

and the corresponding term of Vi 

- -{2El (K+  1)} log {cosh (~--$0)-cos (T--To)}. 

At the singular points ~ = - - k ,  v=O or ~', the part of 
~ V q ~  arising from the logarithm in this term is 

- -  sinh (k + $o)/{cosh (X + $o) ~- cos yo}, 

and the part of ~V~/~ T is 

-4- sin ~/0/{cosh (k + ~:o) ~ cos To)}. 

Exactly the same terms arise from the expression 

--log {eosh (2x + ~:o+ ~)--cos (T+ To)}. (6) 

Hence a possible term ibr the internal potential is 

- -  {4E/(K + 1) } log r~ ; 

and we have to determine the effect on V o of the addition of 
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Certain Problems of Two-Dimenslonal Physics. 773 

the proper multiple of the term (6) to Vi. This term is 
equal to 

- - {2E / (K +  1)} log {2 sin {[f?+7o+t(2Xo + ~) ] s in{[ r  

= - { E / ( K  + 1) } log {r sin (@ + t=) sin (@- t=) sin ( 'k--  ~) sin ( 4  + t~) } 

E 2 sin + 
K + ~[ log 2 sin (4)-- t~) sin ( 4  + ta) '  

where ~b=}(0+Vo), # = { ( ' + V 0 ) ,  a=X+}~o.  

The term to be added to V o is found by multiplying the 
coefficient of the second logarithm by K. Hence 
Vo= - - n  log {cosh (~:-- ~o)--cos (7 - 70)} 

+ { (K-- 1)/(K + t) }E log {cosh (~ + 5 )  --cos (~--%)} 
- -E log {cosh (2k + ~o + ~:) -- cos (7 + 70) } 
+ { (K--1) / (K + 1)}E log {cosh (2X+ ~0--~) --cos (7 +70)}. 

And we have Vi= -- {4E/(K + 1) } log rl. 

This, however, is not the solution of the problem we set 
out to solve, for there is a line charge of strength 

- - { ( K - - 1 ) / ( K + I ) } E  at ~=2X+~0, ,~=27r--~0. 
In the ease of the circle X is infinite (c-->0 in such a way 

that {ceX=a, the radius of the circle) and the terms given 
are ~ufficient for the complete solution. In the more general 
case we superimpose the solution for a charge 

{(K-1)/(K+I)}E at 2X+~0, 2~r--70, 
thus obtaining the solution of a problem involving a charge 

--{(K--1)/(K+I)}~E at 4X+~o, no. 
And proceeding in this way we have, finally, 

V ,=  -- { 4E/(K + 1) } Z { (K-- 1)/(K + 1)} = 

x {log [cosh (2nX+ ~:o--~)--cos { n - - ( - )  ~ 7] 

log [eosh I' + 

Vo = - E log { oosi~ (~o- ~) - oos (7o- v) } 

+ { (K--  1)/(K + 1)} E log { cosh ($o + $) -- cos (%-- v) } 
- { 4 K E  ( K + I )  ~} 

X { ( K - -  1)/(K + 1) }--~ log [cosh (2"x + ~0 + ~) 
~ = 1  

- - c o s  
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774 Dr. J. R. Wilton on the Solution o f  

provided that these series converge,--as they evidently do, 
for all finite values of ~:, except that at $=$0, v--=Vo, Vo 
becomes infinite like - -2E logrl .  And when $ is infinite we 
have 

Vo= -- {2E/(K + 1 )}$ -  {4KE/(K + 1) ~ } E { (K--1) / (K + 1) }'~-1~ 

--= --2E log rl. 

So that all the necessary conditions are satisfied. 
There is little interest in the case of the circular cylinder, 

as the solution can immediately be derived by the method of 
images. But there is some interes~ in the case of the thin 
plate of dielectric, 9~=0, for the series for V0 and Vi can 
then be summed. For all points outside the plate (which 
cuts the x//plane in the line y = O ,  - -c  < x ~ c) we have 

V =  - -E  log {cosh ($0--$)--cos (V0--V)} 

- -E  log {cosh ($0+ $)--cos (re+V)}, 

where x + ty = c cosh ($ + t~/). 

Gravitational .Potential. 

10. I f  Vo and V~ be respectively the external and internal 
potentials of a gravitating cylinder bounded by the curve (1), 
we have  

V W i =  -4~rp, VWo=O,  
and when O=T, 

v~=Vo, ~v~/~=~Vo/~:. 
Also Vo -~ - -A log r as r --> r162 

where A is a constant, which in the ease of constant density 
is 2p x the area of cross-section of the cylinder. 

Let ~ be determined so that 

- -  4 ~ ' p  = V ~ .  
Then 

v~=,/,(x, y) + ~{f (0) +/(~) } + ~ {F(0)-F(~)}, 
1 

Vo=~{g(O) + g(~)} + ~ {G(0) --G(~) }. 

And we have immediately 

g = f  +~,(X,  Y), 

G ' =  ~ " - ( X '  ~ - u  ~ , i , ( X ,  u  
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Certain Problems of l~oo-Dimensional Physics. 775 

Thus with the previous value of V~ we have 

] {F(O) --V(r)} ~-l{i/~(Xx, Vl)-[-'l~(X$, Y2)} Vo=�89 +f(r)} + s 

+ ~ s  ~g. 8X - ~  -" ~'/'~d~, g 7 ]  

wheref and F are functions to be determined by the form of 
Vo at infinity, and by the conditions that ~V~/~$=bVi/~/=0 
at the singular points of the transfbrmation, where 

YI'=~XI', Y~'= --~Xd. 
But 

__~ {~(X1, Y1)+~(X~,y~)__ ,~ '~  v , ~ ' ~  
a x - =  B ~ ] ~  Be 

=0, 

at the singular points. In the same way the differential 
coefficient of the same function with regard to v vanishes at 
these points. And it is obvious that the differential co- 
efficients of ~(x, y) with regard to $ and ~/also vanish at 
the singular points. Hence ~V0/~  and ~Vo/~/ vanish 
at these points. 

This result greatly simplifies the work of obtaining the 
potential of a cylinder of any given form. For example, 
let p be constant and let 

x.4- t y=ae  ~+Ln 4- ble -(~+~'7) 4- b2e -2(~+~'1) + . . .  + b,~e -n(~+~'l)" 

Then 

x2(X12+X~2+Yx2+u ) and ~ ( X Y ' - - X ' Y ) d ~  

contain ~ only through multiples of eos~, cos2~, 
..., cos (n+ 1)~. And therefore V0 is of the form 

- - 2 ~ o ( a ~ - - b ? - - ~ b d  . . .  --nb2){~+&e-~ cos,l+ ... 

+ A~+le- ('~+ ~)~ cos (n + 1)~}, 

and both ~3V0/~ and ~V0/~/must vanish when 

a e~ 4-'~ --bl e-(~ +~) -- 2bse- 2(~'l'~) ... - nb,,e-n(~ +'~).-- O. 
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776 Dr. J .  R. Wil ton on the Solution of 

Thus 

1 
e -2~ cos 2~? Vo = - 2~rp(a2--bl : -  2b~ ... --nbn ~) { 5 + 

+ e-3~c~ 3 7 +  "'" + n + l a  

and Vi may be written down by means of the general 
formula. 

The form taken by V0 at infinity assumes that the curve 
does not cross itselF. This, of course, restricts the variability 
of tile coefficients b,, b~ . . . .  bn. 

The value of V0 may be similarly writ ten down in the 
rather more general case of the transformation 

.v-I- t~/= ane n(~ +t'l) + a,~_le O~ - 1)(~ +,,/) _[_ ... _}_ al e~ +,n .{_ % 

+ bl e -(~+t'D + b2 e-2(~+tn) + ... + b,~e -m(~+').  

But  in this case we have, at infinity, 

log r--> n~, 

and therefore the coefficient of ~ in V o is --2~rpn x the area 
of cross-section, so that a term in 5 alone occurs in u For  
example, for the evolute of the ellipse, we have 

=c{3  cosh (X+5+t7)  + cosh (X--35--3t7)} ,  

on putting 

a = 4c eosh X, b---- 4c sinh X. 

At  the singular points 

1 + e 2}'- 2~-2 ' ' /_  e-4~-4,~ _ e2},- 6~-6,~ _ O. 

Hence we obtain, by integration, 

V0__ _ 4~rp a ~  b f ~ _ 2  e~ 2(x-~) cos 27 + �88 cos 47 +~e2 x-3~) cos 67}, 

and thereEore 

u -- ~rP( x~ +9:) + ~rpab5 + Vo-- ~Trpab sinh 45 cos 4,1 

+ ~Trpc~(] 5 cosh 25 cos 2v + cosh 65 cos 67) 

+ 3r 2 cosh 2X cosh 45 cos 47. 

I t  is not possible to pass to the case of the four-cusped 
hypocloid by making X--> ~ ,  2ee ~ -->a, for the transformations 
take different forms at infinity. 
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Certain Problems of Two-Dimensional Physics. 777 

Figures of Equilibrium of  Rotating Fluid. 
11. I f  the gravitational potential of a cylinder take the 

form* C--~co~{(x--k)~+y ~} on the surface ~:=0, i. e. if it is 
possible (in the case of constant density') to have 

V, = --  ~p { (x--  k) ~ + y~} + �88 (2~0 - ~ )  (X, ~ + X~ ~ + Y ?  + Y~9 

1 {F(0) --F(T)}, +N 
V0 = --  ~ ( X 1  ~ + X~ 2 + Y~ + Y~) + �89 + X2) 

[o 1 
+~pt (XY'-- X'Y)d~ + 2i {F(O)--F(T)}, 

then the cylinder is a possible form of equilibrium of liquid 
rotating, under the influence of its own attraction, with 
angular velocity to. 

In particular, the hypotrochoids of equation (2), w 4, are 
possible figures of equilibrium if k----O and 

a) ~ n - - l { l _ ( n _ l )  b~ } 
" 

Thus for any given positive integral value of n, and for 
values of' e var3;iug from 0 to 1, the hypotrochoids 

- = c o s  + c o s  n , ) ,  

y v / n ( n - - e  ~) = c(u sin 7/--e sin n~/), 

[with o~' /27rp=(n--d) / (n+ l )]  

form a linear series of figures of equilibrium (unstable if 
n > 1) passing out of the circle of radius c. The case of 
n = l  is that of the el]iptic cylinders, which are stable if 
e < �89 the bifurcating ellipse being that for which e = ~ .  
The case of n > 1 is that of the hypotrochoid which passes, 
as e increases to unity, into the n + l - c u s p e d  hypocycloid, 
after which fluid escapes at the cusps, as is easily verified in 
any particular case. 

For  example, take 
x + t y :  a e ~ +~ + b e-(~+'~) -~ c e-2(~+t~), 

and therefore 

(X~ 2 + X~? + Y~: + Yz~) = a s + b 2 + d + 2bc cosh $ cos V 

+ 2ab cosh 2~ cos 2~/+ 2ca cosh 3~: cos 3,/, 

--fit ~ j  f ( X Y ' - -  X ' Y ) d , / = (  a~--b ~ -- 2c~)~-- 3bc sinh ~: cos V-- ~ca sinh 3$cos 3 , .  

* By taking the surface-condition in this form we are really making 
use o f  Poincard's theorem that there is a plane of symmetry (y=0) 
through the axis. 

Phil.  Mag. S. 6. Vol. 30. No. 180. Dec. 1915. 3 E 
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778 Dr. J .  R. Wilton on the Solution o f  

Thus 

Vo = --  2~rp(a ~ -  b ~ -  2c~)~ - o~(bc e-* cos q/q- abe -2~ cos 2q? 
+ ca e -3~ cos 3*/) + kco ~ { (a + b) e-~ cos n + c e- ~ cos 27 }. 

Hence 

bye ? r e  = -2~p(a : -b : - -  2~ 2) -o,:/[b~--k(a + b)]e-(~+,,) 

+ 2(ab- -kc )  e -  2(~+~) + 3ca e-'l(~+~n)}, 

and this must vanish at the singular points, where 

a - - b  e-2(~ +~')--  2c e -  3(~+L,) =0 .  

Consequently we have 

~ =b~/(a+t,), 4~2=~(a+b), 
o~2/2~rp = (a + b) (a - -  2b)/3a ~ . . . . .  (7) 

Thus the curve 

x---- ( a+  b) cos ~1 + �89 ~/ (1 -t- b / a ) cos 2~/, 

y =  (a--b)  sin v--�89 ~/(1 + b/a) sin 2.,  

which is the three-cusped hypocycloid when b = 0 ,  is a 
possible form of rotating figure of equilibrium, provided that 
co is given by (7). But if b > 0 the curve possesses loops, 
and it is therefore not a proper solution, but must be regarded 
as indicating that as the angular velocity diminishes tile 
fluid escapes at tile cusps of the hypocycloid. 

More general eases of figures of equilibrium of this type 
may be found without difficulty, but there is no great interest 
in carrying on the investigation as all the figures so obtain- 
able are, with the exception of the ellipse, unstable. 

Problems o f  Elast ic  Equi l ibr ium.  

12. I t  is also possible to obtain solutions of certain problems 
of elastic equilibrium, namely, the torsion problem*, the 
flexure problem t,  the problem of plnne strain for a cylinder 
bent by its own weight $, and the approximate theory of the 
equilibrium of a plane plate clamped or supported at the 
edge w But, except in those cases in which the solution is 
well known, the analysis is tedious, and the results do not 
appear to be of sufficient interest to repay the labour of 
investigation. 

t' *Love, ~Elastlcity ' (second edition) p. 301, w167 217-8. This is merely 
ne nvctroaynamical problem of fluid in a rotating cylinder (with ,,---- --1). 

** ]Lee. cir. p. 317, w 2"29. J/ Lee. cit. p. 347, w 244. 
w elf. p. 465, w 313. 
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Certain Problems o f  Two-Dimensional  Physics.  779 

Using the notation of the section last quoted, consider as 
an example the problem o[ the bending of a plate by its own 
weight, the edge being clamped in a horizontal plane. We 
have, in this case, 

V4w = Z'/D = W]AD = 6412, say, 
where W is the weight and A is the area of the plate, with 
the conditions 

w=~w/~=0 
at the edge ~:=0. The general solution is 

w = n { (~  +v~) ~ -  �89 + Y~)~ -  ~ (x~  + u 

_ 1 [ X F ' ( 7 1 ) + Y G ' ( v ) ] d ~ + x [ F ( t ~ ) - - F ( r ) ]  + y [ G ( 8 ) - G ( r ) ]  , 
2t  

where F and G are functions to be determined from the 
conditions of finiteness, &c. 

A sufficient illustration will be furnished by the considera- 
tion of the case of the elliptic boundary, for which we may 
evidently take 

F 09) = &2(A sin ~9 + B sin 30), G (tP) = -- 12 (C cos ~ + E cos 3t?), 

where A, B, C, & E are constants which may be determined 
by equating to zero the coefficient of ~ s i n c e  $ becomes 
infinite at the centre when the ellipse is a circle~and the 
value of bw/~}~: when ~:=--k. 
lead to 

A = 2b (a s + b~), 

B = 2b(3a~ + b~)(a4--b4)' 
3a ~ + 2a~b ~ + 3b 4 

The equations thus obtained 

C = 2a(a 2 + b~), 

E -.= 2a(a2 + 362) (a4-- b4) 
3a 4 + 2a'~b ~ + 3b 4 

On substituting these values in the expression for w, we 
obtain after reduction the--otherwise obvious--result, 

[ 
W ~  (3a 4 + 2a~b~ + 3b*). 

The solution of tile problem here given is, of course, to be 
regarded merely as an illustrative example of the general 
process. 

3 E 2  
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