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III. On Transfinite Cardinal Numbers of the Exponential
Form. By Priuie E. B. JourpaiN, B.A., Trinity College,
Cambridge *,

MONG cardinal numbers of the form
av,

where B, at least, is transfinite, the smallest and most

interesting is the cardinal number of the number-continuam :

o _ Ny Ny Ny
2 O—V O_NU 0“_N10
Cantor has always been of the conviction that

2N0=N1)

and investigations in the theory of manifolds tend to increase
one’s belief in the truth of this conviction, although hitherto
no proof of it has been given. It is very important to prove

that 2% is equal to some Aleph in order to be certain that
the number-continuum is not what I have called an
‘““‘inconsistent aggregate ™’ 1.

A fajlure to prove the above equality by an attempted
arrangement of all the real numbers between 0 and 1 in a
well-ordered series ultimately led me to the result of §1,
that the cardinal number of all the real numbers which can
be represented by fundamental series of which the general
term is known as a rational function of its index is 8, which
proves that it is impossible to obtain a series of type @, from
such numbers, and consequently the impossibility of actually
proving that

2N°=Nl
in a large class of cases.

This negative result, which is the only definite result
I have as yet been able to obtain on the question of the
equality

2NQ=N¢1+1’

where a is any ordinal number, allows, however, a number of
conclusions to be drawn in what I have called the * cardinal
theory of functions” (§2). The result that only a small

* Communicated by the Author,

1 Phil. Mag. January 1904, p. 66. In §5 (p. 67) of this article I
tacitly assumed that the exponential numbers in guestion belonged to
consistent aggregates, or manifolds; for, though this is not rigorously
proved to be the case, nothing seems more unlikely than that it should
not be so. Further information on the subject of inconsistent aggregates
is giver below, §§6-9.
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portion of the whole manifold of analytic functions, for
example, are analytically representable by no means implies
that general theorems cannot be found which apply to all
analytic functions, and even in particular to all which are
not representable (§ 3) ; so that the concept of funection taken
by Pringsheim, in the recent Fncyclopddie der mathematischen
Wissenschaften *, as the buasis of the general theory of
functions, appears to be too narrow.

After a digression on the cardinal theory of functions and
on the utility of the concept of the “aggregate of definition ”
(§4), I prove (§5) a theorem due to Bernstein on exponential
numbers, which includes a result ot my ownt as a special
case, and allows us to find the necessary and sufficient
conditions that

ah:a,

where & and B are any cardinal numbers.

In § 6, I make a few remarks on the extended principle
of induction used in § 5, which serves to define the series W
of ordinal numbers. The series ({{}) such that every well-
ordered series is ordinally similar either to @@ or to a
segment of ({1 extends beyond W (§7), and this more
exact account of W throws a clearer light on my solation of
Burali-Forti’s contradiction (§ 8).

Finally, in § 9, I revert to the consideration of the concept

of *consistency,” with especial reference to investigations of
Cantor, Hilbert, and Russell.

1.

Every real number is determined by an enumerable sequence
of rational numbers, and hence the cardinal number of the
aggregate of real numbers is seen without difficulty to be 2™.
But, if this enumerable sequence is

Uly Ugy ey Uy ooy o o . o . (1)

we must, if we are to be able to determine exactly the real
number in question, limit the form of u, to be a function
obtained by performing the elementary operations a finite
number of times on v and a finite number (r) of given
rational numbers ; in symbols

uy=f(v, 71, Pay .oy Pa).
By this limitation, the cardinal number of the aggregate of

* Bd. ii. A. 1, pp. 9-1L.
T Phil. Mag. March 1904, p. 302.
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the real numbers which can mow be represented by the
sequence (1) is merely 8. This may be shown as follows.

The function obtained by performing the elementary
operations a finite number of times on (n+1) arguments isa
rational function of arguments, the coefficients of which are
integers *. Since, then, in each case we only have a finite
number (m) of coefficients to choose, and each coeflicient can
be chosen out of N, values (the integers), the cardinal number
of those functions of m coefficients is

Ny
Further, we get all such functions by giving m all possible

finite values in turn ; consequently the cardinal number of
all these functions is
REENIH L EN+ L,
the series being of type o, and consequently—remembering
that eaeh term reduces to ¥y—the cardinal number in
question is
x(\ . N(] = &().

We may state this result in words as follows: The cardinal
number of all the real numbers that we can actually determine
(that is to say, determine in the sense explained above) is

No.

Accordingly, if, as is the case with some methods that
suggest themselves for arranging real numbers in a well-
ordered series, we only use such “actually determinable”
real numbers, we can never arrange them in a series of
type w;. For every enumerable manifold can be well-ordered,
but the series always breaks off before some number of the
second number-class is reached.

Now, this conclusion has applications, which seem to mie
to be of some importance, in the theory of functions. In the
first place, such sequences as (1) enter into Weierstrass’
construction of whole transcendental functions with given
zeros, Mittag-Leffler’s construction of analytic functions
whose singularities form an aggregate whose first derivative
is enumerable, and the construction of whole transcendental
functions which take given values at certain points . We

# (Cf. Harnack, *“ An Introduction to the Elements of the Differential
and Integral Calculus,” Eng. trans. p. 67 (1891).

+ This construction, which forms an extension of Lagrange’s inter-
polation-formula to whole transcendental functions, is given by me in
pert of an essay “ On the Geéneral Theory of Functions,” which is to
appear shortly in Crelle’s Journal fiir Math. 1t is very simple, and is
obtained by the multiplication of a whole function constructed by
Weierstrass’ theorem with a meromorphic function constructed by
Mittag-Lefller’s theorem.
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conclude then that, although the cardinal number of any of

the above classes of functions is 2™, the cardinal number
of those functions which we can actually represent is N,.
Of course, we make the same stipulation as to representability
in the case of the extraneous factor in all these constructions.
In Weierstrass’ constrnction this factor is

89(2),

where ¢(z) is any whole function. Thus, we cannot, for
example, consider

as a constructible function, if P(2) is the product of primary
factors and ¢ is any real number ; for ¢ must be a representable
real number.

In the second place, it appears that the posiulate of
¢ arithmetical definability,” which Pringsheim has introduced
as an essential qualification of the functions which can be
treated in a general theory of functions, cannot be considered
as relevant, for the double reason that it is necessary to take
account of functions which cannot be defined by 8, conditions
and that even functions which are so definable are not in
general “arithmetically representable.” The former reason
rests on a theorem which constitutes an important part of
what I have called “the cardinal theory of functions™ ; the
latter reason rests on a theorem which is easily obtained from
what precedes and completes, in a sense, the cardinal theory
of functions.

2.

The cardinal theory of functions consists of two parts:
The determination of the cardinal numbers of the various
aggregates of functions, and the drawing of conclusions,
from inequalities between these numbers, as to the non-
inclusion of certain aggregates in certain others, Thus,
trom the results that the cardinal number of all integrable
functions is

oo

27 s
while that of all functions representable as limits of sequences
of continuous functions is
2%

and s

N
20 N
2% >N,

we conclude that a function, even when it is restricted to be



Downloaded by [University of California Santa Barbara] at 04:52 07 May 2016

46 Mr. Jourdain on Transsinite Cardinal

integrable, is not. in general, representable as the limit of a
sequence of eontinuous functions ¥,

This example suffices 1o substantiate the contention that
the requirement of arithmetical definability is unnecessarily
narrow for the possibility of a general theory of functions.
In other words, there exist propositions in the general theory
of functions (on integrable functions, for example) which
apply to a much wider class of functions than that of
arithmetically definable functions.

Now the class of functions which can be represented as
limits of infinite series of continuous functions, or, what is
the same thing, of functions to which an * existence-theorem”
is applicable, contains, of course, all arithmetically definable
functions, but not inversely. [For every function of the
former class is completely and uniquely determined by the
datuin of the enumerable sequence of the coefficients of
the sequence of polynomials by which it can be replaced, and
the cardinal number of the sequences (1) whose general term
can be found in the manner indicated, but in which, possibly,
a finite number of terms are completely arbitrary, is

N()’

and
N N,
3.

Although there is thus no possibility of actnally constructing
a greater cardinal number of functions than N, it by no
means follows that definite theorems cannot be found which
hold for a greater number. The fact of the existence of a
general theory of analytic functions is alone sufficient to
disprove this, and, consequently, also for this reason the
requirement of the arithmetical definability of functions is
too narrow.

Yurther, it is interesting to see that there is a theorem
which holds of actually non-representable analytic functions,
due to Borel and Fabry . The series

dgtazta+. o Fat ., o L (2)

where z is a complex variable, répresents either the whole of
an analytic function or part of one within a circle on whose
circumference is at least one singularity. The theorem of

# Messenger of Math. Sept. 1508,
+ Cf. Hadamard, ¢ La série de Taylor et son prolongement analytique,’
Paris, 1901, pp. 33-36.
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Borel and Fabry now says that, when the sequence
Gy Apy ouy Ayy ooey

is a “série écrite au hasard,”—that is to say, a sequence
whose general term canrot be given in the manner explained
above,—this circle of convergence isa line entirely composed
of essential singularities, so that (2) cannot be continued
beyond this line, and represents the whole function.

4.

J have regarded the conception of an “aggregate of
definition ” as an essential part of the cardinal and ordinal
theories of functions. DBy an “aggregate of definition”
I understand any aggregate of values among those of the
independent variable such that, when the values of the (one-
valued) function are given for the points of merely this
aggregate, the values for all other points in the domain of
existence are determined. 'When the domain of the variable
is the continuum of real numbers, the cardinal number of
this aggregate, when the function is continuous or analytic, is

NU:
and the ordinal types are respectively
n and @ or ¥w.

Since, however, a knowledge of the means whereby the
value of the function at one point is calculated from its values
at other points (which varies for different classes of functions)
appears indispensable in addition to a knowledge of the
aggregate of definition, and the latter knowledge then follows
from the former, it might appear that the “aggregate of
definition ” is always a superfluous conception. The following
example will show that this is not the case.

Tt has long been known that a one-valued analytic function
J(2) reduces to a constant if it has a period smaller in absolute
amount than any assignable positive number. This pro-
position, without the necessary restriction to one-, or at least
finite-valuedness, was treated, without complete justification,
as obvious by Jacobi; so that Weber in the reprint*,
edited by him, of Jacobi’s memoir, has given a proof of
the proposition in question together with an analogous theorem
on one-valued continuous functions ot a real variable.

* (Ueber die vierfach periodischen Functionen zweier Variabeln, auf
die sich die Theorie der Abel’schen Transcendenten ctiitzt,” von C. G. J.
Jacobi (Crelle’s Journal, Bd. xiil. (1834) ; Ostwald’s Klussiker d. exakten
Wiss. No. 64, hrsgb. von H, Weber, Leipzig, 1895, pp. 36-39).
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Now, these theorems, together with an extension, follow at
once from a consideration of the character of the aggregates
of definition.

Suppose that a one-valued analytic function, f(z), with a
period smaller in absolute amount than any real positive
number without being a constant exists, and let f(z) have a
finite value for every point z such that |z|<a, where a is
some positive constant. Then there must be a sequence of
points {z,} condensing at some point = within the circle and
such that [2,! < a, such that

Jz) =) =A.

Now {z,} forms an aggregate of definition, and consequently

/@)= A.

Further, if & and F(#) are real, and F(#) is one-valued
and continuous, and F{x) has a period of the above nature,
it is easy to sec that the points where T'(2) is equal to some
number A lie everywhere dense, and thus form an aggregate
of definition of the continuous funection. But it is evident
that this argument applies also to the case where z and
F(«) are complex and the periodicity of F(z) is double,
Hence, a real or complex function of a real or complex
variable cannot have a (respectively single or double) period
smaller in absoiute amount than any positive non-zero number
provided only that the function is continuous.

3.

I now return to the consideration of exponential numbers
in general, and prove the theorem of Bernstein * that, if 8,
and Ng are any two Alephs,

N oN8
N P=R_.27° . . . . .. ()
In the first part t of Bernstein’s proof, (3) is proved if
NB;Nm

# ¢ ntersuchungen aus der Mengenlehre,” Gdtt. Diss., Halle-a.-S.,
1901, pp. 49-50.

+ A more general theorem than that of the first part was proved by
me before I had seen Bernstein’s memoir (Phil. Mag. March 1904,

p. 302), namely: if NaEQNﬁ, then &i\‘ﬂz oNe,
I take this opportunity of eorrecting two slips in this paper:
p. 303, line 7; delete ¢ iﬂa.”
line 183 for ¢ Ni\‘L‘: N, read NINO =N
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and in the second part it is supposed that
R.>Nsa 5

and an extended form of complete induction, which extends
to all Alephs, is used, and is, in essentials, as follows,
By Cantor’s definition of an exponential number,

s

is the cardinal number of all coverings (Belegungen) of a
manifold of cardinal number 8 with the elements of & mani-
fold of cardinal number 8,, which we will suppose to be
arranged in a series of type w,. Now every such covering
is obtained by the covering of the manifold of cardinal
number Rg with some (or all) elements of some segment of
the above series of type w, ; and the cardinal number of thix
segment is less than R,. Hence, each of the coverings first-
named is found among the aggregate of all the coverings of
the manifold of cardinal number ¥g with the elements of the
various segments, taken in turn, of the series of type w,.
Now, the cardinal number of all the coverings of a manifold
of cardinal number Rg with the elements of a segment M, of
the ahove series M,,,aof type o, is

N
1 )

where M is the cardinal number of M_. Hence we can
state, by the Schroder-Bernstein theorem, that
NP< s m), .. ... ()
T o<W,
where the 3 means that the summation isto be extended
over all the numbers (4) such that M. is a segment of M,

(or such that v < wa).
On the other hand,

mie<nls,
and hence the right-hand side ot (5) is less than or equal to
SN C AL B
¥<wg
Comparing this result and (3), we conclude that
Nis= ygwa(mfﬁ) N ()

Hence, if we know a theorem for all Alephs less than N,
we may, by substitution in the right-hand side of (6), find
Phil. Mag. 8. 6. Vol. 9. No. 49. Jan."1905. E
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the same theorem for N.. Such a theorem is
Nr=2Ne=y, . 2%,
where
Nui&ﬁ :
and (6) allows us to conclude the validity of the theorem (3),
even if

N, >N
From (3), we may deduce an interesting theorem concerning
those cardinal numbers which are unaltered by exponentiation.

In fact, from (3) and the laws of multiplication of Alephs *,
it follows that if, and only if

S R ¢ o'
the right-hand side of (3) reduces to N,.
Thus, that
8E=R. . . L L L (®
it is necessary and sufficient that (7) should hold. In
particular, if, as is probable, we can ascert (8) if only
x5<&m

it is necessary and sufficient that

o
2 =Ng e
6.

In the extended principle of induction used above, which
may be slated thus: If a certain proposition P holds of 8,
and if, when it holds of all Alephs less than N,, it holds of
N., P holds of all Alephs ; the proof of P for N, is reduced,
by (6), to the proof of P for a sum (of cardinal number R,)
of numbers for which P is assumed to hold. This method
cannot be applied to give a shorter proof of the equality +

V—
R, =R,
since we must have previously proved that
2
Ny =Ny

in order to prove that the cardinal number of a series of type
wy+1 is greater than that of a series of type w, 1. But if the
exponent, instead of heing v, is transfinite, we can, as we

#* Phil. Mag. March 1904, p. 301.

4+ Ibid. p. 300. This theorem seems, from an indication given by
Bernstein (op. cit. p. 49), to have been known to Cantor, ’ '

1 Ibid. Jan, 1904, p. 74,
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can easily convince ourselves, apply the extended method of
induction, provided that exponentiation with this transfinite
number leaves some Aleph unaltered.

This extended principle of induction is very closely con-
nected (through Cantor’s *third principle of generation ”)
with the question as to whether the ordinal number of the
series of all the ordinal numbers defined by Cantor can be
defined without contradiction, and hence with the argument
of Burali-Forti *. I have returned, then, in the following
section, to the considerations which I have advanced in the
January (1904) number of this Magazine.

7.

In defining an aggregate which should serve as a criterion
whether any given aggregate is *‘ consistent” or ‘incon-
sistent”’+, I haveused the conception, mentioned by Schonflies,
of the (well-ordered) series {I{ 1 such that every well-ordered
series is similar to it or to a segment of it.

This series {I was, now, stated by Schonflies§ to be
gimilar to the series (W) of all the ordinal numbers, as
defined by Cantor by the help of his three generating
principles ||.

This statement appears to me to be incorrect; in fact, I
shall now show that we must agree to regard the series of
these “ Cantor’s ordinal numbers”’ as similar to a segment

# Tbid. p. 64. o

+ Ibid, p. 67, line 18, The wording in the definition of W is to be
replaced by the slightly different wording given above.

1 We consider in the criterion the agyregate which is the field of the
generating-relation of the series TH.

§ “ Die Entwickelung ...."” p. 41. o

)| The purpose of the third principle of generation is sometimes
misunderstood. For example, in the in some respects excellent fourth
Note (“ Sur la théorie des ensembles et des nombres infinis ”) on pp. 617
655 of Couturat’s book “ De V'infinl mathématique,” Paris, 1896 (see
esp. pp. 639-642), the object of this principle is taken to be to enable
one to surpass the second number-class, just as the second principle has
enabled one to surpass the first, This view seems to agree with that
of Schinflies (op. eit. p. 48; ¢f. Phil. Mag. March 1904, p. 300); but
rather further on, a different, and self-contradictory, view of this object
ig taken. The third principle shows, namely, the occasion for using the
second principle to create a new number after all those generated by
the application of the first two principles to.a fundamental number
w, 2, .

"The true view was clearly stated by Cantor in his ¢ Grundlagen.” The
first two principles create an infinite series of ordinal numﬁers, while
the third principle enables us to separate out various number-classes in

this series (¢f. §§7, 8).
is ser 02
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merely of {{I. The ground of this lies in the fact that
Cantor’s third, or limiting principle, which applies to all
ordinal numbers, does not apply to certain well-ordered
aggregates, which transcend even the series of all the transfinite
ordinal numbers of Cantor.

In order to state shortly what is contained in the third
principle, it is convenient to single out the first number of
each of the number-classes as the * class-characteristic ”” of all
the other numbers of that class We thus define the “ class-
characteristic ” of any ordinal number « as either « itself, if
a is the first number of a number-class (a=w,) *, or, if not,
the first number (w,) after @ which is the first of a number-
class.

Then the principle in guestion can be stated :—

The cardinal number of all the ordinal numbers preceding
the class-characteristic oy of a given ordinal number is 8.

Let us now consider whether the'series of all the ordinal
numbers which are subject to the third principle has a type ;
in other words, whether the assumption that it has a type
leads to a contradiction, as was the case in Burali-Forti’s
argument. Let the type be B: then B8 iz its own class-
characteristic T, say 8=w,. To find the cardinal number of
all the ordinal numbers preceding 8, we notice that every
Aleph less than Mg (that it to say, every Aleph whose suffix
is less than B) is the cardinal number of some segment of the
series of type B, so that the cardinal number in question is
at least equal to 8s. That it is also at most equal to Nz ix
evident from the fact that Ng is the next greater Aleph to
the series of Alephs of all the segments. Thus the cardinal
number of the B ordinal numbers is

Ry or N, o

and, since it is not Na, the third principle does not appear to
be satisfied.

However $, although w, can never be equal to « when « is
a Cantor’s ordinal number, it does not follow that 8 is not
equal to wg. And, in fact, this is so, as the following
considerations show,

The series of Cantor’s ordimal numbers is known to he

# See the notation in Phil. Mag. March 1904, p. 295.

+ For if 8 is not the first number of a class, there are predecessors of
the same class. But every predecessor of 3 belongs to one of Cantor’s
number-classes which is itself surpassed by a Cantor’s number-class.

1 My attention was called to this point, which I had overlooked, by a
remark of Mr. G. H. Hardy, Fellow of Trinity College, Cambridge.
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ordinally similar to the series of Alephs, or, what is the same
thing, to the series of class-characteristics :

@y, W)y Wy ... Wy ... Wy, ...

Hence, to every class-characteristic @, of Cantor’s ordinal
numbers corresponds one, and only one, Cantor’s ordinal
number v, and vice versd. Thus, if

B=w,,
a cannot be a Cantor’s ordinal number, for, if it were, 8 would

be one too. Further, 8 or wa (if it exists) is the least ordinal
number which is greater than all Cantor’s ordinal numbers,

S0 ﬂ=B-

Accordingly, it B exists, the third principle is satisfied, in
spite of first appearances, by the series of all Cantor’s ordinal
numbers; and the (Burali-Forti’s) contradiction resulting
herefrom leads us to deny the existence of 3, the type of W.

Now, the series W is well-ordered *, although it cannot
have a type, and evidently other well-ordered series (having
no types) transcending W, can be formed. So we must
conclude that the series W is similar to a segment merely of
the series ([{{) such that every well-ordered series is similar
either to it or to a segment of it 1.

We can define a series ordinally similar to W by positing
one element and then positing successive elements according
to Cantor’s first and second principles, It results from our
considerations that the ordinal number of every element
thus formed is subject to Cantor’s third principle ; that is to
say, we cannot, without contradiction, speak of an ordinal
number of an element which follows all those whose ordinal
numbers obey the third principle. In other words, we cannot,
as seemed possible if we assumed that

w, >

always, define ordinal numbers which transcend all Cantor’s
ordinal numbers. The name of princilf;le of limitation ”
may, then, convey the wrong impression that the series W is
not, as we chall say in the next section, “absolutely”
infinite {.

# Phil, Mag. Jan. 1904, pp. t5-66.

1 This is the series described, in not quite such accurate terms as the
above, in Phil. Mag. Jan. 1904, p. 67, lines 18-19. It follows from
the above that T can ot be used as a substitute for W in a criterion
of ¢ consistency.”

I The “absolute” infinity of W was stated by Cantor in 1882
(* Grundlagen. .., p. 44).
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3.

The series of all ordinal numbers may, it seems to me,
properly be called an ¢ absolutely > infinite series. For, if a
well-ordered series has a type, it is, in a certain sense,
completed ; while the above series W cannot, as is shown by
Burali-Forti’s contradiction, have a type.

This seems to be the most promising way of regarding
Burali-Forti’s contradiction, and the words ¢ absolutely
infinite ” seem preferable to the equivalent word ¢incon-
sistent,” which I, in common with Cantor, have used
hitherto ; because an ‘“inconsistent ” aggregate is not itself
contradictory (it exists, in the mathematical sense of the
word), but a cardinal number or type of it does not exist.
However, I shall, in the next section, enter briefly into the
history of the use of this word in the theory of aggregates.

9.

The conception and name of an “ inconsistent > aggregate
originated with Cantor *, but the only published reference
to them oceurs in two papers by Hilbert t+.

With regard to Hilbert’s statements, it does not seem to
follow that if the axioms of arithmetic (which are, according
to Hilbert, the laws of operation with real numbers and the
axiom of continuity) do not contradict one another, then
the real number-continuum is * consistent.” For it does
not appear to be doubtful that the laws of operation with
ordinal numbers or Alephs form a system free from contra-
diction, and yet the aggregate of all ordinal numbers or
Alephs is “inconsistent.”

Further, Hilbert states that a ‘similar” method to that
pursued by him for the axioms of real numbers, when
applied to all Alephs, fails, so the totality of all Alephs is an
“inconsistent” aggregate (a mathematically non-existent

# In a letter to me of Japuary 6th, 1901, Professor Cantor said :—
*Ich unterscheide auf’s strengste zwischen unendlichen Mengen (con-
sistenten Vielheiten) einerseits und den ihnen zukommenden abstracten
unendlichen Zaklen andrerseits.” There was no further explanation of
the term ¢ consistency,” and I confused it with Schrider’s requirement
in the conception of a ‘ common manifold” (‘ Vorlesungen iiber die
Algebra der Logik (exakte Logik),” Bd. i. 1890, pp. 147-148), On
finding that the aggregate of all ordinal numbers had no cardinal number,
I applied the name ¢ inconsistent” used by Schroder (‘Algebra und
Logik der Relative,” 18985, p. 4) to this aggregate (Phil. Mag. Jan. 1904,

. 67).
P t “Ueber den Zahlbegriff,” Jahresber. d. d. M.-V. Bd. viii. (1900)
Pp. 180-184 ; “ Mathematische Probleme,” Gétt. Nachr. 1900, pp. 253
297, see especially pp. 264-266,
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conception). There is, however, so I contend, no reason for
thus denying existence to the totality of Alephs, but only
for denying the existence of the cardinal number of this
aggregate.  This indicates the difference between my
coneeption of “inconsistency ” and that of Hilbert.

Cantor * has defined a “ consistent ” aggregate (consistente
Vielheit) as such that the supposition of a collection by the
mind of all its elements to one thing leads to no contradiction.
Since this collection was considered by Cantor as the essential
thing in his definition of “ Menge,” and hence of cardinal
number , this definition tends to agree with mine, in
opposition to Hilbert’s. But Cantor’s definition is not of the
nature of the (nominal) definitions in the symbolic logic of
Peano and Russell, but rather a “phrase indicating what is
to be spoken of »’ §.

So I replaced Cantor’s definition, in my first paper §, by a
formal definition, and I contend that the necessary limitation,
noticed by Russell ||, but not discovered by him, in the
notion of a “eclass” is supplied by introducing the postulate
of “ consistency.” For Russell’s contradiction seems to arise
solely from the use of Cantor’s inequality

2a>a,

where & is supposed to be the cardinal number of an
inconsistent class, such as the class of all propositions .

Although we have thus arrived at the formulation of the
restricted concept of “class,” the *“search with a mental
telescope ”?** for this concept appears difficult, and Cantor’s
*“ definitions *” are, I think, to be regarded as attempts in
such a search.

The idea of an inconsistent aggregate as an absolufely
infinite one (§ 8)—a term also used by Cantor—appears to
me to be suggestive. For then finite and transfinite aggregates
(which are now both subject to mathematical operations)
appear, after suitable rearrangement, as segments of an
infinite whole (which is not thus subject). And thus the
relation of this infinite to the transfinite aggregates has a

% In a letter of November 4th, 1903, referred to in Phil. Mag. Jan,
1904, pp. 67-70.

t See Math. Ann. Bd. x1vi. 1895, pp. 481-482, 497,

1 Russell, ‘ The Principles of Mathematics,’ vol. 1., Cambridge, 1903,
p. 304,  Cf. Russell’s definition of a cardinal number as a class, pp. 305,
111-116.

§ Phil. Mag. Jan. 1904, p. 67.

1 Op. cit. p. 20; cf. pp. 366-368, 101-107.

€ This is also the opinion of Prof. Cantor (letter of July 9th, 1904).
#% Russell, op. cit, preface, p. v.
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certain analogy with the relation of the transfinite aggregate
of type @ to the finite aggregates.

10.

I will now sum up the results of my investigations on
the transfinite numbers, published in three papers in this
Magazine.

The main result is that any aggregate, the cardinal number
(or type) of which is not self-contradictory, can be well-
ordered. A closer consideration of the proof given in my
first paper led (in the present paper) to a proof of the
universal validity of Cantor’s third principle, and hence of
the non-existence of ordinal pumbers and Alephs which
transcend all those defined or indicated by Cantor ; and (in
the first and second papers) the main theorem led to final
forms that are to be given to the results of adding and
multiplying any two transfinitc cardinal numbers. The
results on exponential numbers are not final, but one of ihe
theorems on exponential numbers (§ 1 of the present paper)
has been shown to have an important bearing on the theory
of functions.

The Manor House, Broadwindsor, Dorset.
September 6th, 1904,

V. The Molecular Weights of Radium and Thovium
Emanations. By WALTER MARowER, B.A., B.Sc.*

Paxrr 1.
Toe MoLecurar WEIGHT oF Ravium EMANATION.

1. Introduction.

UTHERFORD and Brooks (Trans. Roy. Sec. Canada,
1901 ; Chem. News, 1902) have determined the rate

of diffusion of the emanation from radium into air by a
method similar to that employed by Loschmidt in his inves-
tigations on the coefficient of interdiffusion of gases, and
deduce that the molecular weight lies between 40 and 100.
Tt is important to know the molecular weight with greater
accuracy, and it was with the object of solving this problem
that the present investigation was undertaken. During the
course of the work, Curie and Danne (C. R. exxxvi. p. 1314,
1903) have published some observations upon the rate of
diffusion of the emanation from radium through capillary
tubes of different lengths and diameters, and find for the
coefficient of interdiffusion between the emanation and air

# Communicated by Prof. J. J. Thomson.



