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XXXVILL On Periodic Irrotational Waves at the Surface of
Deep Water. By Lord RayvLeicu, O.M., F.R.S.*

THE treatment of this question by Stokes, using series

proceeding by ascending powers of the height of the
waves, is well known. In a paper with the above titlet it
has been criticised rather severely by Burnside, who con-
cludes that “these successive approximations can not be
used for purposes of numerical calculation...”. Further,
Burnside considers that a numerical discrepuney which he
encountered may be regarded as suggesting the non-existence
of permanent irrotational waves. It so happens that on this
point I myself expressed scepticism in an early paper }, but
afterwards I accepted the existence of such waves on the
later arguments of Stokes, McCowan§, and of Korteweg and
De Vreies||. In 19119 I showed that the methed of the
early paper could be extended so as to obtain all the later
results of Stokes.

The discrepancy that weighed with Burnside lies in the
fact that the value of B (see equation (1) helow) found best
to satisfy the conditions in the case of a=1 differs by about

* Communieated by the Author.

+ Proc. Lond. Math. Soc. vol. xv. p. 26 (1915).

§ Puil. Mag. vol. i. p. 257 (1876) ;  Scientific Papers, vol. i. p. 261,
§ Phil. Mag. vol. xxxii. pp. 45, 553 (1891).

§ Phil. Mag. vol. xxxix. p. 442 (1895).

€ Phil. Mag. vol. xxi. p. 183 (1911).

Phil. Mag. S. 8. Vol. 33, No. 197, May 1917, 2D
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50 per cent. from that given by Stokes’ formula, viz.

=—1%at. It seems to me that too much was expected.
A serles proceeding by powers of 1 need not be very
convergent. One is reminded of a parallel instance in the
lunar theory where the motion of the moon’s apse, calcu-
lated from the first approximation, is doubled at the next
step.  Similarly here the next approximation largely in-
creases the numerical value of 8. When a smaller « is
chosen ({;5), series developed on Stokes’ plan give satis-
factory results, even though they may not converge so
rapidly as might be wished.

The question of the convergency of these series is distinct
from that of the existence of psrmanent waves. Of coursea
strict mathematical proof of their existence is a desideratum;
but I think that the reader who follows the results of the
calculations here put forward is likely to be convinced that
permanent waves of moderate height do exist. If this is so,
and if Stokes’ series are convergent in the mathematical
sense for such heights, it appears very unlikely that the
case will be altered until the wave astains the greatest
admissible elevation, when, as Stokes showed, the crest comes
to an edge at an angle of 120°.

It may be remarked that most of the authorities men-
tioned above express belief in the existence of permanent
waves, even though the water be not deep, provided of
course that the bottom be flat. A further question may be
raised as to whether it is necessary that gravity be constant
at different levels. In the paper first cited I showed that,
under a gravity inversely as the cube of the distance from
the bottom, very long waves are permanent. It may be that
under a wide range of laws of gravity permanent waves
exist.

Following the method of my paper of 1911, we suppose
for brevity that the wave-length is 27, the velocity of pro-
pagation unity*, and we take as the expression for the stream-
function of the waves, reduced to rest,

Yr=y—ae Y cosx—Be % cos 2a—ye ¥ cos 3a
—de ¥cosdar—eeWcoshe, . . (1)

inwhich & is measured horizontally and y vertically downwards.
This expression evidently satisfies the differential equation

2 * The extension to arbitrary wave-lengths and velocities may be

effected at any time by attention to dimensions,
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to which +r is subject, whatever may be the values of the
constants «, B, &. And, much as before, we shall find that
the surface condition can be satisfied io the order of &
inclusive ; B, v, 8, € being respectively of orders a4, o, a°, a'.

We suppose that the free surface is the stream-line =0,
and the constancy of pressure there imposed requires the
constancy of U?—2gy, where U, revresenting the resultunt
veloeity, is equal to &/ {{dyr/duc)®+ (d¥-/dy)?, and ¢ s the
constant acceleration of gravity now to be determined. Thus
when =0,

V2—2gy=1+2(1-—y)y+a’e~%+2Be~% cos 2z
+dye~¥ cos 3a+ 686¢™Y cos 4+ Bee = cos Su
+4afBe % cos -+ 6aye™¥ cos 2w+ 8ade Wcos 3 . (2)
correct to « inclusive, On the right of (2) we have to
expand the exponentials and substitute for the various
powers of y expressions in terms of 2.
It may be well to reproduce the process as formerly given,

omitting & and e, and carrying (2) only to the order a5. We
have from (1) as successive approximations to y:(—

y=aedcosax=acosa; . . . . . . . . . (3)
y=a(l—y)cos x=—=la?+acosz—}a*cosu; . (4)
y=a(l—y+ly2)cosz

2 9 3

a’ Yol o 3a
== +a <1+ 8-)005 €= 508 2o+ g cos 3z, (5)

which is correct to «® inclusive, 8 being of order at.  In calcu-
lating (2) to the approximation now intended we omit the
term in ay, In association with «fB and ¢ we take ¢~%=1;
in association with B, e =1—2y; while

ae =X {(1=2y+ 29 ~ 4 7).
Thus on substitution for »? and »? from (5)
e W =a*{1—2y4 &’ —4a" cos & +af cos 22 —%a® cos 3},
In like manner
2Be=% cos 2o =283 cos 22— 2a3(cos z + cos 3z).
Since the termss in cosz are of the fifth order, we may
replace acos & by 7, and we get
Ur=2gy=1+a’+a' +2y{l—g—a’— 2a* + )

+(at+28)cos 2u+ (—ta’+dy—2af) cos B, . 6
8 2D 2
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The constancy of (6) requires the annulment of the co-
efficients cf y and of cos 2z and cos 3z, so that

B=—1a", y=L< . . . 0 (D)

g=1—at—8a* . . . . . . . (8

The value of g in (8) differs from that expressed in equation
(11) of my former paper. The cause is to be found in the
difference of suppositions with respect to 4. Here we have
taken 4r=0 at the free surface, which leads to a constant
term in the expression for y, as seen in (5), while formerly
the constant term was made to disappear by a different choice
of 4.

',ﬁ)em is no essential difficulty in carrying the approxi-
mation to y two stages further than is atfained in (5). If
8, € are of the 6th and 7th order, they do not appear. The
longest part of the work is the expression of ¢~¥ as a function

of v. We get

3a? | 125at

and

e-!/=1+—4— +-—»-6—44 —cos & {a+ 243}
3a?2 1254 24 125a%
+cos2m{—4- +W —,B} —3—cosd¢+mcos4z, 9)

and thence from (1)

9a8 6254° 3«6
= =142 4t a o e vTE
y ga a+cos¢{a+ 3 1939 9 }

4ot . 3a®  625a® 3af
—cos 2z 4 lat4 22 \ o 4 DeJat  oap
cos-w{2a+ 3 B}+cos5m{ 5 + 581 3 + }
4 2 5
—a%~cos4x+ %cos L ¢ 1))

When we introduce the values of 8 and v, already deter-
mined in (7) with sufficient approximation, we have

3 s
y=—%a’—a*+cosa { a+ 9o + 7694

§ 192 J
o (&, 1lat p { 3o 315“5}
_0052,2,{—2—-}— 6—‘%-}—0055.2‘ ?"*'—‘1*28
4 125
- %-cos 4z 4+ u%{i cosdz, . . . . . . (11)

in agreement with equations (13), (18) of my former paper
when allowance is made for the different suppositions with
respect to Y, as may be effected by expressin% both results
in terms of a, the coeflicient of cos .z, instead of a.
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The next step is the further development of the pressure
equation (2), so as to include terms of the order «’. W here
B, v, &ec. occur as factors, the expression for y to the third
order, as in (5), suffices; but a more accurate value is
required in a?~%. Expanding the exponentials and re-
placing products of cosines by cosines of sums and differ-
ences, we find in the first place

Ui=2gy=2(1—g—a® )y 4 1+ +a'+ ]z’ﬁ —402B
+oosa | - darp 208 — S 4 VLB _ ";“_'Y}
L z 6 2
+cos 2x{a‘+2,8+ }#_20‘23}
+ €08 57:{ - 4;1—5—‘'.z:z,('?-i-fir)'—gim7 + H%sg +3a2ry—4a8}
+cos e { %‘1 + 2628 — Gary+ 68 }

37l 25a3,8+ 15a2
20 12 2

From the terms in cosa2 we now eliminate cos 2 by
means of

+cos5a:{ - rY-—-l:%a’t)‘+8e}. 12y

9 2 2 2
a COoS z=y(1— ?ﬂ) + % + %-cos 2z,
thus altering those terms of (12) which are constant, and
which contain y and cos 22. Thus modified, (12) becomes

1146
U2—2gy=1+af~’+ at + ——i—a — 328

o am
+2y{l—g_a2__2a4+,3__7“ﬂ+ 167438 ga,,,}

24 4
y i N
+ cos 2.v{a4+2,9+ 1_{?‘—“2[3}
4a® ' 2.3
+ cos 3.r;{ —_:_ _2[‘34_47_%% + 131[3_*_3“27_4“8

O 0
+ cos {-11—)‘:~ + 2228 — Bury + 68 }
372" 25al 152
+cos5.'v{— 2; - lﬁ,‘a-}- )_f7—12a8+8£}. (13)

The constant part has no significance for our purpose, and
the term in y can be made to vanish by a proper choice of g.
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If we use only «, none of the cosines can be made to
disappear, and the value of ¢ is

g=1l—a2—2at—T7as.. . . . . (14)
When we include also 8, we can annul the term in cos 2
by making
at 294*
B—_?(”—o)’ C .. 1B

and with this value of B

St 619ab. .
g=1—a?— o ey (16)

But unless « is very small, regard to the term in cos 3
suggests a higher value of 8 as the more favourable on tle
whole,

With the further aid of v we can annul the terms both in
cos 2z and in cos 3a. The value of B is as before. That of
is given by

139a

yuk R ¢ )
and with this is associated
s Dat 15748
g:l—a‘-—?—-—ﬁ. . . . . (18)

The inclusion of 6 and € does not alter the value of ¢ in
this order of approximation, but it allows us to annul the
terms in cos 42 and cos 5 2. The appropriate values are

«8 Y .
=—%5 =—5A e e e ]
=7 <= a2
and the accompanying value of v is given by
(1 4$Z“‘ 1)

while 8 remains as in (10).

We now proceed to consider how far these approximations
are successtul, for which purpose we must choose a value
for «. Prof. Burnside took a=$. With this value the
second term of B in (15) is nearly one-third of the first
(Stokes’) term, and the second term of « in (20) is actually
larger than the first. If the series are to be dcpended upon,
we must clearly take a smaller value. I have chosen a=1\;,
and this makes by (15), (18), (20)

B=—-000,052,42, 4="000,000,976, g="989,736,92. (21)



Downloaded by [Cornell University] at 19:47 21 June 2012

Waves at the Surface of Deep Water. 387

The next step is the calculation of approximate values of y
from (11), which now takes the form

y=—"00514"101,165,0 cos .z
—+005,183,3 cos 2z +-000,339,6 cos 3«
—+000,033,3 cos 42 +-000,003,3 cos 5. . . . (22)

For example, when =0, y=-091,251,3. The values
of y calculated from (22) at steps of 224° (as in Burnside’s
work) are shown in column 2 of Table 1.

We have next to examine how nearly the value of y
afforded by (22) really makes v vanish, and if necessary to
calculate corrections. To this & and e in (1) do not con-
tribute sensibly and we find = +-000,015,4 for 2=0.
In order to reduce ¥ to zero, we must correct the value of y
With suflicient approximation we have in general

=238y (L+ e ¥ cos z)*,
or in the present case
*000,015,4
T 1091
so that the corrected value of y for #=0 is *091,237,2.
If we repeat the calculation, using the new value of 7, we

find ¢=0.

Sy=— =—-000,014,1,

TabLE I

x. o from (22). ¥ corrected. U2—2¢gy—1. Cl());rggt.ed
0 +°091,251,3 +-091,287,2 010,104,9 40
221 +084,8397 { 40848418 | ... .47 44

b +-04i6,182,8 + 066,181,8 R B 43
673 +036.913,1 +:0369151 | ....41 44
90 +000,050,0 | +°000,052,4 { ....42 46
1123 —-039.782,7 | —039,780,2 | . ...44 47
135 —076,316,2 | —076,317,0 co. .43 43
1573 —-102.381,1 —-102,395,1 R % 44
180 —-111,884,7 —-111,907,9 *010,105,1 47

In the fourth column are recorded the values of U—2gy — 1,
calculated from (1) with omission of & and ¢, and with the
corrected values of y.  dyr/dz, dyr[dy were first found sepa-
rately, and then U* as the sum of the two squares. The
values of B, v, g employed are those given in (15). (18), (20).
The form ot Yrin (1) with these values of the constants vanishes
when y takes the values ot the third column, and the pressure

* The double use of § will hardly cause confusion.
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at the surface is also constant to a high degree of ap-
proximation. The greatest difference is {*000, 001 ,0), which
may be compared with -4, the latter amount representing
the corresponding statical difference at the crest and ¢rough
of the wave. According to thisstandard the pressure at the
surface is constant to 24 parts in a million.

The advantage gained by the introduction of 8and vy will
be better estimated by comparison with a similar calculation
whece only « (still equal to ;) and g are retained. By (2)
in this case

U2—2gy~1l=da’e%+2(1—g)y. . . . (23)

Table II. shows the values of yand of «*¢~? corresponding
to the same values of x as before. The fourth column gives
(23) when g is so determined as to make the values equa] at
0°and 180°. [t appears that the discrepancy in the values of
U%—2gy is reduced 200 iimes by the introduction of 8 andvy,
even when we tie oursclves to the values of B, vy, ¢ prescribed
by approximations on the lines of Stokes.

TasLe II.

a. A we g, U2—2gy—1.
0 +--091,276,5 08,331,4 010,207,7
223 084,870,5 -OU8,438,8 ... 1834
45 0645,182,4 (08, 760,2 L1207
674 036,882,6 009,288,9 NN YN |
920 0 010.000,0 .. 0000
1124 — (34,823, 1 1110,829.0 ... 010,4
135 — 76,3180 O11,649,0 .o L ORO,2
1573 —-102,344,1 012,271 4 ... 1876
180 —-111,892,6 ‘U12,506,5 -010,207,7

A cursory inspection of the numbers in column 4 of
Table 1. suffices fo show that an improvement can be
effected by a slight alteration in the value of 8. Kor
small corrections of this kind it is convenient to use a
formula which may be derived from (2). We suppose that

while « and yr are maintained constant, small alterations 88,
8y, 8¢ are incurred. Neglecting the small variations of
B, v, g when multipiied by a® and higher powers of a,
we get

Sy =58B1cos 2u— 3} a cos — 3 acos 3z}
+0y{cos 3z—2acos 2u—2x cos 4z}, . . (24)
and
8(U%~2gy) = 2a(8B—6¢g) cos « + 283 cos 2z
+2(28y—«bB) cos 3z —tadycosde. . . (25
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For the present purpose we need only to introduce 88, and
with sufficient accuracy we may take

8(U?—2gy)=28Bcos2z. . . . . (26)

We suppose 68= —-000,000,2, so that the new value of 8
is —-000,052,6. Introducing corrections according to (26)
and writing only the last two figures, we obtain column 5 of
Table I., in which the greatest discrepancy is reduced from
10 to 4—almost as far as the arithn.etic allows—and becomes
but one-millionth of the statical difference between crest and
trough. This is the degree of accuracy attained when we
take simply
Y=y—acVeosx—LBe " Wcos e—rye ¥eosde, . (27)

with a= L, ¢ and v determined by Stokes’ method, and
B determined so as to give the best agreement.

XXXIX. The Application of Solid Hypergeometrical Series
to Frequency Distributions in Space. B3y S. D. WICKSELL,
Dr. Plil., Lad, Sweden *,

N the number of this Journal issued in September 1914,
Dr. L. Isserlis, under the above title, published a paper

on the fitting of hypergeometrical series to correlation
surfaces. The problem to describe curves of variation by
aid of hypergeometrical series was treated as long ago as
1395 by Prof. Pearson in his classical Memoir: * Skew
Variation in Homogeneous Material,” Phil. Trans. vol. clxxxvi.
Later, in 1899, Prof. Pearson gave a fuller discussion of the
hypergeometrical series (Phil. Mag. vol. xlvii.). Itis this
paper that is the starting-point and chief place of reference
of Dr. Isserlis. On the whole, the hypergeometrical series
and its special case for n=w, the binomial series, play a
dominating part in Prof. Pearson’s celebrated theory of
variation of one variate. As a consequence hereof, it was
natural that the attempt should be made to employ solid
hypergeometrical series as a means to describe also surfaces
of correlation. Hereby, however, a fact has evidently been
overlooked that greatly limits the range of applicability of
any hypergeometrical or multinomial types of correlation
functions. Of course, there must be some identical relations
between the moments that should be more or less tulfilled
1u all cases of application. Dr. Isserlisalso produces several
such relations. But it is evident that he has not aseribed
too much importance to these limitations. In the theory of
variation of one variate there are similar conditions, but they

* Comimunicated by the Author.



