This article was downloaded by: [Cornell University]

On: 17 July 2012, At: 13:39

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,
UK

Philosophical Magazine Series 5

Publication details, including instructions for
authors and subscription information:

Jeries 5 http://www.tandfonline.com/loi/tphm16
{1 87E- LA

Philosopthacal

MMagamne

X. On the criterion that a
given system of deviations
from the probable in the case
of a correlated system of
variables is such that it can be
reasonably supposed to have
arisen from random sampling

Karl Pearson F.R.S. ?
& University College, London

Version of record first published: 21 Apr 2009

To cite this article: Karl Pearson F.R.S. (1900): X. On the criterion that a given system
of deviations from the probable in the case of a correlated system of variables is

such that it can be reasonably supposed to have arisen from random sampling ,
Philosophical Magazine Series 5, 50:302, 157-175

To link to this article: http://dx.doi.org/10.1080/14786440009463897

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-
and-conditions

This article may be used for research, teaching, and private study purposes.
Any substantial or systematic reproduction, redistribution, reselling, loan,
sub-licensing, systematic supply, or distribution in any form to anyone is
expressly forbidden.



http://www.tandfonline.com/loi/tphm16
http://dx.doi.org/10.1080/14786440009463897
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [Cornell University] at 13:39 17 July 2012

The publisher does not give any warranty express or implied or make any
representation that the contents will be complete or accurate or up to

date. The accuracy of any instructions, formulae, and drug doses should be
independently verified with primary sources. The publisher shall not be liable
for any loss, actions, claims, proceedings, demand, or costs or damages
whatsoever or howsoever caused arising directly or indirectly in connection
with or arising out of the use of this material.




Downloaded by [Cornell University] at 13:39 17 July 2012

[ 157 ]

X. On the Criterion that a given System of Deviations

from the Probable in the Case of a Correlated System of

Variables is such that it can be reasonably supposed to have

arisen from Random Sampling. By KArL PEARsoN, FLR.S.,
University College, London*.

TP HE object of this paper is to investigate a criterion of the

probability on any theory of an observed system of errurs,

and to apply it to the determination of goodness of fit in the

case of frequency curves.

(1) Preliminary Proposition. Let &y, z; .. .z, be a system

of deviations from the means of n variables with standard

deviations @, 0;...0, and with correlations ry, 73, 795. ..

rn—], ne

Then the frequency surface is given by
1 [« (Rop @ Rpq ap 2,
s (G ) (P2 )} .
Z="Zge , » . o« (1)

where R is the determinant

1 P19 P30 0o Pln
T 1 T3 Tan
T3t 732 1...7%4
. .
. .
n1 Tn2 Tng » o 1

and Rpp, Rpg the minors obtained by striking out the pth row
and pth column, and the pth row and g¢th column. 8, is the
sum for every value of p, and S, for every pair of values of p
and q.
Now let
Rypp 2° Rpq @pz
2—Q (PP 2P g Ry 4 it i W i

% Sl( n Upﬁ) +ZSz( R o'po'g) .. (i)
Then : 4* = constant, is the equation to a generalized « ellip-
soid,” all over the surface of which the frequency of the
system of errors or deviations #;, #; . . . Z is constant. The
values which x must be given to cover the whole of space
are from 0 to . Now suppose the “ ellipsoid ” referred to
its principal axes, and then by squeezing reduced to a sphere,
X,, X3, ... X being now the coordinates ; then the chances
of a system of errors with as great or greater frequency than

* Communicated by the Author,
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that denoted by y is given by

D}:‘X...e_%XZdXI dX,... an]:

P (W o maKax, - dk

the numerator being an n-fold integral from the ellipsoid y to
the ellipsoid o, and the denominator an n-fold integral
from the ellipsoid 0 to the ellipsoid 0. A common constant
factor divides out. Now suppose a transformation of coordi-
nates to generalized polar coordinates, in which x may be
treated as the ray, then the numerator and denominator will
have common integral factors really representing the genera~
lized “solid angles”” and having identical limits. Thus we
shall reduce our result to

®  —3x2 el
J‘ e X dx

P=2, coe . (i)

- a-1 -
e x dy
V]

This is the measure of the probability of a complex system
of n errors occurring with a frequency as great or greater
than that of the observed system.

(2) So soon as we know the observed deviations and the
probable errors (or ¢’s) and correlations of errors in any
case we can find  from’ (ii:), and then an evaluation of (iii.)
gives us what appears to be a fairly reasonable criterion of the
probability of such an error occurring on a random selection
being made.

For the special purpose we have in view, let us evaluate the
numerator of P by integrating by parts; we find

5 eIyl dy= [x”‘z +(r=2)x " + (n—2) (n—4)x""

+ e+ (—2)(n—4)(n—8) . .. (n—2'r—2)x"“’”]e.—%x2
+ (1—2)(n—4)(n—86) . . . (n—?ﬂ( P —

=(n=2)(n—4)(n—"6) ... (n—2r) [j:: e~ By =21y

n—2r+2 Xn—2r+4

T a2
X

-3 2
T = T ) (n—2r12) T (=20 % (=2 1 2) (=2 F

xn—?
et (n—2r)(n—2r+2) ... (n—?)}]
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Further,

0

j‘ e—oyr=idy = (n=2) (n—4) (n—6) . . . (n—2) y ¢ =i yi-ridy,
0

0
Now n will either be even or odd, or if n be indefinitely
great we may take it practically either.
n—1

5 Hence

Case (i) n odd. Take r=

ccs_%2 Can & i X5 Xn—‘—2

P_yxe M +e Ex{l +1.3+1.3.5+“'+1.3.5...n_2}
—%de . '
joe X o oo (V)

But _

—%ng =\/Zr'

ﬁe XV 3

Thus

P= \/;2.5‘ g“%xgdx
T Jx

5_—12X_ i x5 xn-Z
+\/;“"(1+1.3+—1.3.5+ S T WS ) &

As soon as y is known this can be at once evaluated.
Case (ii.) n even. Take »=4n—1. Hence

Y 2 4. 6 n—-—2
~Deydy 4 e- 2] X X X #o . X"
PJX& Xfxwe {2+2.4+2.4.6* T2 4.6 2
ﬁe’%xzxdx
b1 X X X XY
=y X(1+ 2+2.4+2.4.6 "'+2.4.6...n-—-2)' (vi)

The series (v.) and (vi.) both admit of fairly easy calcu-
lation, and give sensibly the same results if » be even moder-
ately large. If we put P=4 in (v.) and (vi.) we have
equations to determine y=1y,, the value giving the ‘proba-
bility ellipsoid.” This ellipsoid has already been considered
by Bertrand for n=2 (probability ellipse) and Czuber for
n=3. The table which concludes this paper gives the
values of P for a series of values of ¥? in a slightly different
case. We can, however, adopt it for general purposes, when
we only want a rough approximation to the probability or
improbability of a given system of deviations. Suppose we
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have n correlated variables and we desire to ascertain whether
an outlying observed set is really anomalous. Then we
calculate 4 from (ii.) ; next we take n’=n+1 to enter our
table, i. e. if we have 7 correlated quantities we should look in
the column marked 8. The row x* and the column n+1
will give the value of P, the probability of a system of
deviations as great or greater than the outlier in question.
For many practical purposes, the rough interpolation which
this table affords will enable us to ascertain the general order
of probability or improbability of the observed result, and
this is usually what we want.

If n be very large, we have for the series in (v.) the vulue

X
1,2 —-1,2 #* >
e | e~¥’dy *, and accordingly

0 —_—
2(° _u»
P=\/— N dy=1.
- Wj‘o ¢ X

Again, the series in (vi.) for » very large becomes &x*,
and thus again P=1. These results show that if we have
only an indefinite number of groups, each of indefinitely
small range, it is practically certain that a system of errors
as large or larger than that defined by any value of y will
appear.

Thus, if we take a very great number of groups our test
becomes illusory. We must confine our attention in calcu-
lating P to a finite number of groups, and this is undoubtedly
what happens in actual statistics. # will rarely exceed 30,
often not be greater than 12.

(3) Now let us apply the- above results to the problem of
the fit of an observed to a theoretical frequency distribution,
Let there be an (n+ 1)-fold grouping, and let the observed
frequencies of the groups be

!

! / ! ’
My, Mgy Mg oo s Mpy M yyy,

and the theoretical frequencies supposed known a priori be
My, Mgy Mg e May Myy
then S(m)=8(m’) =N =total frequency.
Further, if e=m’—m give the error, we have
eote,tet oo Fe=0.
Hence only n of the n+ 1 errors are variables; the n+ Lth is

* Write the series as F, then we easily find dF/dy =1+ yF, whence by
integration the above result follows. Geometrically, P=1 means that if
n be indefinitely large, the nth moment of the tail of the normal curve
is equal to the ath moment of the whole curve, however much or
however little we cut off as  tail,”
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determined when the first » are known, and in using formula
(ii.) we treat only of n variables, Now the standard de-
viation for the random variation of ¢, is

ap=\/N(1_%£ ’%?1, coew (vid)

and if 7,, be the correlation of random error ¢, and ¢,

MM
W m e P
Tpa g = N (viii.)

Now let us write nl% =sin?Bq, where By is an auxiliary
angle easily found. Then we have

o= v NsinB,cos B . . . . (ix)

1y = —tan BtanB,. . . . . (X))

We have from the value of Rin § 1

R= 1 —tanBytan B, —tan BytanB,...—tan B, tan B
—tan B tan 8, 1 —tan By tan B, .. .—tan B, tan B,
—tan By tan8; ~—tan By tan B, 1 ...—tan B, tan By

.

—tan B, tan 8 —tan Bytan Bn  ~—tan Bytan B 1
=(—1)" tan’B, tun?B, tan?B; . . . tan®B, x

— cot?B, 1 ) 1
1 —cot?B, 1 .. 1
1 1 —cot?)By ... ... 1

1 1 1 —cot?B,
=tan?B, tan? By tan? 3, . . . tan® B, x J, say.
Similarly,
Ry=(—1)"'tan’Bytan* G5 ...... tan® B, x Jy,
Ry,=(~ 1) tan B; tan By tan?B; . . . tan® Ba X Jig
Plil. Mag. 8. 5. Vol. 50. No. 302, July 1900. M




Downloaded by [Cornell University] at 13:39 17 July 2012

162 Prof. Karl Pearson on Deviations from the

Hence the problem reduces to the evaluation of the deter-
minant J and its minors.
If we write

"),,=cotzﬂq=;bl—l. e e (x1)

lq

J=[—mn 1 1 ...... 1

1 -m 1 ..., 1

1 1 /- R R 1

1 1 r ..... — 7

Clearly,

J12= - 1 1 1 ...... 1

1 =9 ¥ ..., 1

1 1 bt/ 7SS 1
1 1 1 ..... —h|

-_-_-(——-1)"_] (773+ 1) ("]4+1) PR (7],.+1).
Generally, if A=(n+ D)(ne+ D(ms+1) ... (a+1),

A
Jm=(—1)"“1m- .. (xid)

But J11_772J12+J1;+J]4+ e oo +d1=0.

Hence J,=(1+n)d—=du—ds—J ... =J,

TS YU ES T R

1+m 149, la4ms 149 "7 149/
Whence, comparing J with Jyy, it is clear that :
1 1 1 1 1

J=(—1)n)"(1 TT4m 4w T4m I+t T T4

Now

My 11

() =@ b= A1

Thus :

= (=1)m\ a1
J=( 1)>»N.

N

)-
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Similarly :
A /m m
— n-1_"7" (7P _’n_-i-_l
Too= (S (R )
Thus :
R J 2 p mp LU
ﬁ"’ = — '31 cot’ Bp = cotﬁﬁp-ﬁ (1 + mn+1) ’
or from (vii.)
R, 1 _1 1 i
Roof Ty T —
Again :
Ry, J ' o
= cot 3, cot B, —J"—" = cot Bp cot B, Noppr®
and :
qulzl__',,(xiv.)

R 0,0,  Mat

Thus by (ii.) :

1 1 1 }
2 — 2
xI= 8 {( m, + mnﬂ)" ,,} +28, {mm epty

& 1 2
= Sl (T:;) + M1 { Sl(e,,)} .

Sl(&i) = Tl

But

hence :
2 _of? .
X = b(ﬁ e e e e . (xvy)

where the summation is now to extend to all (n+1) errors,

and not merely to the first n. o )
(4). This result is of very great simplicity, and very easily
applicable. The quantity

x=1/5()

is a measure of the goodness of fit, and the stages of our
M 2
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investigation are pretty clear. They are :—

(i.) Find y from Equation (xv.):

(ii.) If the number of errors, n'=n+1, be odd, find the

improbability of the system observed from
b1 4 Xy X X X
P+ 5+ 145475 74,6 W—3
If the number of errors, n’=n+ 1, be even, find the prob-
ability of the system observed from

2(* ...
— - —3X
P= \/ JX e ‘lx

+ ...+

2 _a(x, X x’ x 3
+\/;" X(1+ 1ttt st i s

(ili.) If n be less than 13, then the Table at the end of this
paper will often enable us to determine the gemeral
probability or improbability of the observed system
without using these values for P at all.

(5). Hitherto we have been considering cases in which
the theoretical probability is known & priori. But in a great
many cases this is not the fact ; the theoretical disteibution
has to be judged from the sample itself. The question we
wish to determine is whether the sample may be reasonably
considered to represent a random system of deviations from
the theoretical frequency distribution of the general popula-
tion, but this distribution has to be inferred from the sample
itself. ILet us look at this somewhat more closely. If we
have a fairly numerous series, and assume it to be really a
random sample, then the theoretical number m for the whole
population falling into any group and the theoretical
number m, as deduced from the data for the sample will only
differ by terms of the order of the probable errors of the
constants of the sample, and these probable errors will be
small, as the sample is supposed to be fairly large. We may
accordingly take:

m = my,+ @,

where the ratio of p to m, will, as a rule, be small. Tt is
only at the “tails ”” that p/m, may become more appreciable,
but here the errors or deviations will be few or small *,

* A theoretical probability curve without limited range will never at
the extreme tails exactly fit observation. The difficulty is obvious where
the observations go by units and the theory by fractions, We onght to
take our final theoretical groups to cover as much of the tail area as
amounts to at least a unit of frequency in such cases.

)-

).
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Now let y, be the value found for the sample, and y the value
required marking the system of deviations of the observed
quantities from a group-system of the same number accu-
rately representing the general population.

Then :

eog (Wt g frimmea)
. " l ?}lc'*'}lv

- s s {2 (e,

if we neglect terms of the order (u/in,)>.
Hence :

YR S ﬁ””e—""s”} {(ﬁ 2
x*—Xe b{ms LS m) m}

Now s must, [ take it, be Jess than y, for otherwise the
general population distribution or curve would give a better
fit than the distribution or curve actually fitted to the
sample. But we are supposed to fit a distribution or curve
to the sample so as to get the “ best” values of the constants.
Hence the right-hand side of the above equation must be
positive. If the first term be negative thén it must be less
than the second, or the difference of x and yx, is of the
order, not of the first but of the second power of quantities
depending on the probable errors of the sample. On the
other hand, if the first term be positive, it means that there
w2 —m

2
8

or that when

is negative correlation between # and
m

m;

the observed frequency exceeds the theoretical distribution
given by the sample (m’>m,), then the general population
would fall below the theoretical distribution given by the
sample (m<m,), and vice versa. In other words the general
population and the observed population would always tend to
fall on opposite sides of the sample theoretical distribution.
Now this seems impossible ; we should rather expect, when
the observations exceeded the sample theoretical distribution,
that the general population would have also excess, and wice
versa. Accordingly, we should either expect the first term
to be negative, or to be very small (or zero) if positive. 1In
either case 1 think we may conclude that y only differs from
x+ by terms of the order of the squares of the probable errors
of the constants of the sample distribution. Now our argu-
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ment as to goodness of fit will be based on the general order
of magnitude of the probability P, and not on slight differ-
ences in its value. Hence, if we reject the series asa random
variation from the frequency distribution determined from
the sample, we must also reject it as a random variation froma
theoretical frequency distribution differing by quantities of the
order of the probable errors of the constants from the sample
theoretical distribution. On the other hand, if we accept it
as a random deviation from the sample theoretical distribu-
tion, we may accept it as a random variation from a system
differing by quantities of the order of the probable errors of
the constants from this distribution.

Thus I think we can conclude, when we are dealing with a
sufficiently long series to give small probable errors to the
constants of the series, that :-—

(i.) If x:® be so small as to warrant us in speaking of the
distribution as a random variation on the frequency distribu-
tion determined from itself, then we may also speak of it as a
random sample from a general population whose theoretical
distribution differs only by quantities of the order of the
probable errors of the constants, from the distribution deduced
from the observed sample.

(ii.) If x4 be so large as to make it impossible for us to
regard the observed distribution as a sample from a general
population following the law of distribution deduced from the
sample itself, it will be impossible to consider it as a sample
from any general population following a distribution differing
only by quantities of the order of the probable errors of the
sample distribution constints from that sumple distribution.

In other words, if a curve is a good fit to a sample, to the
same fineness of grouping it may be used to describe other
samples from the same general population. Ifitisa bad fit,
then this curve cannot serve to the same fineness of grouping
to describe other samples from the same population. ’

We thus seem in a position to determine whether g given
form of frequency curve will effectively describe the samples
drawn from a given population to a certain degree of fineness
of grouping.

If it serves to this degree, it will serve for all roucher
groupings, but it does not follow that it will suffice for Ostill
finer groupings. Nor again does it appear to follow that
if the number in the sample be largely increased the same
curve will still be a good fit. Roughly the x2's of two samples
:ﬂ»pear to vary for the same grouping as their total contents.

ence if a curve be a good fit for a large sample it will be
good for a small one, but the converse is not true, and a larger



Downloaded by [Cornell University] at 13:39 17 July 2012

Probable in a Correlated System of Variables. 167

sample may show that our theoretical frequency gives only an
approximate law for samples of a certain size. In practice
we must attempt to obtain a good fitting frequency for such
groupings as are customary or utile. To ascertain the
ultimate law of distribution of a population for any groupings,
however small, seems a counsel of perfection.

(6) Frequency known or supposed known a priori.
ITllustration 1.
The following dataare due to Professor W. F. . Weldon,
F.R.S., and give the observed frequency of dice with 5 or
6 points when a cast of twelve dice was made 26,306 times :—

[
lr No. of Dice in .
. Observed Theoretical -
cas‘ﬁlrolitll;tf oré Frequency, m'. Frequeney, . Deviation, e.
185 203 — 18
1149 1217 — 68
3265 3345 — 80
5475 5576 —101
6114 6273 —159
5194 5018 +176
3067 2927 +140
1331 1264 + 7
403 392 + 11
105 87 + 18
14 13 + 1
4 1 + 3
0 0 0
l‘ 26306 26306

The results show a bias from the theoretical results, 5 and 6
points oceurring more frequently than they should do. Are
the deviations such as to forbid us to suppose the results due
to random selection ? Is there in apparently true dice a real
bias towards those faces with the maximum number of
points appearing uppermost ?

We have:—
Group. e, ém. Group. &, e/ m.

0... 324 1-59606 T e 5929 472807
1. 4624 3-79951 8 .o 121 0-30903
2 6400 191330 9 ...... 324 372414
3 ... 10201 182946 10 ...... 1 007346
4 . 25281 403013 11 ... 9 9-00000
5 ... 30976 6°17298 12 ... 0 00000
6 ... 19600 669628

Total... 4887241
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Hence x2=43-87241 and x=0'623,625.
As there are 13 groups we bave to find P from the formula :

2 4 6 8 10
— -2 X X X X X
P=e x(” s tyateiet

which leads us to
P=-000018,

or the odds are 62,499 to 1 against such a system of devia-
tions on a random selection. With such odds it would be
reasonable to conclude that dice exhibit bias towards the
higher points.

Hltustration I1.
If we take the total number of fives and sixes thrown
in the 26,306 casts of 12 dice, we find them to be 106,602

instead of the theoretical 105,224. Thus 1—21()6%2’6.%2—6='3377
nearly, instead of 1. x 26,30

Professor Weldon has suggested to me that we ought
to take 26,306(:3377+°6623)"% instead of the binomial
26,306(% + %) to represent the theoretical distribution, the
difference between 3377 and 4 representing the bias of the
dice. If this be done we find :

Group. m'. . e. e*m.
185 187 - 2 021,3904
1149 1146 + 3 007 8534
3265 3215 + 50 777,6050
5475 5465 + 10 018,2983
6114 6269 —155 3:991,8645
5194 5115 + 79 1-220,1342
3067 3043 + 24 *189,2869
1331 1330 + 1 -000,7519
403 424 - 21 1-040,0948
105 96 + 9 -841,8094
14 15 -1 *666,6667
4 1 + 3 9
0 0 0 0
Hence : x*=17"775,7553.
This gives us by the first formula in (ii.) of art. 4 :
P="1227;

or the odds are now only 8 to 1 against a system of deviations
as improbable as or more improbable than this one. It may be
said accordingly that the dice experiments of Professor Weldon
are consistent with the chance of five or six points being
thrown by a single die being ‘3377, but they are excessively

2.4.6.8+2.4.6.8.10)’
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improbable, if the chance of all the faces is alike and equal
to 1/6th.

1llustration 111

In the case of runs of colour in the throws of the roulette-
ball at Monte Carlo, I have shown¥* that the odds are at
least 1000 millions to one against such a fortnight of runs as
occurred in July 1892 being a random result of a true roulette.
I now give y* for the data printed in the paper referred
to, Z. e.:

4274 Sets at Roulette.

| Lo | |
Runs ... 12|84 (56,7 8|9/ 101112 01"5’
Actual ...|1246 045333220 (135| 81 [ 48 | 30 | 12| 7 (5|1 0

3317 8 L 4211 o
o ‘ \

From this we find y*=172 43, and the improbability of a
series as bad as or worse than this is about 14° 5/10%! From
this it will be more than ever evident how little chance had to
do with the results of the Monte Carlo roulette in July 1892.

Theory ...12137/1068| 534 | 267

134 67 |

(1) Frequency of General Population not known a priori.
Illustration 1V .+

In my memoir on skew-variation (Phil. Trans. vol. elxxxvi.
p- 401) 1 have fitted the statistics for the frequency of petals
in 222 buttercups with the skew-curve

y="2112252"322(7-3253 —x)>142,

The possible range is from 5 to 11 petals, and the fre-
quencies are :—

———
No. of Petals...] 5 il \ 7 ‘ 8 9 : 10 1 11

o

33 |55 2 0
{ |

1369 | 485 | 226 ( 96 | 34 ! 08 | 02
i

Observation ...|

Theory .........

These lead to x?==4'885,528 ; whence we find for the pro-
bability of a system of deviations as much or more removed

# The Chances of Death,’ vol. i.: The Scientific Aspect of Monte
Carlo Roulette, p. 54.

+ Illustrations IV. and V. were taken quite at random from my
available data.  Other fits with skew-curves may give much worse
results, others much better, for anything I can as yet say to the contrary,
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from the most probable

P="5586.
In 56 cases out of a hundred such trials we should on a
random selection get more improbable results than we have
done. Thus we may consider the fit remarkably good.

Lllustration V.,

The following table gives the frequencies observed in a
system recorded by Thiele in his Forelaesinger over almindelig
lagttagelseslaere, 1889, together with the results obtained by
fitting a curve of my Type 1. The rough values of the
moments only were, however, used, and as well ordinates used
measure areas :—

1

Groups. Obj:fved Curve m,. e e, eym.

0 ‘18 - 18 0324 ‘18
3 68 — 2:32 53824 79153
7 13-48 + 648 41-9904 31150
35 4519 +10°19 103-8361 22977
101 79-36 —2164 4682896 59008
8¢ 96:10 + 710 50-4100 5245
94 90-90 - 810 96100 ‘1058
70 71-41 + 141 19881 ‘0278
46 4825 + 225 50625 1049
30 2853 — 147 21608 ‘0757
15 14-04 - 06 0036 0002
4 6-96 + 296 87616 1-2523
5 2-88 - 212 44944 1-5605
1 1-08 + 06 ‘0036 0035
0 34 + 34 ‘1156 *3400
0 10 + 10 0092 0960

0 -00 + 0 -0 0
500 500-36% + 36 23-5000

J
Thus gives {x2=11"75=1, say.
Then
2 3 i 5 6 7
n n n n 7 Y Ui
=eN1l+-+,+5+ - +7+ 5+ )
P (+1+E 3 ;4+|a_ §b+|7,

Substituting and working out we find

P=-101="1, say.
Or, in one out of every ten trials we should expect to differ
from the frequencies given by the curve by a set of devia-
tions as improbable or more improbable. Considering that we
should get a better fit of our observed and calculated fre-
quencies by (i.) reducing the moments, and (ii.) actually

# Due to taking ordinates for areas and fewer figures than were really
required in the calculations.
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calculating the areas of the curve instead of using its ordinates,
I think we may consider it not very improbable that the
observed frequencies are compatible with a random sampling
from a population described by the skew-curve of Type I.

Tllustration VL.

In the current text-books of the theory :of errors it is cus-
tomary to give various series of actual errors of observation,
to compare them with theory by means of a table of distri-
bution based on the normal curve, or graphically by means of
a plotted frequency diagram, and on the basis of these com-
parisons to assert that an experimental foundation has been
established for the normal law of errors. Now this procedure
is of peculiarinterest. The works referred to generally give
elaborate analytical proofs that the normal law of errors is the
law of nature—proofs in which there is often a difficulty (owing
to the complexity of the analysis and the nature of the approxi-
mations made) 1n seeing exactly what assumptions have been
really made. The authors usually feel uneasy about this process
of deducing a law of nature from Taylor’s Theorem and a
few more or less ill-defined assumptions; and having deduced
the normal curve of errors, they give as a rule some meagre
data of how it fits actual observation. But the comparison of
observation and theory in general amounts to a remark —based
on no quantitative criterion—of how well theory and practice
really do fit! Perhaps the greatest defaulter in this respect
is the late Sir George Biddell Airy in his text-hook on the
¢ Theory of Brrors of Observation.” In an Appendix he gives
what he terms a “ Practical Verification of the Theoretical
Law for the Frequency of Errors,”

Now that Appendix really tells us absolutely nothing as to
the goodness of fit of his 636 observations of the N.P.D. of
Polaris to anormal curve. For,if we first take on faith what he
says, namely, that positive and negative errors may be clubbed
together, we still find that he has thrice smoothed his obser-
vation frequency distribution before he allows us to examine it.
Tt is accordingly impossible to say whether it really does or
does not represent a random set of deviations from a normal
frequency curve. All we can deal with is the table he gives of
observed and theoretical errors and his diagram of the two
curves. These, of course, are not his proper data at all: it is
impossible to estimate how far his three smoothings counter-
balance or not his multiplication of errors by eight. But as I
understand Sir George Airy, he would have considered such a
system of errors as he gives on his p. 117 or in his diagram
on p. 118 to be sufficiently represented by a normal curve.
Now I have investigated his 37 groups of errors, observational
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and theoretical. In order to avoid so many different groups,
I have tabulated his groups in *10" units, and so reduced them
to 21. From these %1 groups I have found x? by the method
of this paper. By this reduction of groups I have given
Sir George Airy’s curve even a better chance than it bas, as

it stands. Yet what do we find? Why,
x’=36"2872.

Or, using the approximate equation,
P=-01423.

That is to say, only in one occasion out of 71 repetitions of
such a set of observations on Polaris could we have expected
to find a system of errors deviating as widely as this set (or
more widely than this set) from the normal distribution. Yet
Sir George Airy takes a set of observations, the odds against
which being a random variation from the normal distribution
are 70 to 1, to prove to us that the normal distribution applies to
errors of observation. Nay, further, he cites this very impro-
bable result as an experimental confirmation of the whole
theory ! It is evident,” he writes, * that the formula repre-
sents with all practicable accuracy the observed Frequeney
of Errors, upon which all the applications of the Theory of
Probabilities are founded : and the validity of every investi-
gation in this Treatise is thereby established.”

Such a passage demonstrates how healthy is the spirit of
scepticism in all inquiries concerning the accordance of theory
and nature.

lustration V1.

Tt is desirable to illustrate such results a second time.
Professor Merriman in his treatise on Least Squares * starts
in the right manner, not with theory, but with actual expe-
rience, and then from his data deduces three axioms. From
these axioms he obtains by analysis the normal curve as the
theoretical result. But if these axioms be true, his data can
only differ from the normal law of frequency by a system of
deviations such as would reasonably arise 1f a random
selection were made from material actually obeying the
normal law. Now Professor Merriman puts in the place of
honour 1G00 shots fired at a line on a target in practice for
the U.8. Government, the deviations being grouped according
to the belts struck, the belts were drawn on the target of
equal breadth and parallel to the line. The following table
gives the distribution of hits and the theoretical frequency-

* ‘A Textbook on the Method of Least Squares,” 1891, p. 14,
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distribution calculated from tables of the area of the normal
curve*,

Belt Observed Normal p e* T

et Frequency. | Distribution. : m'
1 1 i 0 0
2 .. 4 6 -2 667
3. 10 27 -17 10:704
4. 89 67 +22 7224
5 .. 190 162 +28 4839
6 .. 212 242 -30 3719
7. 204 240 —36 5400
8 193 157 +36 82065
9 79 70 + 9 1157
10 .. 16 26 —10 3846
11 2 2 0 0

1000 1000 x2=45811

Hence we deduce: P =-000,00155.

In other words, if shots are distributed on a target according
to the normal law, then such a distribution as that cited by
Mr. Merriman could only be expected to occur, on anaverage,
some 15 or 16 times in 10,000,000 trials. Now surely it is
very unfortunate to cite such an illustration as the foundation
of those axioms from which the normal curve must flow!
For if the normal curve flows from the axioms, then the data
ought to be a probable system of deviations from the normal
curve, But this they certainly are not. Now it appears to
me that, if the earlier writers on probability had not pro-
ceeded so entirely from the mathematical standpoint, but had
endeavoured first to classify experience in deviations from
the average, and then to obtain some measure of the actual
goodness of fit provided by the normal curve, that curve
would never have obtained its present position in the theory
of errors. Even today there are those who rezard it as a sort
of fetish; and while admitting it to be at-fault as a means of
generally describing the distribution of variation of a quantity
2 from its mean, assert that there must be some unknown
quantity z of which # is an unknown function, and that 2
really obeys the normal law ! This might be reasonable if
there were but few exceptions to this universal law of error ;
but the difficulty is to find even the few variables which obe
it, and these few are not those usually cited as illustrations by
the writers on the subject !

* T owe the work of this illustration to the kindness of Mr, W, R,
Macdonell, M.A,, LL.D,



Downloaded by [Cornell University] at 13:39 17 July 2012

174 On Deviations from the Probable.

1lustration VIII,

The reader may ask : Is it not possible to find material
which obeys within probable limits the normal law ? I reply,
yes; but this law is not a universal law of nature. We must
hunt for cases. Qut of three series of personal equations, I
could only find one which approximated to the normal law.
T took 500 lengths and bisected them with my pencil at sight.
Without entering at length into experiments, destined for pub-
lication on another occasion, I merely give the observed and
normal distribution of my own errors in 20 groups.

‘ T T
Group. Observation. | Theory. Group. Observation. | Theory,

) 1 23 1 e 53 570
2 3 34 12 505 471

L T 11 69 13 285 340
4 . 145 13:1 14 21 227
L5 SO 215 222 15 135 135
6 .. 30 336 16t 75 70
T 47 475 17 e, 0 35
< S 515 578 18 1 16
9. 72 63-2 19 el 0 6
10 655 627 2 e 2 -3

Calculating 4? in the manner already sufficiently indicated
in this paper, we find
22 = 220422
We must now use the more complex integral formula for P,
and we find

P=-2817.

Or, in every three to four random selections, we should expect
one with a system of deviations from the normal curve greater
than that actually observed.

I think, then, we may conclude that my errors of judg-
ment in bisecting straight lines may be fairly represented by
anormal distribution. It is noteworthy, however, that I found
other observers’ errors in judgment of the same series of lines
were distinctly skew.

(8) We can only conclude from the investigations here
considered that the normal curve possesses no special fitness
for describing errors or deviations such as arise either in
observing practice or in nature. We want a more general
‘theoretical frequency, and the fitness of any such to describ
a given series can be investigated by aid of the criterion dis-
cussed in this paper. For the general appreciation of the
probability of the occurrence of a system of deviations defined
by % (or any greater value), the accompanying table has
been calculated, which will serve to give that probability
closely enough for many practical judgments, without the
calculations required by using the formulae of art. 4.
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