
This article was downloaded by: [Cornell University]
On: 17 July 2012, At: 13:39
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,
UK

Philosophical Magazine Series 5
Publication details, including instructions for
authors and subscription information:
http://www.tandfonline.com/loi/tphm16

X. On the criterion that a
given system of deviations
from the probable in the case
of a correlated system of
variables is such that it can be
reasonably supposed to have
arisen from random sampling
Karl Pearson F.R.S. a
a University College, London

Version of record first published: 21 Apr 2009

To cite this article: Karl Pearson F.R.S. (1900): X. On the criterion that a given system
of deviations from the probable in the case of a correlated system of variables is
such that it can be reasonably supposed to have arisen from random sampling ,
Philosophical Magazine Series 5, 50:302, 157-175

To link to this article:  http://dx.doi.org/10.1080/14786440009463897

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-
and-conditions

This article may be used for research, teaching, and private study purposes.
Any substantial or systematic reproduction, redistribution, reselling, loan,
sub-licensing, systematic supply, or distribution in any form to anyone is
expressly forbidden.

http://www.tandfonline.com/loi/tphm16
http://dx.doi.org/10.1080/14786440009463897
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


The publisher does not give any warranty express or implied or make any
representation that the contents will be complete or accurate or up to
date. The accuracy of any instructions, formulae, and drug doses should be
independently verified with primary sources. The publisher shall not be liable
for any loss, actions, claims, proceedings, demand, or costs or damages
whatsoever or howsoever caused arising directly or indirectly in connection
with or arising out of the use of this material.

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 1

3:
39

 1
7 

Ju
ly

 2
01

2 



[ 157 ] 

X. On the Criterlon that a given System of Deviations 
.from the Probable in the Case of a Correlated System of 
Variables is such that it can be reasonably supposed to have 

arisen from Random Sampling. By KXaL Ps~asos ,  F.R.S., 
University College, London*. 

T H E  object of this paper is to investigate a criterion of the 
probability on any theory of an observed system of errors, 

and to apply it to the determination of goodness of fit in the 
case of frequency carve~. 

(1) Preliminary Proposition. Let xl, x2.. �9 x,  be a system 
of deviations from the means of n variables with standard 
deviations r a 2 . . .  0-,~ and with correlations rl,, r13, r~a... 
m - - l ,  n. 

Then the frequency surface is given by 

Z -  Z0e , . (i.) 

where R is the determinant 

I ~i~ 

r2~ 1 

~1  r32 

r i b  . . r l n  

~23 �9 �9 r 2 n  

i . . r3. 

�9 o �9 �9 ~ �9 . . 

r n l  r n 2  r n 8  �9 

and Rpp, Rpq the minors obtained by striking out the pth row 
and pth column, and the pth row and qth cotumn. $1 is the 
sum for every value ofT, and S~ for every pair of values o fp  
and q. 

Now let 

x ~ = S I ( R ~  , x p '  ' RPqXpX---A~ (ii.) ~ ) + 2 S ~ (  ~ o'p~r~] . . . .  

Then : X: = constant, is the equation to a generalized " ellip- 
soid," all over the surface of which the frequency of the 
system of errors or deviations xt, x ~ . . .  x,~ is constant. The 
values which X must be given to cover the whole of space 
are from 0 to ~ .  ~Tow suppose the "ellipsoid " referred to 
its principal axes, and then by squeezing reduced to a sphere, 
Xi, X~, . . .  X being now the coordinates ; then the chances 
of a system of errors with as great or greater frequency than 

Communicated by the Author. 
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158 Prof. Karl  Pearson on Dev la t ions f rom the 

that denoted by X is given by 

p =  C ~ S  "e-�89 x~ d x '  dX~ " " " dX~3: 

[ SSS: dx.3:' 
the nmnerator being an n-fold integral from the ellipsoid X to 
the ellipsoid ~ ,  and the denominator an n-fold integral 
from the ellipsoid 0 to the ellipsoid oo. A common constant 
factor divides out. Now suppose a transformation of coordi- 
nates t o  generalized polar coordinates, in which X may be 
treated as the ray, then the numerator and denominator will 
have common integral factors really representing the genera~- 
[ized '" solid angles"  and having identical limits. Thus we 
shall reduce our result to 

~X :~ ~!X2 ~1 
e~ X dz 

P =  _Ix~ ._~ . . . .  (iii.) 

o ~e X dx 

This is the measure of the probability of a complex system 
of n errors occurring with a frequency as great or greater 
than that of the observed system. 

(2) So soon as we know the observed deviations and the 
probable errors (or a's) and correlations of errors in any 
case we can find X from' (iiz), and then an evaluation of (iii.) 
gives ns what appears to be a fairly reasonable criterion of the 
probability of such an error occurring on ~ random selection 
being made. 

For the special purpose we have in view~ let us evaluate the 
numerator of P by integrating by parts; we find 

~ ]  e-0~ 'V-~dx = [Z"-~ +(n--2)X ~-~ + (n--'2) ( n - 4 ) V -  

+ . . .  d- (n- -2)(n--4)(n--6)  . . .  (n - -2r - -2 )X '* - '~ '~e -~"  

+ (n--2)(n--4)(n--6)  . . .  (n--2,. e-~x'X"-~-~ 

+ e- ~x ~ ~ X"-~ X~-2~§ %~-2~+4 
Ln------2~ -~ ( ,~--2r)(n--~r+2) + (n-- '2~ ' )+(n--2~ '+2)(n--2r+ 

}3 " ' "  q- ( n - - 2 r ) ( n - - 2 r +  2) . . .  ( n - -2 )  " 
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Probable in a Correlated S qstem of  Variables. 159 

Further,  

Yo e - ~ X : U " - ' d x = ( n - - 2 ) ( n - - 4 ) ( n - - 6 )  . . . (n--2r) e - ~ X " - ~ - ' d x  . 
,do 

Now n will either be even or odd, or if n be indefinitely 
great we may take i~ practically either. 

n - - I  
Case (i.) n odd. Take r = ~ Hence 

e.~x d X + e-~X i- + 1--_g + t. .5 + . . . +  
P =  

f 
~ " | (iv.) 

But  

yo ~e-~x~dx _ / ~  �9 

Thus 

P = e-~x~dx 

t ~- ,- ~/X_ X 3 9r Z'-  ~ 
+ ~ J ~ .  e-,~ I 1 + ~ + 1----_3.5 + . . .  + 1 . 3 . 5 . _ :  n - 2 ) "  (v.) 

As soon as X is known this can be,at once evaluated. 
Case (ii.) n even. Take r = ~n-- 1. Hence 

e- ix~xdx+e-ix~ + - f f ~  q- 2 . 4 . 6  "~'" " " + 2 . 4 . 6  . . .  s  

( X~ 9/' ~%~ X,,-~ ) 
=e-~x ~ l + ~ + ~ . ~ + 2 _ _ g T g  + " ' "  + 2 . 4 . 6 . : . , ~ - 2  " (,,i,) 

The series (v.) and (vi.) both admit of fairly easy calcu- 
lation, and give sensibly the same results if n be even moder- 
ately large. If  we p u t  P = ~  in (v.) and (vl.) we have 
equations to determine X=X0, the value giving the "proba-  
bility ellipsoid." This ellipsoid has already been considered 
b y  Bertrand for n = 2  (probability ellipse) and Cznber for 
n = 3 .  The table which concludes this paper gives the 
~,alues of P for a series of values of X 2 in a slightly different 
ease. We can, however, adopt it for general purposes, when 
we only want a rough approximation to the probability or 
improbability of a given system of deviations. Suppose we 
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160 Prof. Kar l  Pearson on Deviatlongfrom the 

have n correlated variables and we desire to ascertain whether 
an outlying observed set is really auomalous. Then we 
calculate X 2 from (it.) ; next we take nt=n+ [ to enter our 
table, i. e. if  we have 7 correlated quantities we should look in 
the colmnn marked 8. The row X ~ and the column n + l  
will give the value of P, the probability of a system of 
deviations as great or greater than the outlier in question. 
For  many practical purposes, the rough interpolation which 
this table affords will enable us to ascertain the general order 
of probability or improbability of the observed result, and 
this is usually what we want. 

I f  n be very large, we have for the series in (v.) the value 
/ i  

e ~x21• e-~x2dx "7 and accordingly 
e ] u  

-v ~rdo 

Again~ the series in (vi.) for n very large becomes #• 
and thus again P = I .  These results show that if we have 
only an indefinite number of groups, each of indefinitely 
small range, it is practically certain tha~ a system of errors 
as large or larger than that defined by any value of X will 
appear. 

Thus, if we take a very great number of groups our tesL 
becomes illusory. We must confine our attention in calcu- 
lating P to a finite number of groups, and this is undoubtedly 
what happens in actual statistics, n will rarely exceed 30, 
often not be greater than 12. 

(3) Now let us apply the, above results to the problem of 
the fit of an observed to a theoretical frequency distribution. 
Let  there be an ( n +  1)-fold grouping, and let the observed 
frequencies of the groups be 

?~ll~ sly, mla . . ,  mtn~ mfn+H 

and the theoretical frequencies supposed known a priori be 

ml, m2, m a  �9 �9 �9 m ~ ,  ~tn+l 

then S(m)--  S(m') = Iq = total frequency. 
]~ urther, if e =  ,d- -m give the error, we have 

e l+e~+e3+ �9 �9 �9 -t- e~+l---- 0. 

Hence only n of the n +  1 errors are variables; the n +  t th  is 

�9 Write the series as F, then we easily find dF/dx=I+KF , whence by 
integration the above result follows. Geometrically, P = I  means that if 
n be indefinitely large, the nth moment of the tail of the normal curve 
is equal to the nth moment of the whole curve, however much or 
however little we cut off as "tail." 
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Probable in a Correlated System of Variables. 161 

determined when the first n are known, and in using formula  
(it.) w e  treat only  of n variables. N o w  the standard de- 
viation for the random variat ion of ep is 

~. = J N ( l _ m ,  , m ,  . . (, ,ii .) -ff]N' 

and if r~q be the correlat ion of random error  ep and % 

1~IP~q �9 
O'pO'q?'pq N . . . .  (viii.) 

I t =  

mq =sin~flq, where flq is an auxil iary Now let us write ~-  

angle  easily found. Then we have 

crq = v'N- sinBq cos fiq, . . . .  (ix.) 

r~q = -- tan/3~ tan Bp . . . . .  (x.) 

W e  have from the value of R in w 1 

1 - - t a n f l ~ t a n f l l  - - t an  fl~ t a n f l ) . . . - t a n f i ~ t a u B ,  I 
- - t a n  fll tan fl~ i - tan f13 tan r  tan fl~ tan/32 / - - t a n / ~  tan fl~ - - t a n  f12 t a n / ~  1 . . . - -  tan fl,~ tan fl~ 

, , �9 , �9 �9 , , �9 ~ �9 �9 , ~ �9 �9 , ~ 

�9 �9 , �9 ~ , , ~ , �9 �9 , �9 ~ ~ �9 �9 �9 

�9 �9 . . . . . . .  , �9 �9 ~ , . , �9 ~ 

- - t an /3 ,  t a n f l .  --tanfl~tanfl. - - t a n f l 3 t a n f l , ,  1 

= ( - -  1)" tan~fl~ lan2B~ l a n ~ f l , . . ,  tan2/3, x 

- e o t 2 ~  1 1 . . . . . .  1 

1 --cot2fl~ 1 . . . . . .  1 

1 1 - eot~fl~ . . . . . .  1 

�9 �9 , o , , ~ , ~ . . ~  , �9 

j @ ~ O @ ~ I S g O 4 $ Q  

�9 ~ �9 , ~ ~ �9 �9 ~ ~ ~ , 

1 1 1 --  cot~fl 

~-tan~/91 tan ~/95 tan ~ fl~ �9 �9 �9 ta n~/3~ • J ,  say. 
Similarly,  

R n =  ( - - 1 )  ~ - '  tan  ~ I~  tan 'e/~3 . . . . . .  tan 2 f t .  x J m  

R , ~ =  ( - 1) ~-1 tan/~1 tan ~ :  tan2/33 . . �9 tan:/3n X Jl: .  

Phil. Maa. S. 5. Vol. 50. No. 302. July 1900. M 
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162 Pro[ .  Kar l  Pearson on Devlationsfrom the 

Hence  the problem reduces to the e~aluation of the deter-  
minant  J and its minors. 

I f  we wri te  

J =  

Clearly, 

J 1 2  - - -  - -  

N 
% = c o t ~ f l q =  - - - -  I . . . . .  (xi . )  

g / l q  

--~h I 1 ...... 1 

1 - - ~  1 ...... 1 

1 1 --  ~:~ . . . . . .  1 

�9 o ~ ~ * ~ ~ ~ ~ 

1 1 1 . . . . .  - - ~  

1 1 1 . . . . . .  1 

1 - - ~  1 . . . . . .  1 

1 1 - -~4 . . . . . .  1 

e e , t o * . .  

�9 ~ ~ . ~ �9 ~ ~ 

= ( - - D  ~-'  (,~3+ 1) ( , ~ 4 + 1 )  � 9  ( ' 7 , + 1 ) .  

General ly,  i f  X = (*h + 1)(7/, + l)(~/a + 1 ) . . .  ('1. + 1), 
X. 

J ~  = ( --  1)~-1 _ .  
U" 

But a n - ~ 7 ~ J , = + a s  �9 �9 �9 +dl .=O.  

Hence  dn= (1 + ~ / , ) J l ~ - J l = - - a l a - - a , ~  �9 . . - - J l .  

--( -IX I I+~= l+~a l + ~ 4 " " - - -  

Whence,  compar ing d with dn,  it is clear that  : 

1 1 1 1 
J= (-- l)~X 1 l+,h i+~/2 i+~/s i+~/4 

Now 

= S  N ' b y ( x i ' ) ' =  N = l - - -  

Thus  : 

J = 

(xii.) 

�9 . .  

/ / ~ n - b  I 

N . 
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Probable in a Correlated System of Variables. 

Similarly : 
X [m~ 

Thus : 

Rp~ __ cot ~ tip = cot/$p ~ -  1 + ; 
R = m,,+l/ 

or from (vii.) 

163 

R~p I 1 1 + . . . . . . . .  (xiii.) 
R Op 0 ~ Tl'lp "Inn+ 1 

Again : 

RPqR -- cot/3p cot Bq J~- 

and : 

Thus by (ii.) : 

But  

hence : 

= cot/gp cot ~q mpmq 
~/'/~n+ 1" 

Rpq 1 1 . . . . .  (xiv.)  
R {TpO'q ?t~n+ 1 

where the summation is now to extend to all ( n +  1) errors,~ 
and not merely to the first n. 

(4). This result is of very great simplicity, and very easily 
applicable. The quanti ty 

is a measure of the goodness of fit, and the stages of our 

M'2  

81(~') = -- e.+l, 

\ rap/ mn+l 
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164 Prof. Karl Pearson on Dev~at;ou.~.from tlte 

investigation are pretty clear. They are : - -  
(i.) Find X from Equation (xv.) : 
(it.) I f  the number of errors, n r = n + l ,  be odd, find the 

improbability of the system observed from 

( )ff X4 ;gG ~,~'-3 ) 
P = e - ~ x  2 1 d - ~ -  + ~ - t - 2 _ _ 4 ~ - 6  d- . . .  - I - 2 . 4 . 6 ~ _ n t _ 3  " 

I f  the nmnber of errors, n%~n+ I, be even, find the prob- 
ability of the system observed from 

= e-,~x d X P jr x 

+ e - ~  + 1T3  + - T ~  + ' "  + 1 " 1 . 3 . 5 . : _ ~ , - 3  

(iii.) I f  n be less than 13, then the Table at the end of this 
paper will often enable us to determine the general 
probabillty or improbability of the observed system 
without using these values for P at all. 

(5). Hitherto we have l~een considering- cases in which 
the theoretical probability is known ~ p~ori. :But in a great 
many cases this is not the fact ;  the theoretical distribution 
has to be judged from the sample itself. The question we 
wish to determine is whether the sample may be reasonably 
considered to represent a random system of deviations from 
the theoretical frequency distribution of the general popula- 
tion, but this distribution has to be inferred from the sample 
itself. Let us look at ' this somewhat more closely. I f  we 
have a fairly nmnerous series, and assume it to be really a 
random sample, then the theoretical number m for the whole 
population falling into any group and the theoretical 
number m~ as deduced from the data for the sample wi]] only 
differ by terms of the order of the probable errors of the 
constants of the sampl% and these probable errors will be 
small, as the sample is supposed to be fairly large. We may 
accordingly take : 

m ----- m~ -{-/z~ 

where the ratio of/~ to rn, will, as a rule, be small. I t  is 
only at the "tails " that tt/m, may become more appreciable, 
but here the errors or deviations will be few or small *. 

$ A theoretical probability curve without limited range will never at 
the extreme tails exactly fit observation. The difficulty is obvious where 
the observations go by units and the theory by fi'actions. We ought to 
take our final theoretical groups to cover as much of the tat I area as 
amounts to at least a unit of fre~iuenc~ in such case~ 
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Probable in a Correlated Sy,,tem o f  Varlable~. 165 

:Now let X, be the value found for the sample, and X the value 
required marking the system of deviations of the observed 
quantities from a group-system of the same number accu- 
ra tdy  representing the general population. 

Then : 

~" (,,r ~ f - / - . , s - g )  ~ x ~ = S ~  -, } = s t  -,,+t, } 

_ - -  - s  } \ G -  ~ -  
#Vl~ t #~s 

if we neglect terlns of the order (~Um.)L 
Hence : 

mlt2 

I 7~ s rns m s  

Now Xs must, [ take it, be less than X, for otherwise the 
general population distribution or curve would give a better 
fit than the distribution or curve actually fitt, ed to the 
sample. But we are supposed to fit a distribution or curve 
to the sample so as to get the " best" values of" the constants. 
Hence the right-hand side of the above equation mus~ be 
positive. If" the first term be negative ih6n it must be less 
than the second, or the diflbrenee of X and X* is of the 
order, no~ of the first but of the second power of quantities 
depending on the probable errors of the sample. On the 
other hand, if the first term be positive, it means that there 

_ _  " l n l ~  _ _  ~ sf~ 
is negative correlation between ~ and or that when 

the observed frequency exceeds the theoretical distribution 
given by the sample (m'>m,),  then the general population 
would fall below the theoretical distribution given by the 
sample (m<m~), and wee versa. In other words the general 
population and the observed population would always tend to 
fidl on opposite sides of the sample theoretical distribution. 
Now this seems impossible ; we should rather expect, when 
the observations exceeded the sample theoretical distribution, 
that the general population would have also excess, and ~ice 
versa. Accordingly, we should either expect the first term 
to be negative, or to be very small (or zero) if positive. In 
either case I think we may conclude that X only diffbrs from 
X, by terms of the order of the squares of the probable errors 
of the constants of the sample distribution. Now our argu, 
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166 Prof. Karl Pearson on l)eviatlons' from tl~e 

ment as to goodness of fit will be based on the general order 
of magnitude of the probability P, and not on slight differ- 
ences in its value. Hence, if we reject the series as a random 
variation from the frequency distribution determined from 
the sample, "aTe must also reiect it as a random variation from a 
theoretical frequency distribution differing by quantities of the 
order of the probable errors of the constants from the sample 
t'leoretical distribution. On the other hand, i f  we accept it 
as a random deviation from the sample theoretical distribu- 
tion, we may ae3ept it as a random variation from a system 
differing by quantities of the order of the probable errors of 
the constants from this distribution. 

Thus I think ~e can conclude, when we are dealing with a 
sufficiently long series to give smalL probable errors to tfhe 
constants of the series, that : -"  

(i.) I f  X~a be so small as to warrant us in speaking of the 
distribution as a random variation on the t'requency distribu- 
tion determined from itself, then we may also speak of  i~ as a 
random sample from a general population whose theoretical 
distribution differs only by quantities of the order of the 
probable errors of the constants, from the distribution deduced 
from the observed sample. 

(it.) I f  Zi* be so large as to make it impossible for us to 
regard the observed distribution as a sample from a ~eneraL 
popuLation folLo;~ ing the Law ot distributiondeduced from the 
sampLe itself, it will be impossible to consider it as a sample 
from any general population following a distribution diffbring 
only by quantities of the order of the probable errors of the 
sample distribution constants from that sample distribution. 

In other words, if a curve is a good fit to a sample, to the 
same fineness of grouping it may be used to describe other 
~amples from the same general population. I f  it is a bad fit, 
then this curve cannot serve to the same fineness of grouping 
to describe other samples from the same population. 

We thus seem in a position to determine whether a given 
ibrm of frequency curve will effectively describe the samples 
drawn from a given population to a certain degree of fineness 
of grouping. 

I f  i~ serves to this degr~,  it will serve for all rougher 
groupings, but it does not/bllow that it will suffice for still 
finer groupings. Nor again does it appear to follow that 
it' the number in the sample be largely increased the same 
curve will still be a good fit. Roughly the X~'s of two samples 
a[~pear to vary for the same grouping as their total con~ents. 
Hence if a curve be a good fit for a large sample it will be 
good for a small one, but the converse is not true, and a larger 

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 1

3:
39

 1
7 

Ju
ly

 2
01

2 



P~vbable ia a Correlated System vf  Variables. 167 

sample may show that our theoretical frequency gives only an 
approximate law for samples of a certain stze. In practice 
We must attempt to obtain a good fitting frequency for such 
groupings as are customary or utile. To ascertain the 
ultimate law of distribution of a population for any groupings, 
however small, seems a counsel of perfection. 

(6) FreTzency known, or suTposed known a priori. 
Illustration I. 

The following data are due to Professor W. F. R. Weldon, 
F.R.S., and give the observed frequency of dice with 5 or 
6 points when a cast of twelve dice was made 26,306 times : - -  

No. of Dice in 
Cast with 5 or 6 

X'oints. 

0 . . . . . . . . . . . . . . .  

1 , ,o  . . . . . . . . .  ~  

2 . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . .  

10 ............... 
11 ... . . . . . . . . . . . .  
12 ... . . . . . . . . . . . .  

Observed 
Frequency, m'. 

185 
1149 
3265 
5475 
6114 
5194 
3067 
1331 
403 
105 

14 
4 
0 

26306 

Theoretical 
Frequency, m .  

203 
1217 
3345 
5576 
6273 
5018 
2927 
1254 
392 

87 
13 

1 

0 

26306 

Deviation, e. 

18 
- - 6 8  
- -  80 
- 1 0 1  

- 159 
+176  
+140 
+ 77 
-at- 11 
+ 18 
+ 1 
+ 3 

0 

The results show a bias iu the theoretical results, 5 and 6 
points occurring more frequently than they should do. Are 
the deviations such as to forbid us to suppose the results due 
to random selection ? Is there in apparently true dice a real 
bias towards those faces with the maximum number of 
points appearing uppermost ? 

We have : - -  

G r  e 2, 

4624 
6400 

3 ...... ~, 10201 

30976 
6 19600 

1"59606 
3"79951 
1"91330 
1 '82945 
4"03013 
6'17298 
6'69628 

Group. 

7 . . . . . .  

9 :Z2 
10 ...... 
11 ...... 
12 ...... 

Total... 

e 2 , e2/7/t .  

5929 4"72807 
121 030903 
324 3'72414 

1 0'07346 
9 9"00000 
0 "00000 

... 43'87241 
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] 68 Prof. Karl  Pearson on .Deviations from the 

Hence X~=43"8724t and X=6 '623,625.  

As there are 13 groups we have to find P from the formula : 

P=e-~n t + - ~  + ~- .4  + 2 . 4 ~ - F  2 . 4 . 6 . 8  + 2 . 4 . 6 . 8 . 1 0  , 

which leads us to 
P = '000016, 

or the odds are 62,499 to 1 against such a system of devia- 
tions on a random selection. With such odds it would be 
reasonable to conclude that dice exhibit bias towards the 
higher points. 

Illustration I I .  
I f  we take the total nmnber of fives and sixes thrown 

in the 26,306 casts of 12 dice, we find them to be 106,602 

instead of the theoretical 105,224. Thus 106,602 _=.3377 
12 x 26,306 nearly, instead of ~. 

Professor Weldon has suggested to me that we ought 
to take 26,306( '3377+'6623) ~: instead of the binomial 
26,306(�89 1~ to represent the theoretical distribution, the 
difference between "3377 and ~ representing the bias of the 
dice. I f  this be done we find : 

( ~ l ' o t l p .  m I . ,#t .  e .  e2ft?~, 

0 . . . . . . . . . . . . . . .  

1 . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . .  

4 , . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . .  

7 
8 . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . .  

10 ............. 
11 .............. 
12 ............. 

185 
1149 
3265 
5475 
6114 
5194 
3067 
1331 
403 
105 
14 
4 
0 

187 
1146 
3215 
5465 
6269 
5115 
3043 
1330 
424 
96 
15 
1 
0 

- -  2 

+ 3 
+ 50 
+ 10 
- -  155 
+ 79 
+ 24 
+ 1 
- 21 
+ 9 
- -  I 

4- 3 
0 

�9 021,3904 
~)07.85~ 
.777,605o 
.018,2983 

3991,8645 
1.220,1342 
�9 189,2869 
.000,7519 

1 "040,0948 
'841,8094 
'666,6667 

9 

0 

Hence : X~= 17"775,7555. 

This gives us by the first formula in (it.) of art. 4 : 

P = ' 1 2 2 7  ; 

or the odds are now only 8 to 1 against a system of deviations 
as improbable as or more improbable than this one. It  may be 
said accordingly that the dice experiments of Professor Weldon 
are consistent with the chance of five or six points being 
thrown by a single die being "3377, but they are excessively 
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15.obable in a Correlated System of V(o'iables. 169 

improbable,  if the chance of all the faces is alike and equal 
to 1/6th. 

Illustration I I L  
In  the case of runs  of colour in the throws of the roulette- 

ball a t  Monte Carlo, I have shown * that  the odds are at 
least 1000 millions to one against  such a fo r tn igh t  of runs as 
occurred in J u l y  1892 being a random result of a true roulette.  
1 now give X ~ for  the data pr inted in the paper  referred 
to, i .e . :  

4274 Sets at  Roulette.  

' ! ! ' o ~  Runs ....../] 1 2 / 3 4 5 6 7 8 9 10 1112[ 12 

~t ,a~  . . . / ~  ~ / ~  ~ 0  , ~  ~ ,~ ~0 1~ ~ ~ 1 0 

�9 ~eo~ ""/~1~/ ~ 0 ~ / ~ /  ~ 1 ~  ~7 ~ 1~ ~ ~ ~ , 0 

F r o m  this we find X'2=172 43, and the improbabi l i ty  of a 
series as bad as or worse than this is about  14"5/103o I F r o m  
this it will be more  than ever evident  how tittle chance had to 
do with the results of the Monte  Carlo roulet te  in J u l y  1892. 

(7) Frequency of General Population not known a priori. 
]llu~tration I V . ?  

I n  m y  memoir  on skew-varlat ion (Phil. Trans.  vol. clxxxvi.  
p..401) I have fitted the statistics for  the f requency  of petals 
in 222 but tercups  with the skew-curve  

y =  "211225x-'S~2 (7"3253--x)  3"14~. 

The possible range  is from 5 to 11 peials~ and the fre-  
quencies are : ~  

No. of Petals... 5 fl 7 8 9 10 ] 11 

T l ~ e o r y  . . . . . . . . .  I 136"9 48"5 lZ2"6 9"6 8"4! 0"~ 0"2, 
_ , i i 

These lead to X2-.-=4"885,528 ; whence we find for the i)l"o- 
babil i ty of a system of deviations as much  o1" more removed 

* ' The Chances of Death,' vol. i. : The Scientific Aspect of Monte 
Carlo Roulette~ p. 54. 

t Illustrations IV. and V. were taken quite at random from n~y 
available data. Other fits with skew-curves may give much worse 
~esults, others much better~ for anything I can as yet s~y to the central.y, 
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170 Prof.  Ka r l  Pearson on Deviation.qfrom the 
fi'om the most probable 

P='5586.  
I n  56 cases out of a hundred such trials we should on a 
random selection get more improbable results than we have 
done. Thus we may consider the fit r emarkab ly  good. 

Illustration V. 
The following table gives the frequencies observed in  a 

system recorded by Thiele in his Forelaesinger over almlndel:g 
lagttagelsedaere, 1889, together with the results obtained by 
fi t t ing a curve of my Type 1. The rough  values of the 
moments  only were, however, used, and as well ordinates used 
neasure  areas : ~  

Observed Groups. m'. 

1 . . . . . . . . .  0 
2 ........ 3 
3 7 
4 35 
5 lOt 
6 89 
7 94 
8 70 
9 46 

i0 30 
11  ......... 15 
12 4 
13 5 
14 1 
15 0 
16 ......... 0 
17 ......... 0 

- - - ; o o  ' 

C u r v e  m t .  

"18 
"68 

13'48 
45"19 
79"36 
96"10 
90"90 
"71 "41 
48"25 
28"53 
14"94 
6"96 
2-88 
1 0 6  
"34 
"10 
"00 

500"36~ 

- -  '18 
-- 2"32 
+ 6"48 
-~ 10'19 

21 "64 
-~ 7-10 

3"10 
i 1-41 

2"25 
- 147 

"06 
A 2"96 

2-12 
4 .06 
4 '34 
+ -10 
+ 0 

+ -36 

"0324 
5"3824 

419904 
103-8361 
468 '2896 
50-4[00 
9.6100 
1 ~ 8 8 1  
5-0625 
"2-1609 

"0036 
8"7616 
4-4944 
-0036 
"1156 
~)092 
"0 

e 2 / : ~ ,  o 

"18 
7"9153 
3'1150 
2'2977 
5'9008 
.5")_45 
"1058 
"0278 
"1049 
"0757 
"0(_)02 

1"2523 
1 "5605 
"0035 
"3400 
"0960 
'0 

Thus gives �89 ~ = 11" 75 = ~/~ say. 
Then 

( V v~ ~fl V~ n'5 v6 *i 7) 

Subs t i tu t ing  and working out we find 

P = ' 1 0 1 = ' I ,  say. 

Or, in one out of every ten trials we should expect to differ 
from the frequencies given by the curve by  a set of devia- 
tions as improbable  or more improbable.  Consider ing that we 
should get a better  fit of our  observed and calculated fre-  
quencies by  (i.) reducing  the moments ,  and (it.) actual ly  

+ Due to taking ordinates ibr areas and fewer figures than were really 
requirad in the calculations. 
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Probable in a Corl'elated @stem of V(o'iable~. 171 

calculating the areas of the curve instead of using its ordinate~, 
I think we may consider it not very improbable that the 
observed frequencies are compatible with a random sampling 
from a population described by the skew-curve of Type I. 

Illustration VI. 
In the current text-books of the theory o f  errors it is cus- 

tomary to give various series of actual errors of observation, 
to compare them with theory by means of a table of distri- 
bution based on the normal curv% or graphically by means of 
a plotted frequency diagram, and on the basis of these com- 
parisons to assert that an experimental foundation has been 
established for the normal law of errors. :Now this procedure 
is of peculiar interest. The works referred to generally give 
elaborate analytical proofs that the normal law of errors is the 
law of nature--proofs in which there is often a difficulty (owing 
to the complexity of the analysis and the nature of the approxi- 
mations made) in seeing exactly what assumptions have been 
really made. The authors usually feel uneasy about this process 
of deducing a law of nature from Tayl0r's Theorenl and a 
few more or less ill-defined assmnptions ; and having deduced 
the normal curve of errors, they give as a rule some meagre 
data of how it fits actual observation But the comparison o~ 
observation and theory in general amounts to a remark--based 
on no quantitative criterion--of how well theory and practice 
really do fit ! Perhaps the greatest defaulter in this respect 
is the late Sir George Biddell Airy in his text-book on the 
' Theory of Errors of Observation.' In an Appendix he gives 
what he terms a " Practical Verification of the Theoretical 
Law for the Frequency of Errors." 

~o~v that Appendix really tells us absolutely nothing as to 
the goodness of fit of his 636 observations of the N.P.D. of 
Polaris to a normal curve. For, if we first take on faith what he 
says, namely, that positive and negative errors may be clubbed 
together, we still find that he has thrice smoothed his obser- 
vation frequency distribution before he allows us to examine it. 
I t  is accordingly impossible to say whether it really does or 
does not represent a random set of deviations from a normal 
frequency curve. All we can deal with is the table he gives of 
observed and theoretical errors and his diagram of the two 
curves. These, of cours% are not his proper data at all : it is 
impossible to estimate how far his three smoothings counter- 
balance or not his multiplication of errors by eight. But as I 
understand Sir George Airy, he would have considered such a 
system of errors as he gives on his p. 117 or in his diagram 
on p. 118 to be sufficiently represented by a normal curve. 
Now I have investigated his 37 groups of errors, observational 
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172 Prof. Karl Pearson on Deviationsfi'om tl~e 

and theoretical. In order to avoid so many different groups, 
I have tabulated his groups in "10" units, and so reduced them 
to 21. From these ~1 groups I have found X 2 by the method 
of this paper. By this reduction of groups I have given 
Sir George Airy's curve even a better chance than it has, as 
it stands. Yet what do we find? Why,  

X~= 35"2872. 

Or, using the approximate equation, 

P= '01~23.  

That is to say, only in one occasion out of 71 repetitions of 
such a set of observations on Polaris could we have expected 
to find a system of errors deviating as widely as this set (or 
more widely than this set) from the normal distribution. Yet 
Sir George Airy takes a set of observations, the odds against 
which being a random variation from the normal distribution 
are 70 to 1, to prove to us that the normal distribution applies to 
errors of observation. :Nay, further, he cites this very impro- 
bable result as an experimental confirmation of the whole 
theory ~ " I t  is evident," he writes, " that  the formula repre- 
sents with all practicable accuracy the observed Frequency 
of Errors, upon which all the applications of the Theory of 
:Probabilities are founded : and the validity of every investi- 
gation in this Treatise is thereby established." 

Such a passage demonstrates how healthy is the spirit of 
scepticism in all inquiries concerning the accordance of theory 
and nature. 

Illustration VIL 
I t  is desirable to illustrate such results a second time. 

ProFessor Merriman in his ~rea~ise on Least Squares ~ starts 
in the right manner, not with theory, but with actual expe- 
rience, and then from his data deduces three axioms. From 
these axioms he obtains by analysis the normal curve as the 
theoretical result. But if these axioms be true, his data can 
only differ from the normal law of frequency by a system of 
deviations such as would reasonably arise if a randmn 
selection were made from material actually obeying the 
normal law. Now Professor Merriman puts in the place Of 
honour 1000 shobs fired at a line on a target in practice for 
the U.S. Government, the deviations being grouped according 
to the belts struck, the belts were drawn on the target of 
equal breadth and parallel to the line. The following table 
gives the distribution of hits and the theoretical frequency- 

* ~A Textbook on the Method of Least Squares,' 189t, p. 14, 
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Probable in a Correlated System of Variables. 173 

distribution calculated fi'om tables of the area of the normal 
curve*. 

Observed ~Normal e ~ 
Belt. Frequency. Distribution. e. m' 

1 . . . . . . . . . . .  

2 . . . . . . . . . . . .  

3 . . . . . . . . . . . .  

4 . . . . . . . . . . . .  

5 . . . . . . . . . . . .  

6 . . . . . . . . . . . .  

7 . . . . . . . . . . . .  

8 . . . . . . . . . . . .  

9 . . . . . . . . . . . .  

10 ............ 
11 ............ 

1 
4 

10 
89 

190 
212 
204 
193 
79 
16 
2 

1 
6 

27 
67 

162 
242 
240 
157 
70 
26 

2 

0 
- - 2  
- 1 7  
+22 
+ 28 
- 3 0  
- 3 6  
+36 
+ 9  
--10 

0 

0 
"667 

10'704: 
7"224 
4"839 
3-719 
5"400 
8'255 
1"157 
3"846 

0 

1000 1000 X~----45"811 

I - I  e n c  e w e  leduce: P---'000,00155. 

In other words, if shots are distributed on a target according 
to the normal law, then such a distribution as that cited by 
Mr. Merriman could only be expected to occur, on an average, 
some 15 or 16 times in 10,000,000 trials. Now surely it is 
very unfortunate to cite such an illustration as the foundatiou 
of those axioms from which the normal curve must flow! 
For  if the normal curve flows from the axioms, then the data 
ought to be a probable system of deviations from the normal 
curve. But this they certainly are not. Now it appears to 
me that, if  the earlier writers on probability had not pro- 
ceeded so entirely from the mathematictd standpoint, but had 
endeavoured first to classify experience in deviations from 
the average, and then to obtain some measure of the actual 
goodness of fit provided by the normal curve, that curve 
would never have obtained its present position in the theory 
of errors. Even today there are those who regard it as a sort 
of fetish; and while admitting it to be at fault as a means of 
generally describing the distribution of variation of a quantity 
x fi-om its moan, assert that there must be some unknown 
quantity z of which x is an unknown function, and that z 
rehlly obeys the normal law ! This might be reasonable if 
there were but few exceptions to this universal law of error ; 
but the difiqeulty is to find even the few variables which obey 
it, and these few are not those usually cited as illustrations by 
the writers on the subject! 

* I owe the work of this illustration to the kindness of Mr. W . R .  
Macdonell, M.A., LL.D. 
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174 On Deviations from the Probable. 
Illustration VIII .  

The reader may ask : Is it not possible to find material 
which obeys within probable limits the normal law ? I reply, 
yes ; but this law is not a universal law of nature. We must 
hunt for cases. Ou~ of three series of personal equations~ I 
could only find one which approximated to the normal law. 
I took 500 lengths and bisected them with my pencil at sight. 
Without entering at length into experiments, destined for pub- 
lication on another occasion, I merely.give the observed and 
normal distribution of my own errors m 20 groups. 

2 . . . . . . . . . . . .  , 3 
3 . . . . . . . . . . . .  11 
4 . . . . . . . . . . . .  14"5 
5 . . . . . . . . . . .  21 "5 
6 . . . . . . . . . . . .  30  
7 . . . . . . . . . . . .  47 
8 . . . . . . . . . . .  51 "5 
9 . . . . . . . . . . .  72  

10 . . . . . . . . . . . .  65"5 

T h e o r y .  

--3.T- 
3"4 
6"9 

13"1 
22  2 
3 3 ' 6  
47"5 
57"8 
63"2 
6 2 7  

G r o u p .  

11 . . . . . . . . . . . .  

12 . . . . . . . . . . . .  
13 . . . . . . . . . . . .  
14 . . . . . . . . . . . .  
15 . . . . . . . . . . . .  
16 . . . . . . . . . . . .  
17 . . . . . . . . . . . .  
18 . . . . . . . . . . . .  
19 . . . . . . . . . . . .  

Obse r~ ' a t ion .  I T h e o r y .  

53  57"0 
5 0 5  47-1 / 
28 "5 34"0 / 
27 22"7 
13 '5  13-5 

0 ~ 

1 1-6 

2 

Calculating %: in the manner already sufficiently indicated 
in this paper, we find 

%2 = 22"0422. 
We must now use the more complex integral formula for P, 

and we find 
P='2817.  

Or, in every three to four random selections, we should expect 
one with a system of deviations from the normal curve greater 
than that actually observed. 

I think, then, we may conclude that my errors of judg- 
ment in bisecting straight lines may be fairly represented by 
a normal distribution. It is notewolChy, however, that I found 
other observers' errors in judgment of the same series of lines 
were distinctly skew. 

(8) We can only conclude from the investigations here 
considered that the normal curve possesses no special fitness 
for describing errors or deviations such as arise either in 
observing practice or in nature. We want a more general 
theoretical frequency, and the fitness of any such to describ 
a given series can be investigated by aid of the criterion dis- 
cussed in this paper. For the general apprec!ation of the 
probability of the occurrence of a system of deviations defined 
by X ~ (or any greater value), the accompanying table has 
been calcnlated~ which will serve to give that probabilltv 
closely enough for many practical judgments, without the 
calculations required by using the tbrmul~e of art. 4. 
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