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LXX.  Figures of Equilibrium of Rotating Fluid under the 
restriction that the Figure is to be a Surface of Revolution. 
-~ff Z. R. WILTOn, J~Lf.A., ~).Sc., Assistant Lecturer in 
Mathematics at the University of Sheffield*. 

T HE following paper was begun rather more than a year 
ago. I t  was then pat  aside until a more convenient 

season, and now, owing to other work which I have under- 
taken, its completion has been rendered impossible for a long 
time to come. I believe, however, that there is some interest 
in the paper as it stands, and I venture to publish it in its un- 
finished state. There is a great deal of heavy, but straight- 
forward, arithmetic required to complete it. I t  will be seen 
that the whole paper presents very striking analogies with 
that of Mr. J .  H. Jeans on the " Equilibrium of Rotating 
Liquid Cylinders "% 

In the case of a st2rface of revolution the potential can be 
very simply written down without a knowledge of the form 
of the surface. For the potential of a uniform circular disk 
at a point on its axis is 

V = 2 ~ p  d~ ( 4 ~ - - : ) ,  

where d~ is the thickness, ~ the radius, o the density of tha 
disk, and z is the distance of the point where the potential 
is measured from the plane of the disk;-- if  z is negative its 
sign must be changed in the above expression. Whence it 
follows that the potential of a surface of revolution at :~ 
point on i~s axis, within the surface, i,s 

w being a function of ~'; and the potential at any point 
within the surface is therefore, by a well-known theorem, 

v = 2 p  t - q)dg 

+ m cos x -  dx, 

z,, R being the cylindrical coordinates of the point. 

Communicated ~y the Author, 
Phil. Trans. A. cc. (1902) pp, 67-104. 
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672 Dr. J .  R. Wilton on Figures of 

Excluding the case where the surface extends to infinity, 
we may cbange the order of integration in this result, and 
obtain, after a slight reduction, 

V =  2p~_~ d~ ~o'~d)~v/~-'~+ (z - ~ + ~R cos ~)~-- 27rp(a~ + z~), 

where it is assumed that the origin is the middle point of 
the axis, and that ~ = 0  when ~---- _ a .  

The equation which has to be satisfied on the surface, 
namely 

V + �89 2-- constant, 

oJ being the angular velocity, is thus 
t~ . 1 (O 2 - n  

or in spherical polar coordinates, 
1 r.1 /'~" - | d x |  dX d (rx) 4r~(1- -xg+(z+tgcosX--~ 'xy  

where ~ is the distance from the origin of a point on the 
surface, and x is the cosine of the angle which r makes with 
the axis. 

I f  we put z + tR cos X =  ~:, we have I $ I = q ~2 + R~ c~ X, 
which is less than v / ~  ~, i. e. less than r, since z, R is a 
point on the surface. Hence we may expand the left-hand 
side in powers of Sir. W e  have then, putting 

' 7rJ_ l  20 dx 

= ~r dx dX-x( rx )~Ll -~ .  P I + - ~  1.~(P,,-I--P,x) ).+1 ~' 
o d ~ n - t -  i J 

F 1 d 1 C'~ e 1 d 

E + 
1 0 

where P,, denotes the nth zonal harmonic, the argument  
being x. 
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Equilibrium of Rotating Fluid. 673 

Since z, R is on the surface, 

~ = r ( . +  ~cos X ~/1--x~), 

and 1 ~ '  ~ 

~. j0 ~, dx =,,- Pn (*). 

Whence 
['1 d /,1 ~/ 

d-1 x ,~-1 ctx 

~+1 1 d dx 
+ ~ r  P,~+ P,~_l--XPn)-d-x(rX)~. 

1 --1 
We might, owing to a result of Poincard's*, assume at once 

that r is an even function of x, since there must be a plane 
of symmetry perpendicular to the axis of rotation. I t  will, 
however, add but lit/,le complexity to ~he work if we do not 
make this assumption ; we shall thus obtain an independent 
proof of the theorem in this particular case. 

By integration by parts it is readily seen that 

y l 1 d clx ~1 1 p dx 
~ - 7 1  (P, ,_~--xP.)~x(rX) 7 . , , = - - .  ----v .+~2~ i ,  _ J _1 u -- 1. r -- 

unless n----l, in which case 

f 11 ~ ( ~ 0 -  ,.Z']:)i)d(.r,.v)d2 2 y ' l p  2 - -  = ~ +  logrdx. 
_ d x x  r 

t tence the equation which must be satisfied on the surface 
may be put into the form'~ 

C' + vr = + (~--v)r~P~ 

f' + ~ n--2~-l<P~ ~l P,~dxr ~-~ r~p~ P21ogrdx=O, (1) 
0 ~ ~1 

where the accent attached to the Z means that the term for 
which n-----2 is to be omitted. I f  we suppose that the equa- 
tion of the surface of equilibrium may be expressed in the 
form 

r 2 = ao + ~lrP1 + ~2r2P~ + ... a~r~P~, + . . .  ~ (2) 

*Acta Mathematica, vii. p. 33i. 
"~ The equation in this form may be obtained more directly and more 

elegantly by forming the potential of a circular ring~ and expanding 
before integration with regard to ~. The Only advantage of the pro- 
cedure adopted above is that it avoids the discussion of a nice, though 
not at all difficult, question which arises in the course of the direct 
method, 
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674~ Dr. J. R. Wil~on on )Tgures of 
we have, on substituting for ~r 2 in equation (1), and equating 
the coefficients of the various zonal harmonics to zero, the 
system of equations 

l~2 dx=C ~ + wo, 

~ i  l~'Pl dX= Val' I 

log + - -  + 

and, if n > 2, 

- - 1  - -  } 

The first of these equations merely determines the value 
of the constant in the equation V+-}wSR~=const., and may 
be discarded. The others determine the form of the surface 
of equilibrium. 

2. We know beforehand that a particular solution of 
equations (A) will be the series of Maclaurin spheroids, for 
which al=~S=~t=a~ . . . . .  0, and it is easy to verify that 
those values do, in fact, satisiy the equations. ~he value of a: is 
not, however, arbitrary, but is connected with that of w2/2~rp 
by the equation 

f )  1 ~,2 _lP21ogrdx=va~+327rp . . . . .  (3) 

I t  will be convenient to put 

~ =  (--2k~ + 3a~)/(3+ k~), and 
a,=3a,/(3+k~), (n =/: 2) 

so that equation (2) takes ~he form 

r~(l +ksx~)-=ao+a~rP~+a2~'"P:+ ... a,r"P,,+... ,  (~') 
where in the case of Maclaurin's spheroid a,----0, if h e 0 .  

Equation (3) then becomes (since for the spheroid a~=0) 

1 o 2 ~ p  3 + k ~' 

or, if K--- v/(1 + �89 
1 o 2 2 .  2.  
:g 2dp -- 3 k ik = - ,~o P~ log (1 + k~'x ~ dx 

1 l+ /c  ~ 
-- ~ -- ~ (k-- tan -~ k), 
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.Equilibrium of Rotating Fluid. 675 

whence k--  tan -1 k 
K =  k ~  , . . . . . .  (4) 

or oo ~ 3 + k ~ 3 
tan -1 k--  k-- s , 27rp - -  k 3 

which is the familiar result for the spheroids*. 
Incidentally we see that we may re-write equations (A) 

in the, for subsequent purposes, rather more convenient 
f o r m  

Y- r[PI q 
P2 log [ r ' ( l + k ~ x ' ) ] d x = K a , +  ( I+k ' ) ( .K~- -K) ,  L (B) 

1 ( 
! 

and, n > 2, t 

y~ dx + ( n - - 2 )  Ka .=O,  I 
I 

where K0 is the value o~ K for the spheroid. 
3. To determine points of bifurcat,ion on the series of 

spheroids we need retain only the first powers of aD a~, &e. 
in equations (B),  which we shall suppose, for the moment, 
to be denoted by 

Ka ,  = A  (a,, a~, a~ . . . . . .  ) [ n  = 1, 2, . . . . . . .  

Points of bifurcation will then be determined by the equation 

�9 _ _  ~ . A  B.f2 ~f~ - K  . . . .  

~).f3 ._D.A 5f~ K .  
Bal Ba2 5a~ 

= 0 ,  (5) 

Put t ing  ao=l, as we may with no loss of generality, re- 
taining only the first powers of ai, a~ . . . .  and denoting 

P,,/(: + k~)~  ,, 

* If k= tan ~, the eccentricity of the spheroid is sin a. 
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676 Dr. J. R. Wilton on Figures of  

by the single letter R~, equations (B) become 

= ~ i  a A L  + )] dx, Kal RI[1 + �89 (aiR1 + a2R2 + ... ~" ... 
1 

Kay+ (1+ k ' ) (Ko- -K)=  ~ P~(a~R~ +a2R2 + ... a~R,+ ... ) dx, 
1 

and, n ~ 2, 

lC ( ) Kay= 5 ~ _ l p . ( 1  + ~'x'?.-1 - - n - - 2  +a lRzT . . . a , R , +  ... dx. 

In these equations every integral containing an odd power 
of (1+  k~x~)~ vanishes, and they plainly reduce to 

Kal RI(alR1 + a3R3 + a~R, + ... )de, 
~0 

~-~01 K ~  + (1 + k ~) (Ko - K) P~(a~R~ + ~R~ + a~R~ + ... ) dx, 

and, n ~ 2, 

Kay= P~(l  + k'x~)D-l(a~R~+a~+,R~+2+ ... ) dx. 

I t  follows that the Hessian (equation 5) reduces to the 
product of the terms of the leading diagonal, and the points 
of bifurcation are given by the system of equations 

~ 1 p 2  dx 
(n ~ 2) K0= (6) 

~0 1 +/~x~' 

in which K o has been written for K, because the points of 
bifurcation belong to the series of spheroids. 

We proceed to show that equation (6), considered as an 
equation to determine k, has one and only one solution if n 
is even, and no solution if n is odd, unless n = l ,  in which 
ease it is an identity. 

Putting z = l / k  ~, and remembering equation (4), we seo 
that equation (6) may be put into the form 

f 1--V/z co~ -1 ~/z= P~dov 
. o x~ + z (7) 

To solve this equation in z we consider the two curves 

y =  1 -  x /~  cot -~ ~/~ . . . . . .  (s) 
~1 p 2  dx 

~=3o  ~+u.  , . . . . . . .  (v) 
in which y is the ordinate, z the abscissa. 
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Equilibrium of Rotating Fluid. 677 

Both curves plainly asymptote the z axis, and when z is 
large the curve (9) is below the curve (8) unless n = l ,  for 
when z is large the equations are 

Y = I - - v / z  3z~/z + . . . .  3z' 

and 1~01 1 
.V = p,2  d~, = (2~ + 1 ) - - ~ "  

Moreover, both curves continually descend from z = 0  
to o~, and both are convex to the axis of z, for in both 

d2'Y positive, for all positive values of z. d ~ i s  ~ d~.v negative, a n d  

Since, further~ both dy and are continuous functions 

of z from z----0 to ~ ,  it ~'ollows ~hat there cannot be more 
than one real solution of equation (7) between 0 and :r  
Again, when z = 0 ,  y = l  on curve (8), and on curve (9) y is 
infinite if n is even, bu~ is unity if n is odd, for 

p2 __=_dx p2' d 
0 2n--1 X 2 2 ~ --1 2n--1 

- -  2 1  23 3 _  1 2n-  l-l~ 2n-  l ~ 

=--]..~ h-~J 1--j_lP2n-l~<~)d,.~ 
=1- -~  "~ P~_~ X (a rational integral expression 

. ) -  1 of degree 2n--3)dx 

Hence there is one and only one root of equation (6) if n 
is even, and no root if n is odd, unless n = l ,  in which case it 
will be found that (7) is an identity. 

The proof further shows that two of the curves (9), for 
different values of n, cannot intersect. For  when z is small 

the difference of the ordinates is P ~ - -  2~/x. ~ which 
~ 0  

is positive (infinite) if n is greater than m ; and when z is 

large the difference is ( 2 , ~  1 ) 1  positive. ~ ~ 1  z '  which also is 

We have thus proved that thqt member of the system of 
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678 Dr. J .  R. Wi l ton  on Figures of 

equations (6) which has the smallest root* is found  by tak ing  
n----4, and therefore that  the first point of  bifurcat ion on the 
series of spheroids is given by the positive root of the 
equation 

K0 = 1 + k~x ~ ' 
, 0  

or, put t ing  k =  tan a, c =  co~ a, 

j :  P4'dx 
1--~tc ~ x2+c2, 

which on simplification becomes 

c (119 + 655 c ~ + 507_5 c4 + 1225 c a) 

- - a ( l  +c~)(9 + 2 3 5  c~+875,.4+1225c ~) = 0 .  (10) 

I find that  the solution of  this equation is 

a = 8 0  ~ 81 19 ' "7  

= 1"3986858. ,  in circular measure, 

Whence  we obtain for  the bifurcat ing spheroid, 

a ~  
- -  ---- tan a = 5 " 7 5 2 8 ,  
C 

a 
- = sec a = 5 " 8 3 9 1 ,  

r 

r 
- = cos a =  "17126, a 

e = sin a =  "985226, 

rio 2 
--  "17452, 

2~rp 

where c is the length  of the semi-axis of ro~ation, and a is 
the radius of the circular  section t h rough  the centre  of the 
spheroid. 

3a. I t  is of interest  to compare  the bifurcat ion equations 
with those given by Poincar6 (Acta Mathematica, vii. pp. 319 
and 329, 1885). Poincar6  gives no numerical  results, bu~ 

It  is. at first sight, not quite e~.ident why we should not take n=2. 
But ii, with this value of K o, we assume an expression of the form (D) 
for r, we shall find that all the coefficients vanish, except that of r2P. 
i. e. the surface is still a spheroid. I t  is in fact the spheroid for whicl~ 
to is a maximum. 
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Equilibrium of Rotating Fluid. 679 

his equations for the bifurcation of the spheroids into sur- 
faces of revolution may be s~ated in the following terms : -  

Let 1~ be a polynomial in c of degree n, satisfying the 
equation 

(1+ c2)~--dc ~n'~ + :r dR,,dc --n(n+ l)R,,=O, 

and such that R~(~)=~ ~. Let S,~ be a second solution of the 
equation, connected with R~ by the relation 

~ dc 
S~ = R~ R~ 2 (1 + c 2) " 

Then the equations of bifurcation * are 

and of these the one with the smallest root is flint for which 
n=2. When written at full length this equation is 

/55 35 ( 1 -  =  lt:- + 

where R4= ~- [3 + 30 c ~ + 35 c4], 
C 

~ 5  c4 + 1225 i.e. a(R4~+c)= c6), 

which reduces to equation (10) above. 
4. For the sake of conciseness we shall speak of the series 

of figures of equilibrium into which the spheroids pass as 
pear-shaped figures, or snnply pears, althou_~h the 

original significance of the name is here entirely lost," 
To determine the form of the pear-shaped figure we 

re-write equation (T) in the form 

r2(l+k2x2)=a+ E O' ~ a~r~P,, , (D) 
8 = [  ~={} 

and we also put 
K =  K0 + Klt~ + K~0: + . . ,  (11) 

where 0 is a parameter which vanishes for the particular 
pear which is also the bifurcating spheroid. Before sub- 
stituting this value of r in equations (B) put 

R ~ =  P~/(1 + k~x2)~ ~, 
�9 Comparison of the two forms of the bifurcation equations shows 

that ~ l  P~nd.v R S " 
~- 2n 2n/C~ 

a result which it does not seem easy to obtain directly, althougll it is 
immediately reducible to the simpler tbrm, 
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680 Dr. J .  R. Wilton on Figures o] 

so that the above equation becomes 

r~(1 + k~.~ ~) = a + ~: O" ~ a.. [r(1 + k~.~')~]" R~. 
s = l  n = 0  

n=O s~l 

Whenc% by Lagrange's expansion, we obtain 

1 d '~-1 f | ~ ~ '~ 
_ Un=o ~ s = l  J " " J '  

so that equations (B) become 

~=1 , .~=i  m !  da; ; : - l~ ,  v=o ~ ' . = t  " J ) 

unless n=2,  in which case the term ( l + k ~ ) ( K 0 - K )  must 
be added to the left-hand side of the equation. 

These equations must be satisfied for all values of 0, that 
is to say the coefficients of the various powers of 0 on the 
two sides of an equation are to be equated ; but it must be 
remembered that K is a function of 0 which is determined 
by the equation for which n = 2 .  Further, since the middle 
point of the axis has been taken as origin, the value of r 
when x = l  is equal to its value when x = -  1; and it will be 
found on substitution that the coefficients of all the odd 
harmonics must be zero. We have thus proved the sym- 
metry of the pear about a plane perpendicular to the axis of 
revolution. 

We may assume that the equation of the pear is, using a 
slightly different and rather more convenient notation, 

r:(1 + k'% ~) = a + 0 (a~o + anr2P: + a~2r4P4) 

+ O~(a~o + a2~r'P~ + a2~r6P6) 

+ O~(aao + a32r4P4 + a3arSp6 + a3~rst)8) 

+ & c . ,  . . . . . . . . .  ( 1 2 )  

where use has been made of the fact that harmonics of order 
higher than 2s+2  cannot occur in the coefficient of 0 ~. 
This fact may readily be proved; its truth will appear in the 
course of the work of determining the 'coefficients. We 
have also determined 0 (except its scale of measurement) by 
taking it proportional to the coefficient of r2P2. 

Equations (B) may now be written 

(1 + k-~ - K) + KanO = P~ log [r2(1 + k~x ~) ] dx, 
0 
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Equilibrium of Rotatb~g Fluid. 681 

and, n > 1, 
~e 1 

(n--1)K Z a~,,O*+ f P2, dx/~"-"---O, 
u--1 ~0 

which, on making use o[ Lagrange's expansion, become 
oo l 

. . . .  (e) 
for all positive integral values of n, except that when n = l  
the left-hand side is (1 + k ~) (Ko--K) + Kant?. 

To equations (C) must be added the condition of constant 
mass~ i. e. of constant volume, which may be expressed by 

1 

saying t h a t (  r 3 dx must be independent o[ 0, i. e. 
L/U 

t | X o. X R j I =o ,  
L s = l  p = 0  ' . a  

for all values of 0. . . . . (O') 
5. To determine the stability of the pear we must examine 

the expression for the angular momentum, which must be 
stationary, and for stability a minimmn, when 0=0 .  That 
is to say, we must retain squares of O, but need not retain 
higher powers in the equations (C)and (C'). They then 
become 

( l+k~)(Ko--K)+Kan~=O I'~ a~lRI+al~R~+~) a~2R2+a23R3 

_ i ~- 2 3 o R 7 \  +a~~ z +'2a~az.,R~R:+. ~a:o" ~ ] )dx '  (13) 

K(a~20 + a~.202) =0.!i '  Pg.1 + k2x "~) { al.,R2 + O(a~2R2 + G 2 3 R 3  

+allalOR1R2+ aleO-R: ~) } d, G (14) 

~0 ~ ~l 12"-'~'i~0} dx, (15) Kazoo ~~ 0 ~ Pa(1 + Px~) -~ t a~R~ + a 

~ dx 
o (l+k~x~)~ (a~~ =0 ,  . . . . . .  (16) 

~ '~ dx / 1 ~ 3 5 
o (1 + k~x")~ L a~~ + a~2R: + a~aR~ + 4 alO ~ + 2 aaoanR~ + 2 a~oaleR~ 

7 9 aajR ~) = 0. (17) + 5 anO.l:q., + '2 ana~eR~R~ + 

Phil. May. S. 6. Vol. 28. No. 167..Nov. 1914. 2 Y 
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682 Dr. J .  R. Wilton on Figures o l 

In  these equations we have put a-----l, as may be done 
without loss of generality. 

The moment of inertia is proportional to 

~1 r~(1--x2) dx, 
.~0 

i. e., as far as 62, to 

[ 1-x2 {1+ 5 52 

+ a2aR3 + 4 (3alo2 + 10al0anR1 + 14aloa12R~ + 7a112R1 ~ 

~- iSallal2RiR2-~ XXa12~R2~)] }. 
Also to, the angular velocity, is proportional to 

1 +  3 + k ~ ( K o - - K  ) ( 3 +  k2)~ ( K o -  K)2+ . . . .  

27rp 

The angular velocity will be stationary for ~ = 0 ,  so that  
(from equation (13)), 

an Ko-- P2Rldx ----a12 P2R2dx. 
X r / a]0 

This value of all makes the moment of inertia, and there- 
fore also the angular momentum, stationary for 8 = 0 ;  for 
equation (16) may be written 

1 1 
al0--~ sin 2a a l l + ~  sin4a a12=0; 

and the coefficient of t? in the expression for the moment o[ 
inertia is proportional to 

[ dx  . 

i . e .  to 

cos a 1-- ~ sin at alo -- ~ cos a sin ~ a (4 + 3 cos ~ a) an 

1 �9 4 
+ ~ C O S a ~ S i n  ~ ( 6 + 5 e 0 s  ~ ) a 1 2  , 

i . e .  to 6 . 2 
a l l  - -  ~z a12~ 7- s i n  

2 
where we have divided out by 1--  ~ siu 2 ~, and by cos a sin 2 a. 
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ETdlibrium of Rotating Fluid. 683 

The coefficient of t~ in the angular momentum is thus 
proportional to 

7~ [ P~Rflx(l § + 6 (j'[ P2R~dx--K~). 

But Ko=(1--~c)c:; 

Iii 1 , +3c~)2 3e~(l+3d) P2R~dx= ~ ac~ l 

ji~P=Rflx= ~, [ae(--'3+ 39c~ + 375C" + 525c ~) 

- -  cos u a(3 -4- 39c ~ + 125c 4 + 105c 6) -- 180c4--420cc~ - 

Therefore the coefficient of ~ is proportional to 

ac(1 + c~)(9 + 235e ~ + ~75c4+ 1225c G) 

_ 119c ~_ 6 5 5 c 4  5075_ cG_1225c s 
=0~ 

by equation (10); whence it follows that the 
momentum is stationary when ~-----0. 

angular 

Added September 18th, 1914. 

I t  is hut right to point out that while correcting the 
proofs of this paper I have met with a difficulty which I am 
at present unable to solve. 

We know that ~,, and therefore K, must be stationary 
when 9----0, so that Kl in equativn (11) must be zero. In 
fact it is by varying the total energy, while ~, remains con- 
stant, that Poincar6 derives the bifurcation equations. Or, 
since the angular momentum and therefore the moment of 
inertia are stationary for 8=0 ,  we might  have begun by 
making the coefficient of 0 in the moment of inertia vardsh. 
This, since the volume is constant, would lead us to the 
equation 

7an----- 6a1~ sin 2 a, 

and on substituting in (13), remembering that KI=0 ,  we 
should again find the bifurcation equation, in the form given 
in w 3a. But the vanishing of K1 requires a certain relation 
between the coefficients of an, a12, &c. in equations (13), 
(14), and (15), and this relation (which I had before 
assumed to hold) I have been unable to obtain. 

2 Y 2  
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6 8 4 :  Figures of L~tdlibrit~m of Rotating Fltdd. 
I t  is not difficult to prove that 

j ' [  P~P~,lx 1 5 .  ~ ' 

(1 + P.v~) 2 -- - ~ o 1 + k~x:]" 
From the coefficient of 8 in (13) we have 

6 
an--'=-- 7 al~ sin2 ~' 

and substituting in (14) this value of an  and the value of 
a~a derived from (15), we find, on account of the relation 
above, that the coefficient of 0 ~ leads to the equation 

( f l  p4ad x �9 ~ /6~.1 p~p2dx 15{.~p,p4~d x ,~ 

= 0 .  

I find that the coefficient of al~ 2 is 

�9 0043482 + sin~a(-- '0060458 + "0025975) = "00100. 

Each o[ the three constants has been evaluated by three 
distinct processes, and there is substantial agreement between 
the different results, so that it is not easy to believe that k 
is merely an arithmetical error' which causes this coefficient 
not to vanish. We thus apparently arrive at the con- 
clusion * that Kp/=0. I am unable to see where there can 
be any mistake in equations (C), and must for the present 
.content myself with merely noting the difficulty. I t  is 
important  that it should be cleared up, because further  
progress is impossible until it can be shown either that 
K t = 0  is in reality a consequence of the equations to deter- 
mine the coefficients in equation (12), or that the reverse is 
true. The direct disagreement with the work of Poincar6 
and Darwin makes one hesitate to say definitely that KI=/=0, 
but it may be remarked that the whole difficulty arises from 
the second order terms in equation (14), and that these terms 
are  not considered at all in Poincar6's paper ; they do not in 
fact affect the form of the bifurcation equations, and so long 
:as we restrict ourselves to the consideration of first order 
terms we are not led to any inconsistency in supposing that 
K z = 0 .  I t  is, hog, ever, to be remembered that  Darwin, in 
his papers on The Stability of the Pear-shaped Figure of 

It is easy to assure oneself that it will not do to suppose that 
a ~=au=a~2=O, and so to avoid this conclusion For if all fh~ first 
,order terms disappear~ the bifurcation equations become illusory. 

It is, further, to be observed that if K3~/=0 the angular momentum is 
not stationary. 
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Concentration Cells in Ionized Gases. 685 

Equilibrium*, and Mr. Jeans, in the paper cited in w 1, 
consider second (and higher) order terms, and that they 
are led to no inconsistency in supposing that m (i. e. K) is 
stationary. If  it is true that the case of surfaces of revolu- 
tion is exceptional and that for them Kilt=O, then there will be 
considerable difficulty in the examination of the stability of 
these figures of equilibrium. 

In conclusion I desire to express my indebtedness to the 
kindness of my colleague, Mr. G. H. Livens, for a careful 
reading of the proofs of this paper. 

LXXI.  On Concentration Cells in Tonlzed Gases. 
~B.~/W. I-I. JE~KI~SO:S, B.Sc.(London 3" She~eld) ?. 

THE cause of the characteristic potential difference which 
1 exists between a metal and air with which it is in 
contact is not known with any certainty. It has been 
supposed to be connected with incipient oxidation of the 
metal, with the occlusion of gas in its surface, and also with 
the corpuscular pressure in the interior of the metal. Apart 
from any of these theories we may, however, draw conclusions 
with regard to the potential step if we may assume that the 
passage of electricity from metal to air is a phenomenon 
which can he treated as reversible in a thermodynamic 
scheme. Let us suppose that if a net transfer of Q units 
of + electrizity is made from a metal to air by sending an 
infinitely small current for an infinitely long time through the 
surface, then when it has been effeeted, xQ units of + elec- 
tricity have passed from metal to air and ( l - x )  Q units of 
- e l e c t r i c i t y  have passed from air to metal; and that the 
effect is reversible in the sense that it will be exactly annulled 
if now Q units of - electricity are passed. We may also 
make the further supposition that + and -- electricity, both 
in the air and in the metal, exist as entities exerting pressures 
which are theoretically separately measurable. Then the 
thermodynamical scheme which follows is exactly the same 
as that "originally worked out by 2qernst in his theory of 
electrolytic solution pressure for the P.D. between a metal 
and an electrolyte, and it will follow in the same way in the 
metal-air case that the potential step from metal up to air 
must be given by the formula 

u RT (2x-- 1) log P 

Phil. Trans. A. co. [1902), pp. 251-314; and A. ccviii. (1908), 
pp. 1-19. Collected Works, vol. iii. Paper 12. 

J- Communicated by Dr. S. R. Milner. 
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