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I. The Relation of Mass to Energj. B~j DANIEL F. COMSTOCK, 
Ph.D., L~structor in Theoretical Ph~jsics, Mass. Institute 
of Technoloq~j~ Boston ~. 

1. - ~ T H E T t t E R  the inertia of matter has or has not a 
T u complete electromagnetic explanation is a question 

that it will perhaps take many years to answer with any 
degree of certainty. The experiments of Kaufmann seem to 
prove that in the case of a single electron the mass is entirely 
of this origin ; and it is impossible therefore to avoid the con- 
clusion that at least a fraction of ordinary material inertia is 
also electromagnetic. Doubtless there is a psychological 
cause for our reluctance to accept the electromagnetic expla- 
nation as complete, constant familiarity with ponderable 
bodies having blinded us to the possibility of anything being 
more fundamental ; but certain it is, that if we free ourselves 
from prejudice as much as possible and adopt the well-tried 
policy of choosing the simplest theory which adequately 
represents the phenomena,--the theory that is, which involves 
the least number of variables,--we mus~ decide in favour of 
the complete electromagnetic explanation~ which involves only 
the rather and its properties. 

2. The complexity of the Zeeman effect and the relations 

* Communicated by the Author. 
Phil. Mag. S. 6. Vol. 15. No. 85. Jan. 1908. B 
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2 Dr. D. F. Comstock on the 

between the wave-lengths of the spectral lines, make it seem 
probable that if matter is to be considered as an electrical 
system, it must be much more complex than a system com- 
posed entirely of electrons separated by distances great in 
comparison to their size. I~ becomes therefore of interest to 
see whether any relations can be found between the mass of 
an electric system in general, and any of its other properties. 
I t  will be found that a general relation does exist, which is not 
only of considerable interest in itself, but also suggests other 
relations. 

3. The straightforward calculation of the mass of an electric 
system possessing any distribution of charge and any internal 
velocities below that of light presents considerable difficulty ; 
for such calculation involves the use of the scalar and vector 
potential, and these are not effective instantaneously at all parts 
of the system. Any expression for the mass of the system 
calculated in this way will therefore involve terms which vary 
in an extremely complicated way with the internal velocities 
when these are not very small, The same is true with respect 
to the velocity of the system as a whole. In the following 
discussion the problem is attacked in an entirely different way, 
which is not open to this objection. 

As the constraints of the system are intimately involved, 
it will be well first to consider them. 

4. The position of internal constraints in general electrical 
theory is a very fundamenta~ one. By "constraints" are meant 
rigid connexions of any kind. These act merely as reactions 
to the electrical forces, and do not contribute to the virtual 
work. If  the electrical laws are to hold universally, i. e., for 
minute distances as well as for greater ones, it is obvious that 
no electrical system can exist as such unless there are such 
constraints to balance the electrical forces. Even a single 
electron would dissipate itself through the mutual repulsion 
of its elements, were it not for some form of internal constraint. 
Besides holding the system together, as it were, these con- 
straints also act in another important way. They may become, 
in common with all geometrical constraints, paths of energy 
flow. We are accustomed to think of the t)oynting vector as 
representing completely the energy flow in a purely electrical 
system, but of course this is not an general true. 

Take as a simple example the case of a large plane air- 
condenser moving in a direction perpendicular to the plane 
of its plates. If  the condenser is charged there is obviously 
a transference of energy at a rate equal to the internal 
energy multiplied by the velocity of movement. The Poynting 
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Relation of Mass to .Energy. 3 

vector is, however, zero. The energy transfer is not through 
space in the ordinary sense, but is ulo[~g the constraint which 
holds the condenser-plates apart. The plate in the rear picks 
up, as we may say, the energy of the field, and after it has 
been transmitted to the forward plate by means of the constraint 
it is there set down again. On the other hand, when the 
condenser is moving parallel to the plane of the plates~ there 
is no energy flow along the constraint and the Poyuting 
vector adequately represents the transfer of energy. So also 
in the case of a single moving electron, the rate of transfer 
of energy is not given by the integration o~ the Poynting 
vector through all space, but differs from this by an amount 
corresponding to the energy-flow along tile constraints in the 
body of the electron. This does not mean that there is any 
energy associated with the constraints, for of course rigid 
constraints can neither absorb nor give out energy; there is 
no storing up, but merely a transfer. 

5. It is not difficult to find an expression for this rate of 
transfer. If  the constraint is a simple linear one the transfer 
of energy along its direction is evidently 

- -  1Td, 

where (1) is the length of the constraint, (v') the velocity with 
which it is moving along its length, and (T) the tension 
along it. The amount of energy (Tv r) per sec. is put at the 
forward end~ and is inst~lntly available at the rear end at a 
distance (l). If  the velocity (v) makes an angle (0) with the 
constraint, v ~-- v cos 0, and the transfer in the direction of v is 

- -  lTv cos ~ 0. 

Another type of transfer enters when there is shearing 
stress in the constraint, a transfer that is which is in a 
directi~)n perpendicular to that of velocity. It must be 
remembered that the constraints are described in no way 
except geometrically. 

If we consider therefore the general case where the stress 
in the body of the constraint is represented mathematically by 
the nine stresses commonly used in the theory of elasticity, 
namely, X~, Y~, Z~, Xy, Yu, Zy, Xz, u Z~, then there is a 
rate of transfer of energy in the x-direction through unit 
volume given by 

f~'.= --(v~ + X=vyV= + v~Z~). 
B 2  
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4 Dr. D. F. Comstock on the 

This can be readily shown by a consideration of the figure. 
When the velocity of the element is along (x) there is an 

z O ~  O, 

X 

/ 
Y 

amount of work (vx.Xx) d~j.dz done per second on tile 
element by the tension (XJ applied at the surface (O'A'), 
and this energy is instantly available at the surface (OA), 
where it is given out. The distance over which the energy 
is transmitted being dx (the thickness of the element), the 
rate of energy-flow is 

--v,X,d:q dz d x =  - - v ,X  fl% 
where (de) is the element of volume. 

In like manner the velocity (v~)and the shearing stress 
(u  dl/. dz) cause energy to be taken up at the surface (OtA I) 
and given out at the surface (OA), and we have the rate of 
flow along the x-axis 

-- v~YxdT ; 

and finally the velocity (vz) and the shearing stress (Z,.. dy.  dz) 
give 

-- v zZxdr. 
Hence adding we have, if we call ( f  J) the density of flow 

along x, 
f~'d~" = -- (v~Xx + vyY~ + vzZQ d~'. 

Obtaining the corresponding equations in:similar way we 
11 - " - h a v e  fina y for the three components of the density of energy- 

flow along the constraints in any system 

h' = - (v~X~ + ~,~Y~ + v~z~), ] 
5 ' =  - (~.~xy + v,Y~ + ~,~z~), [ (1) 
L' = - (v~.X~ + v~Y~ + v~Z~). 
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Relation of ll/lass to Energy.  5 

For the total density of energy-flow (j~,,s .t~) we must 
of course add to the above the components of the Poynting 
vector. Writing as usual X, Y, Z and a, fl,,7 for the electric 
and magnetic force intensities and calling (V) the velocit~y of 
light, we have 

s,= V(=z-~x>-(v.~X~+,+Y,+v=Z,), ,[. (,2) 
V ~ y ] 

These equations ocive the density of the total energy=flow 
through any purelyetectrical system, in which the or~linary 
electrical laws hold universally. 

6. Consider an isolated electrical system moving as a whole 
through space with the constant velocity @1). A constant 
velocity will be possible if the system retains on the average 
the same internal structure. The total average rate of transfer 
of energy corresponding to the movement of such a system 
is evidently (Vl �9 W), where W is the total contained energy. 
Another expression for the same thing is to be obtained by 
integrating throughout the system the components along (vx) 
of (f~,)';d, f~) given in equations (2). In order that the 
velocity (vl) may appear explicitly, however, it is necessary 
that the velocity (v), which was used in equations (2), be 
written as the sum of (vl) and another velocity (v2). Then 
(v.o) is the velocity with respect to axes moving with the 
system. 

If  l, m, n are the direction cosines of the constant velocity 
(v~), we have for the total energy-flow (F) in the direction 
of (~'1), 

wo,-- 

m V  �9 1' 

+ +2 j -  .r 
+ + < i ;  , , ,  - 

. . . .  (3) 
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6 Dr. D. F. Comstock on the 
Since the proof of equations (1)is equ.dly valid for relative 

motion, the integrals involving (v2) in the above correspond 
to flow of energy with respect to axes moving with the 
system. There is also an implicitly involved internal term in 
each of the Poynting vector integrals. Since the system is 
isolated, the sum of such " internal"  terms must on the 
average vanish. There remains therefore to represent the 
actual average rate of transfer of energy through space only 
the explicit Poynting terms and the terms involving (vl). 

The electromagnetic momentum corresponding to any 
electrical system is given by the components 

M . ~ . - - - ~ ( ~ / Y - - ~ Z ) d ,  i 

M,= 4@-V~(aZ--TX)dr I'. . . . .  (4) 

1 t 
M, = j 

which, except for the factor V ~, are the same as the integrals 
of the components of the Poynting vector throughout the 
system. Ilenee equation (3) may be written 

Wv I = lMx + mM~ + n~{z - lvl ~'(lX.~ -+ mY~. + o~Zx) dT 
r 

Also if the electrical system here dealt with is to represent 
a material body, we may assume that the resultant momentum 
(M) is in the direction of the velocity, and hence 

M = 1Mx + mMy + nM~. 
This may be considered as due to the fact that the lack of 

symmetry necessarily involved in the intimate structure of any 
electromagnetic syst~em has become a symmetrical average in 
particles large enough to be dealt with. This symmetrical 
point may of course have been reached in the case of single 
atoms. We may now write (3 A) in the form 

+ + + + + (5) 

7. To reduce this expression further requires some relation 
to be established between the stresses and the electric and 
magnetic force intensities. This process is closely analogous 
to the derivation of the Maxwell stress in the free rather 
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Relation of Mass to Energy. 7 

except that we here have to deal with, besides the forces in 
the constraint, only the electromagnetic force on electricity 
embedded in the constraint, and we have nothing to do with 
hypothetical stresses in the free ,ether. 

If (p) represents the electric density and (~x) the x-com- 
ponent of the total electromagnetic force on unit charge 
embedded in the constraint, we have 

bxx bx~ bx~ c( 

I . p ~, (6) =-ox-v(~,~-v.r I 
=-px - (k ,~ - z~ t~ )  ; 

where (k) is the density of convection current caused by the 
movement with velocity (v) of the electricity of density (p). 

Making use temporarily of' the vector terminology for the 
sake of brevity and calling the electric force (E), the mag- 
netic (H), and the sign [ ] denoting the vector product, we 
have 

-p~.,.= --pE.~- [kH]. 

1 bE Since div E =4~'p and curl H-- -~- b-Y--- ~k ,  

1 bE - - p ~ = - - l ( E ~ d i v  E+  [curlit  V b t '  H ] x ~  

= _ l . ( E . d i v  E + [curl H , .  7 FI bE 

Now it is an easily verifiable identity that 
E~ div E-- [E, curl E]x+ H~ div H + [curl H, H].~ 

_ 5 ~ I ; ~ _ E - ~  n 2 - H ? ) }  

5 (E.~Ev + H,H~) + ~z (ExE~ + H~.H,); (8) +N 
and hence, remembering that div H=0,  equation (7)becomes 

F 1 bE, + [E, curl LV- - . . . . . .  <9) 
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8 Dr. D. F. Comstock on t]~e 
Since 

EE, eurlE x---[E, v ,, 

the last two terms in the bracket of (9) become together 

1 ? [ E ~ ,  
W ?t  

which is minus the time rate of the density of momentum at 
the point. The time rate, however, refers to a point fixed in 
space, and to change to a point moving with the system we 
make use of the usual expression and write 

where m~ is the x-component of the density of momentum 
and (/, m, n) are, as formerly, the direction cosines of the 

constant velocity (vl). The operator ~ now refers to the 

rate of change at a point moving with the system. 
Substituting (10) for the two last terms in (9) and noticing 

that 

~t may be written ~ m~dx, 

where the integration is to be taken from R (meaning merely 
from a point outside the system where mz is zero) up to the 
point P in question, account being taken of any discontinuity 
at the bounding surface, we have in place of (9) 

~X~ ~Xy+~x~ _ p ~  

-- - ~  (E2 -- E , '  -- E 2)_ = ( -'" l (H~2--t l , f - -H-*2)-vl lm~+~tj;mzdx~ 

+ 

(E, ~ + HxH~0-- v~.,~ + ~ / f l  . . . . .  

This equation gives us what we were seeking, namely, the 
values of Xx, Xy, anJ X~ in terms o[ the electric and magnetic 
forces and the density of the momentum. 
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Relation of Mass to Energy. 
Thus we may take 

X x = -  1_ (U : - - E  2--E "~ ( H / ~  ? - - H  2)--v~lm 
~ T r  x y z ~ 7 r  :r z �9 

1 5 ' y ;  
X:, = -- 4~(ExE~ + HxH,) -- c:,n,,~ + ~ m dy 

X z - -  

+ ~tJR m dx 

( xEz+ . . . . . . .  ( 1 2 )  

Similar values are of course to be found for the other six 
components of stress in the constraint Yx, Y~, Y~, Zx, Z~, Z~. 

8. The values for these nine stress-components are now to 
be substituted in equation (5). In doing this it is to be 
noticed that the last term in each of equations (12) will, after 
substitution, furnish a term of the type 

v~tJa v~l~n'Sx=" ~tJ~ ~R . . dT v,lemdx, (13) 

and this, being a time derivative, gives an average value of 
zero when the time is allowed to increase indefinitely, since 
all quantities in the system remain finite. Also 

F + m 2 + n 2 = 1. 

Making the substitution in (5) and simplifying, we have as 
the value for (v~W) 

vl W = V O" ~I -- v , I ' ( ~-~ ( E ~ + E :,~ + E_? ) + I ( H~" + H j" + H ~ ) ) d r 

+ vl lTr y ( (lEx + mE, + nE..)~ + (lH~ + mHu + nH~)~) d, 

Now the first integral represents the total included energy, 
the two parts of the second integral represent the squares of 
the components of the electric and magnetic forces in the 
direction of the motion of the system, and the last integral 
represents the momentum in the direction of motion, which 
in this case is the whole momentmn ]V[, since we have 
assumed that M and v I are in the same direction. 

Calling 

l y ~ ( l E  +mEu+nE y +(1H +mH~+nH~)~) dr=W:. 
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10 Dr. D. F. Comstock on tl, e 

the longitudinal energy of the system, and 

W - - W r = W , r  

the transverse energy of the system, we may rewrite equatiot~ 
(14)  as 

v)W = V2M-- vlW + 2vlWT, + vl~M, (15 ) 
and hence 

M =  2WT~,~ . . . .  (1(;) 

2'his gives the total momentum o f  any isolated, movim.], 
purely electrical system, which ]ms on the average the same 
internal str,tcture, in terms of its transverse energy, i. e., the 
energy represented by the components of the electric and 
magnetic forces which arc perpendicular to the velocity of 
the system. The mass of the system is then 

1 , o  \ dWv 

_ 

d~--V ~-1 v,'2 v, +(v)} 
(17) 

If, as we have assumed in deriving this expression, the 
system possesses the same momentum for uniform translation 
m any direction, this ibrmu}a for the mass can contain terms 
of even powers onlyin the ratio of the velocity of the system 
to the velocity of light. If  we neglect terms of the second 
and higher orders WT has the same value as for vl----0, which 
from symmetry of the system must be two-thirds the total 
energy W. Therefore 

4 W  
Mass = 3 ~'~ . . . . . .  (18) 

if second order terms be neglected. This formula would 
apply with extreme accuracy for the electromagnetic mass 
of ponderable bodies, ibr no such bodies have in nature a 

velocity large enough to make [ ~ ' ~  appreciable. \vJ  
It  should be noticed that in equation (17) second order 

terms may enter in either (WT) or its derivative with respect 
to v(  ~. in fact such terms do enter tbr two reasons. In the 
first place, the setting of the body in motion requires work 
and hence adds new energy, through a second order term; 
and secondly there is an efIbct due to the change which 
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Relation of Mass to Energy. 11 

motion causes in the velocity of propagation through the 
system of electrical disturbances. This is seen in the simple 
case of a moving electron where the crowding of" the lines 
towards the equator with increase of velocity is only partly 
due to the added energy. It is evident, therefore, that for 
velocities so great that the second order terms cannot be 
neglected, the mass depends on complicated terms which vary 
with the internal structure and motions of the system, and 
it does not appear as if a general expression for the mass ot~ 
a system for such high velocities could be found. 

The second order terms may in the future make themsolves 
experimentally manifest through an increase of mass of 
rapidly moving a-particles. 

9. Expression (18) may readily be verified for simple 
symmetrical systems. For a single charged conducting 
sphere of radius (a) the mass for slow velocities is well- 
known to be 

2 1  e"' 2 e e  4 1 Potential)= ~-2 W. 
3V'~a - -3  V ~ a - 3 V  ~ (e. 

An interesting verification o[ equation (16) for the special 
case of a general, rigid, electrostatic system in translatory 
motion has been furnished me privately by Mr. G. F. C. 
Searle. He obtains for such a system (Phil. Mag. Jan. 1907, 
p. 129) the expression 

2T 
. . . . . .  

Vl 

where M~ is the nmmentmn of the entire system along the 
direction (x) of motion, (T) is the total magnetic energy due 
to this motion, and (vl) is the common translatory velocity 
possessed by all parts of the system. 

Now it is well known that where the Faraday tubes move 
through space uniformly, as in the present case, the magnetic 
force (H) is given in terms of the electric ibrce (E) by the 
expression 

H _ V t ~  -- V ~ sin 0, 

(0) representing the angle between (E) and the velocity of 
motion (v,), and (H) being in a direction perpendicular both 
to (E) and (v,). In the present notation 

?'l H = ~. v' E,f + E T, 

and hence we havo 
H "~ 1 : 

( E :  + E : ) .  (20} T -- 8~ -- ~ v .~ 
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12 Dr. D. F. Comstock on the 

Combining (19) and (20) we can obtain 

~ T M~ = v~" 2 ~ I ( E y - o + E / ) +  ) (21) 

\ V-Ol 
and remembering that 

1 o H o  
T = + 

we have finally 
2WT~'I 

1~I = u ~-)--V2 , . . . . .  (22) 

\ v 2 !  

which, since (v~) is along (x), is identical with (16). Thus 
(16) is verified for the ease where the moving system 
possesses no internal motion. 

Perhaps the simplest symmetrical system containing 
magnetic as well as electric energy is that formed by a great 
number of charged spheres moving in straight lines out 
from a common centre, with velocities small enough so that 
the fourth and higher powers may be neglected. They are 
.to be at distances from each other great in comparison with 
their size, and at equal distances from the common centre. 
If  the system be now given the slow velocity (vl) as a whole 
the total momentmn accompanying this motion may be deter- 
mined. Because of limited space the calculation will not be 
here given, but if it be carried out along established lines it 

will be found that the mass is 4 1 V. 2 times the stun of the 

electric and magnetic energies, thus verifying equation (18). 
10. We conclude that, if ordinary mater]al mass has an elec- 

tromagnetic basis, such mass for slow velocities is proportional 
to the total electromagnetic energy-content of the body, and 
the laws o f  conservation of mass and energy become closely 
related if not identical. In any case the expression given 
represents the electromagnetic part of the total mass whatever 
that may be. 

Considerations suggested by the Foregoing. 
The Atomic Weights. 

11. If  the conclusion of the last article is correct a dimi- 
nution in mass should follow a loss of energy in material 
transformations. Oalculation shows, however, that in the 
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Relation of Mass to Ener(jy. 13 

case of the powerful reaction between hydrogen and oxygen 
forming water, the change of mass would only be of the order 
10 -l~ gram. In the case of radioactivity, however, the 
energy change is very much greater and an appreciable 
effect is to be expected. Thus if a radium atom gives off 
an a-particle of mass (m) with velocity (tL), then there should 
be a diminution in the sum of tile masses of the a-particle 
and the remaining atom equal to 

4 1 1  2 
V: (~.*t~), 

since ~m~: represents the energy lost, and this, calling 
m---- 4 (using gram-atomic weight) and/~ = 2"5.109, gives 

A (Mass) = - 1"7.10-" gram ; 

an ainount large enough to cause discrepancies in calculating 
the atomic weights of radioactive substances from the number 
of a-particles lost. Since A (Mass) is proportional to the 
square of the  velocity of the a-particle, its value would be 
greatly increased by a slight error in the determination of 
(/~) and the effect could easily be much larger. 

12. A consideration of some interest is the following. If  
we adopt the disintegration theory, we are obliged to think 
of the various atoms as combinations or groups, more or less 
modified, of the lighter atoms. If  there were perfect con- 
servation of nmss this would introdt~ce a certain unifornfity 
in the relations between the atomic weights, a uniformity 
which apparently does not exist, On the other hand, if we 
take into consideration the inevitable change of mass when 
the electromagnetic energy of the system is modified, the 
atomic weights will involve a correction term depending upol~ 
the change in this energy, and hence they will no longer 
bear simple, exact relations to each other. In a highly im- 
portant r PahPer (Zeitschrift'fitr Anorg. Chemic, xiv. p. 66, 1897) 
Rydbe g as shown that the atomic weights of the first 
twenU-seven elements of the periodic system approximate to 
whole numbers very much more closely than chance could 
bring about. He has also shown that the atomic weights o[ 
these elements are best considered as the sum of two parts 
(N + D) where N is an integer and D is a fraction, in general 
positive and smaller than unity. If  1V[ is the number of the 
element in the system (called by Rydberg the " 0rdnungs- 
zahl"), then 5[ is equal to 2M for the elements of even 
valence and 2M+ 1 for the elements of odd valence. Below 
is given a table showing the various quantities. I have used, 
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14 Dr. D. F. Comstock on the 

however, the International Atomic Weight values for 1907 
instead of those Rydberg used. 

Sign. M.,  
I 2M, 2M,+l 
i 

2i 4 
~ ' "  31 7 
Be ... 4 i S 

~:::::: O,lO'~l 11 
... 7 [ "  15 

o 8 ! 1 6  

ri"Z~o ... 19oi2o 19 
11 :Na ... ] 23 

?dg ... 12 l 24 
All ... 13 / 27 

�9 1 4  ! 28 i 

&total 
~eigh 

4 
7"03 
9"1 

11"0 
12"00 
14"01 
16"00 
19"0 
200 
23'05 
24"36 
27"1 
28 "4 

"03 
~  

"0 
"0 
- '9~  
"0 
'0 
"0 
"05 
'36 
"1 
"4 

Sign. 

J~  . . . . . .  

S . . . . .  

C1 . .  
A . . . . .  

C a  . . ,  

S o  , . ,  

Ti ... 
V o . .  

C r  . ~ .  

~ n . . .  
~ e  ~  

2M 2M--]  

15 31 
16 32 
17 35 
18 36 
19 3 c 
20 40 
21 43 
22 44 
23 47 
24 48 
25 51 
26 52 
27 55 
28 56 

Atomi 
~r 

~ o -  
32'06 
35 '45 
39"9 
39-15 
40.1 
44"1 

48-1 
51 "2 
52'1 
55"0 
55"9 

D 

-0 
"0 
"4 
P9 
"1 
"1 

. ' 1  

"1 -.2 I 

[ 

The orderly arrangement of the series is striking. It  will 
be noticed that in three cases only are the D's greater than 
unity and only in two cases are they negative. 

Rydberg points out that although the heavier elements do 
not conform well to this scheme, i. % do not in general give 
the small fractional values of (D) noticed above, yet this is 
in reality no valid objection, for the numerical values of the 
weights of heavier e]6ments depend much more on the value 
of the arbitrary unit chosen than do those of the lighter 
weight elements, and hence they can have little influence 
one way or the other in estimating the validity of the curious 
relations he sets forth. 

The whole question is of course whether these differences 
represent real physical deviations from something or whether 
they are merely mathematical remainders. Rydberg certainly 
believes them to represent physical realities, and considering 
the before-mentioned overwhehning improbability that the 
approximation of the atomic weights to whole numbers is due 
to chance, we can hardly doubt that he is right. 

13. Now it is to be noticed that these deviations find a ready 
explanation when the conclusions of the present paper are 
combined with the theory, so much favoured recently, that 
�9 one element breaks down into two or more others with an 
accompanying expulsion of energy. The deviations are then 
to be explained as resulting from loss of mass accompanying 
the dissipation of energy. On the other hand, if no such loss 
,of mass takes place, the existence of these deviations in the 
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Relation of Mass to Ene~'g.q. 15 

table of atomic weights becomes a well-nigh insuperable 
difficulty in the path of the evolutionary theory of the 
elements. 

If we follow the present suggestion, we must search for 
~he components of an element, not by comparing atomic 
weights, but by comparing the corresponding values of N, 
for the atomic weights deviate because of the lost mass 
accompanying the dissipation of internal energy. 

Very recently Sir W. Ramsay has announced several 
striking discoveries which seem to add much weight to the dis- 
integration theory, and, indirectly, to the views here set forth. 
He found helium, neon, or argon appearing as a product of 
radimn emanation according to the exterior conditions 
imposed, and he found lithium appearing when a copper- 
sulphate solution was left in the presence of the emanation. 
Prof. Ramsay states, I believe, that every source of error 
was eliminated and that the results were obtained many 
times. 

14. It should be noticed that this theory of loss of mass 
and its consequences does not require that the whole material 
mass should be of electromagnetic nature. It only requires 
that the energy lost in the transformations, explosive or 
otherwise, should be at the expense of internal electromagnetic 
energy, i. e., that the forces which expel the a-particles should 
be electric or magnetic. 

I~especting Gravitation. 
15. The experiments of many investigators have shown 

that up to a high degree of accuracy the ratio of mass to 
weight for different substances is the same. Now if the 
mass is proportional to the internal energy as here suggested, 
instead of being proportional to the number of electric nuclei 
as might be supposed, the conclusion is apparently forced 
upon us that gravitational attraction is between quantities of 
confined energy, and not between quantities of " matter" in 
any other sense. 

On this basis, the weight of a calorie at the earth's surface 
would be of order 10 - n  dyne. This is apparently too small 
to explain the temperature gradient in the earth although the 
calculation, depending as it does on the mechanical force on 
confined energy due to a temperature gradient, would certainly 
depend to a large degree on the medium. 

If we assmne this gravitational effect, it is interesting to 
ask whether free energy would also show an attraction for 
itself. If  so, the energy radiated from a ~ravitational centre 
like the sun would leave some of itself behind along its path 
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16 Dr. D. F. Comstock on the 

as it moved through space, and it might be possible to 
account in this way for some of the energy which is ordinarily 
thought of as totally dissipated. 

Another conclusion which is suggested by the foregoing is 
that, assuming the loss o[ mass accompanying dissipation of 
energy, the sun's mass must have decreased steadily through 
millions of years. If too, our conclusion respecting the 
gravitating quality of confined energy be correct, the gravita- 
tion constant of the sun has also decreased and the distances 
of  the planets must have increased accordingly. This last 
increase of planetary distance can be calculated by making 
the angular momentum of the planet about the sun a 
constant, and allowing the mass of the planet, together 
with the gravities of both sun and planet, to grow less with 
time. 

So little is known as to the former radiating power of the 
sun that no even approximate calculation can be made, but 
it is not difficult to show that the order of magnitude is such 
as might make the increase in the planetary distances not 
altogether negligible during great lapses of time. 

A Proof from a different Point of View. 

16. The proof of expression (17) whk.h has been given has 
the advantage of entering intimately into the structure of 
the general system and showing the part that non-electrical 
forces in the form of constraints must play if the fundamental 
laws of electrical action are to hold for eve~ T infinitesimal 
element of the finite volume occupied by any electrical 
system. Although this is assumed in every mathematical 
derivation o[ the mass of an electron, and in fact in all 
problems of a similar nature, many will doubtless object to 
this assumption on the ground that probably the ordinary 
electrical laws do not apply when the distance between 
" elements of charge," so called, is comparable with the 
diameter of an electron. 

Although it is difficult to see how a coherent mathematical 
theory of electricity can at present be formed without this 
assumption, yet it was thought best to add a more general 
proof of (17). The following is therefore given as avoiding 
the explicit use of constraints. 

17. The statement of the law of the conservation of energy 
for an element of volume in any electrical system possessing 
electrical charges in motion, is the well-known expression 

4 . 
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Relation of Mass to Energy. 17 

]:[ere (w)is the density of the to~al electromagnetic energy, 
S~, Sy, S~ are the components of the Poynting vector, ~ ,  ~y, 
~/z are the components of the total electromagnetic force on 
unit charge, Go) is the density of electrification at the given 
point, and v~, vy, v.- represent the velocity through space of 
this electrification. Thus 

1 
w =  8~ {(X:+Y~+ Z9 + ( ~ 2 + ~ + ~ ) } '  

where X, Y, Z, and a,/3, % are the electric and magnetic 
force intensities respectively, and 

~ = X + (v~--  v:~), 

,~y = Y + (v_,a-- v~,), 

= z + 

Equation (23) states merely that the rate of increase of 
energy in an elementary volume is equal to the activity of any 
foreign (i. e., non-electrical) forces which may act therein 
minus the outward flow of energy. 

Now suppose we consider an electromagnetic system 
bounded by a rigid surface (AB), which moves uniformly 

Z C~ 
c', 

I 

'D' 

through space with the velocity (v,)along the axis of (x) ;  
and further suppose that the volume inside this closed surface 
is divided into two parts by the plane partition (CD) which 
is perpendicular to the x-axis and which, although fixed in 
the moving system, coincides at a given instant with the 
plane (C/D ') fixed in space. If  this system be considered as 
isolated, then no disturbance passes through the bounding 
surface (AB). 

In equation (23) the time derivative of the energy density 
-Phil. Mag. S. 6. Vol. 15. No. 85. Jan. 1908. C 
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18 Dr. D. F. Comstock on the 

refers to a point fixed in space, and if we wish it to refer 
to a point moving with the system we must write as usual 

Bw 5'w Bw 
Bt  - -  b ~ - - v l ~ c  ' . . . . .  ( 24 )  

h ~)'w w ere - ~ -  now means the rate of change measured from the 

moving point. Likewise, if we wish the velocities which 
enter into (23) to be expressed in terms of velocities relative 
to axes moving with the system, we must write 

~'z---- V 1 + V2r- ) 

?)z = V2z 

where v2x, v2y, and v2~ are the components of these relative 
velocities. 

Substituting (24) and (25) in (23), and remembering the 
simple proportionality between Sx, Sv, and S~ and the 
density of momentum m~, my, and mz, we easily obtain 

v ~ _  ~,,, ~,w (~s~ Bs 4 

- (,,~p ~= +,~p~, +,,~p~..). (2.6) 
l~low ( p ~ )  may be expressed in terms of the electric and 

magnetic force intensities, together with the density of the 
momentum. This involves only the fundamental equations 
of electromagnetic theory and has been done in paragraph 7, 
reference to which will show that with the present notation 

~ ' ~  ~5_~mx ~, ?t +~ '~  . . . . . . . . . .  (27) 

Substituting this for the (p~.) which occurs oll tho !eft- 
hand side of (26), rearranging the latter, and putting 

w = ~ { X 2 + u  ~ + Z~ + ~+B2+~/~} 

and w t = 8 ~ r { y 2 + z ~ + f l ~ + 7 2 }  ' 
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we get 

Relation of :gass to J~ner~j~/. 19 

- -  ~ -  + v ~ - ~ V - \  ~ J + - -  

( 1  (xY+~) } - :~  ( ~ ( x z + ~ ) }  
- (~,~p g~ + ~,~p ~ + ~ ,~J : )  . . . . . .  (28) 

Now if this expression is inte~o'rated through the part of 
the volume (AB) which lies on t~e side (A) of the partition 
(CD), the terms on the left of (28) become equal to 

where the integral is taken over the par~ of the plane (C'D r) 
which is included in the surface. This follows from the fact 
that the rest of the surface of part A belongs to the surface 
(AB) and outside of (AB) there is no disturbance whatever. 
The terms on the right (of 28) give an average value of zero. 
This las~ will he evident if they are considered separately. 
The first two give directly a time average of zero, after great 
elapse of time, since neither (w) nor (v~m~) ever becomes 
infinite. The terms involving the (y) and (z) derivatives when 
integrated may be written as surface integrals over the 
bounding surface (of part A), and they then represent the 
flux of energy through this surface in a direction perpenclicular 
to (vl), i. e., in a direction perpendicular to the x-axis. This 
flux being everywhere zero over the sur[ace, these terms 
vanish. 

The terms involving ~9~, ~ ,  ~9~ also give a time average of 
zero because they represent what might be called the "internal 
activity" of the forces which act on the charges in the .4_- 
part of the volume (AB), and since this part A is isolated 
on all sides except on the side (CD), the activity of these 
forces really means the rate at which the part (B) by means 
of ~hem is doing work on A. In the long run B's work on 
A must be equal to A's work on B, if the system is to be 
conservative and the internal motions are to be stationary. 

Thus we learn finally from equation (28) that the average 
value of 

j" { (w + Vl~)m.- 2w~,} cls = 0, 
where the integral is taken over the enclosed part of the plane 
(CD). Since this is true for any position of the plane (CD) 
SO long as it is perpendicular to (vl)we evidently have on 

C 2  
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20 Relation of klass to Energ~j. 

the average, integrating along (x) throughout the entire 
system, 

{ (w + vl )mx-2 ,l,w, id = o (29) 
This gives, using the former notation~ and remembering that 
on the average the internal structure is assumed r remain 
the same, 

2vlW~ ~v,WT (30) 

which, since (vl) is here along (x), is precisely the result ot~ 
equation (16), and becomes (17) on differentiation. 

Conclusion. 
I t  has been shown in the foregoing that the electromagnetic 

mass of an isolated, symmetrical, purely electric system 
possessing any structure which on the average remains the 
sam% and any internal motions or constraints, is expressible 
in terms of its velocity as a whole through space together 
with its "transverse energy" and the derivative of the latter 
with respect to the velocity. If  second-order terms in the 
velocity be neglected, the mass is a simple constant multiplied 
by the total included electromagnetic energy. 

If  the mass of ponderable bodies has an electromagnetic 
origin, then the inertia of matter is to be considered merely 
as a manifestation of confined energy. ~From this point of 
view, matter and energy are thus very closely related and the 
laws of ~he conservation of mass and energy become practically 
identical. 

I t  has been pointed out that the loss of mass, inevitable 
on this view, which takes place when energy is lost to the 
system, is large enough to be detected in the case of radio- 
active changes. If  we assume the disintegration theory of 
the elements, this loss of mass affords a ready explanation of 
the general, small irregularities to be found in the list o f  
atomic weights, and thus removes a serious difficulty from the 
path of the disintegration theory. For this loss of mass to  
take place however, it is not necessary that the w/wle of the 
mass be electromagnetic. 

I t  has been shown that if material mass be electromagnetic 
and if lighter elements are formed from heavier ones through 
violent energy changes, it follows that gravity acts between 
quantities of confined energy and not between masses in any 
other sense. Several speculations are indulged in as to the 
results of assmning gravitation between quantities of energy, 
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Evolution and Devolution of the .Elements. 21 

Finally, the fundamental proposition is dealt with mathe- 
matically fronl an entirely different point of view and the 
same resul~ obtained. 

In conclusion I wish to express my thanks to Pros J. J.  
Thomson and to Mr. G. F. C. Searle ibr several valuable 
criticisms and suggestions. 

Cambridge, England, 
August 14th, 1907. 

II. The Et'olution and Devolution qf the Elements. 
B!/A.  C. and A. E. JESSUP *. 

[Plate VII.] 

T HE hypothesis that the elements are different forms of 
one original substance was first formulated in modern 

times by t'rout, and though his idea that hydrogen was that 
substance has since been shown to be incorrect, yet modern 
theories have given us, in the corpuscle, a body which may 
well be the root basis of all matter. 

The recent researches of M. and Mine. Curie, Sir William 
Ramsay and Mr. Soddy, Professor Rutherford and others, 
have brought to light the fact that some of the elements are 
undoubtedly degrading into simpler forms of matter. But 
when we look for a reversal of this process on the earth, it is 
not apparent. In other words, we have as yet found no 
indications that elements with low atomic weight are changing 
into other elements with a higher atomic weight, that is, we 
have no proof of inorganic evolution. But when we turn 
our attention to the heavens, the case is altered, and it is 
entirely upon astrophysical observations that the ideas of 
evolution we are about to bring forward are based. 

I t  was originally our intention to give these observations 
in full, but it has appeared advisable to give in the present 
paper only such of them as are essential for an understanding 
of what follows. 

Spectroscopic evidence shows us that the nebulse contain 
but few elements, all of which are in a highly attenuated 
form. The only two which have been recognized on the 
earth are hydrogen and helium, and the atomic weights of 
these are less than those of any other elements with which 
we are acquainted. 

As the nebula becomes more compact, and assumes the 
form of a star, more and more complex elements appear, such 

* Communicated by Sir William Ramsay, K.C.B., F.R.S. 
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