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VI.  The Law of Partition qf Kinetic Ene~:qj. 
B y  Lord RAYLEIGYI, F.R.S.* 

T H E  law of equal partition, enunciated first by ~Vaterston 
f'or the case of point molecules of varying mass, and the 

associated Boltzmann-Maxwell doctrine respecting steady dis- 
tributions have been the subject of much difference of opinion. 
Indeed, it would hardly be too much to say that no two writers 
are fully agreed. The discussion has turned mainly upon 
Maxwell's paper of 1879t ,  to which objections :~ have been 
taken by Lord Kelvin and Prof. Bryan, and in a minor degree 
by l~rof. Boltzmann and myself. Lord Kelvin's objections 
are the most fimdamental. He writes ,~: "Bu t ,  conceding 
Maxwell's fundamental assumption, ] do not see in the mathe- 
matical workings of his paper any proof of his conclusion 
' that the average kinetic energy corresponding to any one of 
the variables is the same for every one of the variables of the 
system.' Indeed, as a general proposition its meaning is not 
explained, and it seems to me inexplicable. The reduction of 
the kinetic energy to a stun of squares leaves the several parts 
of the whole with no correspondence to any defined or definable 
set of independent variables." 

In a short note II written soon afterwards 1 pointed 
out some considerations which appeared to me to justify 
Maxwell's argument, and I suggested the substitution of 
Hamilton's principal function tbr the one employed by 
1VIaxwell�82 The views that I then expressed still commend 
themselves to me ; and I think that it may be worth while to 
develop them a little filr~her, aml to illustrate Maxwell's 
argument by applying it to a particular case where the 
simplicity of the circumstances and the familiarity of the 
notation may help to fix our ideas. 

But in the mean time it may be well to consider Lord 
Kelvin's " Decisive Test-case disproving the Maxwell-Boltz- 
mann Doctrine regarding Distribution of Kinetic Ener_~v "**,  
which appeared shortly after the publication of my note. ~ The 
following is the substance of the argument : -  

"Let  the system consist of' three bodies, A, B, C, all 
movable only in one straight line, K H L :  

* Communicated by the Author. 
t ' Collected Scientific Papers,' vol. ii. p. 713. 
:~ I am speaking here of objections to the dynamical and statistical 

reasoning of the paper. Difficulties in the way of reconciling the results 
with a kinetic theory of matter are another qt~estion. 

w Proc. Roy. Soc. vol. 1. p. 85 (1891). - 
I[ Phil. Mug. Apr. 1892,~ p. 356. 
�82 See also Dr. Watson s ' Kinetic Theory of Gases,' 2nd edit. 1893. 

** Phil. Mug. May 1892, p. 466. 
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" B  being a simple vibrator controlled by a spring so stiff 
that when, at any time, it has very nearly the whole energy 
of the system, its extreme excursions on each side of its 
position of equilibrium are small : 

" C and A, equal masses : 
" (J, unacted upon by force except when it strikes L, a fixed 

barrier, and when it strikes or is struck by B : 
"A,  unaeted on by force except when it strikes or is struck 

by B, and when it is at less than a certain distance, KK, from 
a fixed repellent barrier, K, repelling with a force, F, varying 
according to any law, or constant, when A is between K 
and H, but becoming infinitely great when (if at any time) 
A reaches K, and goes infinitesimally beyond it. 

"Suppose now A, B, C to be all moving to and fro. 
The collisions between B and file equal bodies A and G on 
its two sides lnust equalize, and keep equal, the average 
kinetic energy of A, immediately before and after these 
collisions, to the average kinetic energy of C. Hence, when 
the times of A being in tile space between H and K are 
included in the average, the average of the sum of the potential 
and ki~tic energies of A is equal to the average kinetic 
energy of C. But the potential energy of A at every point 
in the space H K  is positive, because, according to our suppo- 
sition, the velocity of A is diminished during every time of 
its motion from H towards K, and increased to the same value 
again during motion from K to H. Hence, the average 
kinetic energy of A is less than the average kinetic energy 
of C I"  

The apparent disproof of the law of partition of energy in 
this simple problem seems to have shaken the faith even of 
such experts as Dr. Watson and Mr. Burbury 4. M. Poincar6, 
however, considering a special case of Lord Kelvin's pro- 
blem % arrives at a conclusion in harmony with Maxwell's 
law. Prof. Bryan$ considers that the test-case "shows the im- 
possibility of drawing general conclusions as to the distribution 
of energy in a single system from the possible law of permanent 
distribution in a large number of systems." It is indeed 
true that Maxwell's theorem relates in the first instance to a 
large number of systems; but, as I shall show more fully 
later, the extension to the time-average for a single system 
requires only the application of Maxwell"s assumption that all 
pltases, i. e. all states, defined both in respect to configuration 
and velocity, which are consistent with the energy condition 

Nature, vol. xlvi. p. 100 (1892). 

i .Revue gdndrale des &.ienees, July 1894. 
"l~eport on Thermodynamics," Part I[. w 26. Brit. Ass. Rep. 1894. 
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lie on the same path, i. e. are attained by the system in its 
free motion sooner or later. This fundamental assumption, 
though certainly untrue in special cases, would appear to 
apply in Lord" Kelvin's problem; and, if so, Maxwell's 
argument requires the equality of kinetic energies for A and 
C in the time-averages of a single system. 

In view of this contradiction we may infer that there must 
be a weak place in one or other argument ; and I think I can 
show that Lord Kelvin's conclusion above that the average 
of the sum of the potential and kinetic energies of A is equal 
to the average kinetic energy of C, is not generally true. In 
order to see this let us suppose the repulsive force F to be 
limited to a very thin stratum at H, so that A after penetrating 
this stratum is subject to no further force until it reaches the 
barrier K; and let us compare two cases, the whole energy 
being the same in both. 

In case (i.) F is so powerful that with whatever velocity 
(within the possible limits) A can approach, it is reflected 
at H, which then behaves like a fixed barrier. In case (it.) F 
is still powerful enough to produce this result, except when A 
approaches it with a kinetic energy nearly equal to the whole 
energy of the system. A then penetrates beyond H, moving 
slowly from H to K and back again from K to H, thus 
remaining for a relatively long time beyond H. Lord Kelvin's 
statement requires that the average total energy of A should 
be the same in the two cases; but this it cannot be. For 
during the occasional penetrations beyond H in case (it.) A 
has nearly the whole energy of the system ; and its enjoyment 
of this is prolonged by the penetration. Hence in case (it.) A 
has a higher average total energy than in case (i.); and a 
margin is provided which may allow the average kinetic 
energies to be equal. I believe that the consideration here 
advanced goes to the root of the matter, and shows why it is 
th~ the possession of potential energy may involve no 
deduction from the full share of kinetic energy. 

Lord Kelvin's " decisive test-case" is entirely covered by 
Maxwell's reasoning--a reasoning in my view substantially 
correct. ]t would be possible, therefore, to take this case as a 
typical example in illustration of the general argument; but 
I prefer for this purpose, as somewhat simpler, another test- 
case, also proposed by Lord Kelvin. This is simply that of a 
particle moving in two dimensions ; and it may be symbolized 
by the motion of the ball upon a billiard-table. If there is to 
be potential energy, the table may be supposed to be out of 
level. The reconsideration of this problem may perhaps be 
thought superfluous, seeing that it has been ably treated 
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already by Prof. Boltzmann *. But his method, though 
(I believe) quite satisfactory, is somewhat special. My object 
is rather to follow closely the steps of the general theory. I f  
objections are taken to the argument of the particular case, 
they should be easy to specify. If, on the other hand, the 
argument of the particular case is admitted, the issue is much 
narrowed. I shall have occasion myself to make some 
comments relating to one point in the general theory not 
raised by the particular case. 

In the general theory the coordinates t of the system at 
time t are denoted by q~, q~, . . .  q~, and the momenta by iol, 
P2, �9 �9 ion �9 At an earlier time t ' the coordinates and momenta 
of the same motion are represented by corresponding letters 
accented, and the first step is the establishment of the theorem 
usually, if somewhat enigmatically, expressed 

d V ,  aq'  . . . dq'n @'1 @ ' 2 .  . . @ ' n =  . . @ ,  @2"" alp.. 

(1) 
In the present case 91, q2 are the ordinary Cartesian co- 

ordinates (x, y) of the particle ; and if we identit~ the mass 
with unity, Pi, 292 are simply the corresponding velocity- 
components (u, v); so that (1) becomes 

dx' dr' du' dv '= dx  @ du d,, . . . . .  ('2) 
For the sake of completeness I will now establish (2) 

de novo. 
In a possible motion the particle passes from the phase 

(x', y / u / ,  v ~) at time t ~ to the phase (x, y, u, v) at time t. In 
the tbllowing discussion t / and t are absolutely fixed times~ but 
the other quantities are regarded as susceptible of variation. 
These variations are of course not independent. The whole 
motion is determined if either the four accented, or the four 
unaccented, symbols be given. Either set may therefore be 
regarded as definite functions of the other set. Or again, 
the four coordinates x ~, y~, x, y may be regarded as inde- 
pendent variables, of which u ~, v', u, v are then functions. 

The relations which we require are readily obtained by 
means of Hamilton's principal function S, where 

In this V denotes the potential energy in any position, and T 

�9 Phil. Mag. vol. xxxv. p. 156 (!893). 
t Generalized coordinates appear to have been first applied to these 

problems by Boltzmann. 



102 Lord Rayleigh o~ the L a w  o f  

is the kinetic energy, so that 

T -~-~ ~: +'~ v: _~-~ z~ + ~ $~. . . . .  (4)~ 
S may here be regarded as a function of the initial and final 
coordinates; and we proceed to form the expression for aS 
in terms of Bx', 8y/, Bx, ay. By (3) 

;/ a S =  ( $ T - - ~ V )  dt, . . . .  (5) 
I 

and 

so that 

f at dt = f ( &~a2 + ~ @ ) dt 

=j[~d~x .d@x 
\ -Ji- +Y-TI~) dt 

By the general equation of dynamics the term under the 
integral sign vanishes throughout, and thus finally 

In the general theory the corresponding equation is 

~ s = X p  ~ -  Xp' a~, . . . . . .  (7) 

Equation (6) is equivalent to 

u I =- - d S / d x  I, u = d S / d x ,  "~ 

v'  .= --  aS~d!/ ,  v = dS /dy .  _ " (8) 

I t  is important to appreciate clearly the meaning of these 
equations. S is in general a function of x, y ,  x ' ,  y~; and 
(e. g.) the second equation signifies that u is equal to the 
rate at which S varies with x, when y,  x I, y l  are kept constant, 
and so in the other cases. 

We have now to consider, not merely a single particle, 
but an immense number of similar particles, moving inde- 
pendently of one another under the same law (V), and distri- 
buted at time t over all possible phases (x, y, u, v). The 

* As is not unusual in the integral calculus, we employ the same 
symbols x~ &e. to denote the currentand the final values of the variables. 
Ii" desired, the final values may be temporarily distir.gtfished as x", &c. 
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mos~ general expression for the law of distribution is 

/ ( x ,  u, dx du dv, . . . . .  ('J) 
signifying that the number of particles to be found at time t 
within a prescribed range of phase is to be obtained by inte- 
grating (9) over the range in question. But such a distri- 
bution would in general be unsteady. I f  it obtained at time t, 
it would be departed from at time t r, and vice versd, owing to 
the natural motions of the particles. The question before 
us is to ascertain what distributions are steady, i. e. are main- 
tained unaltered notwithstanding the motions. 

I t  will be seen that it is the spontaneous passage of a 
particle from one phase to another that limits the generality 
of the function f .  If  there be no possibility of passage, say, 
from the phase (x z, yr, u r, v') to tile phase (x, S, u, v), or, as 
it may be expressed, if these phases do not lie upon the same 
path, then there is no relation imposed upon the corresponding 
values o f t  An example, given by Prof. Bryan (1. c. w 17), 
well illustrates this point. Suppose that V = 0 ,  so that every 
particle pursues a straight course with uniform velocity. 
The phases (x r, y', u r, v') and (x, y, u, v )can  lie upon the 
same path only if Wr=u, v'=v.  Aecordinglyf  remains arbi- 
trary so far as regards u and v. For instance, a distribution 

f (u, dy . . . . .  (10) 

is permanent whatever may be the form of f ,  understood to 
be independent of x and y. In this case the distribution is 
uniform in space, but uniformity is not indispensable. Suppose, 
for example, that all the particles move parallel to x, so that 

fvanishes  unless v=0 .  The general form (9) now reduces to 

y, . )  ; . . . . .  ( n )  
and permanency requires that the dist, ribution be uniform 
along any line for which y is constant. Accordingly, f must 
be indel~endent of x, so that permanent distributions are of 
the form 

f(y,  u) dx d~ du, . . . . .  (12) 
in which f is an arbitrary traction of y and u. I f  either 
/1 or u be varied, we are dealing with a different path (in the 
sense here involved), and there is no connexion between the 
corresponding values of f .  But  if while y and u remain 
constant, x be varied, the value oFf  must remain unchanged, 
for the different values of x relate to the same path. 

Before taking up the general question in two dimensions, 
it may be well to consider the relatively simple case of motion 
in one dimension, which, however, is not so simple but that 
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it will introduce us to some of the points of difficulty. The 
particles are supposed to move independently upon one 
straight tine~ and the phase of any one of them is determined 
by the coordinate x and the velocity u. At time t / the phase 
of a particle will be denoted by (x t, u/)~ and at time t the 
phase of the same particle will be (x, u), where u will in 
general differ from u~ since we no longer suppose that V is 
constant~ but rather that it is variable in a known manner~ 
i.e. is a known function of x. The number of particles 
which at time t lie within the limits of phase represented by 
dx du is f(x~ u) d x d u ,  and the question is whether this dis- 
tribution is steady, and in particular whether it was the same 
at time t ~. In order to find the distribution at time t~ we 
regard x, u as known functions of x~ u l, and transform the 
multiple differential. The result of this transformation is 
best seen by comparison with intermediate transformations in 
which dx du and dx' du ~ are compared with dx dxq We have 

du 
d x d u = d x d x ' x  ~ ,  . . . . .  (13) 

du' 
dcddur=-dx dx t x ~ . . . . . .  (14) 

In du /da /o f  (13) x is to be kept constant, and in dul/dx of 
(14) x' is to be kept constant. It" we disregard algebraic 
sign~ both are by (8)equal to d'~S/dxd~l~ and are therefore 
equal to one another. Hence we may write 

dxdu--=dx I du~ ; . . . . .  (15) 

and the transformation is expressed by 

/ ( x ,  ~,) dx ~ = J ~ ( ~ ' ,  u')d.~' ~ ' ,  . (16) 

where f l  ( xl, ur) is the result of substituting for x, u in f ( x ,  u) 
their values in terms of x', u ~. The right-hand member of 
(16) expresses the distribution at time t I corresponding to the 
distribution at time t expressed by the left-hand member, as 
determined by the laws of motion between the two phases. 
I f  the distribution is to be steady~ fl(xl~ u I) must be identical 
with f(~J, u I) ; in other words f ( x ,  u)must  be such a function 
of (x, u) that it remains unchanged when (x, u) refers to 
various phases of the motion of the same particle. ~ow~ if 
E denote the total energy~ so that 

E = l u ~ + V ,  . . . . .  (17) 

then E remains constant during the motion ; and thus~ if for 
the moment we suppose f expressed in te/'ms of E and x~ we 
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see that x cannot enter, or that f is a function of E only�9 
The only permanent distributions accordingly are those 
included under the form 

f ( E ) d x d u ,  . . . . . .  (18) 
where E is given by (17), a n d f i s  an arbitrary function. 

It  is especially to be noticed that the limitation to the 
form (18)holds only for phases lying upon the same path. 
If  two phases have different energies, they do not lie upon 
the same path, but in this case the independence of the 
distributions in the two phases is already guaranteed by the 
form of (18). Tile question is whether all phases of given 
~nergy lie upon the same path. It  is easy to invent cases 
for which the answer will be in the negative. Suppose, for 
example, that there are two centres of force O, 0 / on the line 
of motion which attract with a force at first proportional to 
distance but vanishing when the distance exceeds a certain 
value less than the interval OOq A particle may then vibrate 
with the same (small) energy either round 0 or round O'; 
but the phases of the two motions do not lie upon the same 
path. Consequently f is not limited by the condition of 
steadiness to be the same in the two groups of phases. In 
all cases steadiness is ensured by the form (18) ; and if all 
phases of equal energy lie upon the same path, this form is 
necessary as well as sufficient�9 

All the essential difficulties of the theory appear to be 
raised by the particular case just discussed, and the reader to 
whom the subject is now is reoommended to give it his 
careful attention. 

In the more general problem of motion in two dimensions 
the discussion follows a parallel course. In order to find the 
distribution at time t ~ corresponding to (9) at time t, we have 
to transform the multiple differential, regarding x, y, u, v as 
known functions of x ~, y~, u I, vq Here again we take the 
initial and final coordinates x, y, .z v, y' as an intermediate 
set of variables. Thus 

dx I dy Idu' dr' = dx' d~# dx dy x ] 

I 

dx dy du dv--- dx dy dx ' dy' x 

d u  ! 

du I 
"fy-y , 

du 
dd 

du 

I dv-- 
@ 

dv 

dv 

�9 ( 1 9 )  

. . . .  ( . 2 0 )  



106 Lord Rayleigh on the Law of 

In the determinants of (19), (20) the motion is regarded as 
a function of x, y, x ~, y', and the three quantities which do 
not appear in the denonfinator of any differential coefficient 
are to be considered constant. This was also the understand- 
ing in equations (8), fi'oln which we infer that the two deter- 
minants are equal, being each equivalent to 

d~S d2S 
dx d~ l " dx dJ  

d2S 
@ @' 

d~S 
d --r dy' 

Hence we may write 

. . . . . .  ( ' 2 1 )  

@ du dv @' du' dv', (2.2) 

an equation analogous to (15). By the same reasoning as 
was employed for motion in one dimension it follows that, 
if the distribution is to be steady, f ( x ,  y, u, v) in (9) must 
remain constant fbr all phases which lie upon the same path. 
A distribution represented by 

/ ( E )  dx @ clu clv, . . . . .  ('23) 
where 

E - -  1~,2 + 1 # -  v ( 2 4 )  
- - ~  2 ~ ~ - - ,  �9 �9 . �9 �9 

will satisfy the conditions of steadiness whatever be the form 
of f ;  but this form is only necessarz/ under the restriction 
known as Maxwell's assumption or postulate, viz. that all 
phases of equal energy lie upon the same path. 

I t  is easy to give examples in which Maxwell's assumption 
is ,violated, and in which accordingly steady distributions are 
not limited to (23). Thus, if no force act parallel to y, so 
that u reduces to a function of x only, the component velocity 
v remains constant for each particle, and no phases for which v 
differs lie upon the same path. A distribution 

f ( E ,  v) dx @ du dv . . . . .  (25) 

is then steady, whatever funcf ionf  may be of E and v. 
That under the distribution (23) the kinetic energy is 

equally divided between the component velocities u and v is 
evident from symmetry, i t  is to be observed that the law 
of equal partition applies not merely upon th~ whole, but for 
every element of area dx dy, and for every value of the total 
energy, and at every moment of time. When x and y are 
prescribed as well as E, the value of the resultant velocity 
itself is determined by (24). 
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Another feature worthy of attention is the spacial distri- 
bution; and it happens that this is peculiar in the present 
problem. To investigate it we mu~t integrate (23)wi th  
respect to u and v, x and y being constant. Since x and y 
are constant~ V is constant ; so that, if we suppose E to lie 
within narrow limits E and E +dE,  the resultant velocity U 
will lie between limits given by 

U dU---- dE . . . . . .  (26) 

If  we transform from u, v to U, 0, where 

u = U  cos 0, v = U  sin tg, (27) 

dudv becomes U d U d 0 ;  so that on integration with respect 
to 8 we have, with use of (26), 

2~ F(E)  dE.  d~ dy . . . . . .  (28) 

The special distribution is therefore uniform. 
In erder to show the special character of the last result, it 

may be well to refer briefly r the corresponding problem in 
three dimensions, where 'the coordinates of a particle are 
x, y, z and the component velocities are u, v, w. The steady 
distribution corresponding to (23) is 

d :  dy d :  dv dw, . . . .  (29) 
in which 

~I 2 I 2 E - ~ U  + V = ~ u  +{~-•  +v. 

Here equation (26)still holds good, and the transformation 
of du dv dw is, as is well known, 4~'U 2 dU. Accordingly (29) 
becomes 

F(E) dE. (2E--2V) d  . (31) 

no longer uniform in space, since V is a function of x, y. 
In (31) the density of distribution decreases as V increases. 

For the corresponding problem in one dimension (18) gives 

F(E)  dE.  (2E--2V)-~ dx, . . . .  (32) 

so that in this case the density increases with increasing V. 
The uniibrm distribution of the two-dimensional problem 

is thus peculiar. Although an immediate consequence of 
Maxwell's equation (41), see (41) below, I failed to remark 
it in the note before referred to, where I wrote as if a uniform 
distribution in the billiard.table example required that V = 0. 
In order to guard against a misunderstanding it may be well 
to say that the uniform distribution does not necessarily extend 
over the whole plane. Wherever (E - -V)  falls below zero 
there is of course no distribution. 
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We have thus investigated for a particle in two dimensions 
the law of steady distribution, and the equal partition of 
energy which is its necessary consequence. And we see 
that " the only assumption necessary to the direct proof is that 
the system, if left to itself in its actual state of motion, will, 
sooner or later, pass through every phase which is consistent 
with the equation of energy" (Maxwell). It will be observed 
that so far nothing whatever has been said as to time- 
averages for a single particle. The law of equal partition, as 
hitherto stated, relates to a large number of particles and to a 
single moment of time. 

The extension to time-averages, the aspect under which 
Lord Kelvin has always considered the problem, is important, 
the more as some authors appear to doubt the possibility of 
such extension. Thus Prof. Bryan (Report, w 11, 1894), 
speaking of Maxwell's assumption, writes : - -"  To discover, if 
possible, a general class of dynamical systems satisfying the 
assumption would form an interesting subject for future 
investigation. :ft is, however, doubtful how far Maxwell's 
law would be applicable to the time-averages of the energies 
in any such system. We shall see, in what follows, that the 
law of permanent distribution of a- very large number of 
systems is in many cases not unique. Where there is more 
than one possible distribution it would be difficult to draw any 
inference with regard to the average distribution (taken with 
respect to the time) fbr one system." 

The extension to time-averages appears to me to require 
nothing more than Maxwell's assmnption, without which the law 
of distribution itself is only an artificial arrangement~ sufficient 
indeed but not necessary ibr steadiness. We shall still speak 
of the particle moving in two dimensions, though the argmnent 
is general. It has been shown that at any moment the u- 
energy and the v-energy of the group of particles is the same; 
and it is evident that the equality subsists if we integrate over 
any period of time. Bu~ if this period be sufficiently pro- 
longed, and if Maxwell's assum29tion be applicable, it makes no 
difference whether we contemplate the whole group of particles 
or limit ourselves to a single member of it. It follows that 
for a single particle the time-averages of u ~ and v ~ are equal, 
provided the averages be taken over a sufficient length of 
time. 

On the other hand, if in any case Maxwell's assumption be 
untrue~ not only is the special distribution unnecessary for 
steadiness, but even if it be artificially arranged, the law of 
equal time.averages does not follow as a consequence. 

Having now considered the special problem at full--I hope 
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it may not be thought at undue--length, I pass on to some 
remarks on the general investigation. This proceeds upon 
precisely parallel lines, and the additional difficulties are 
merely those entailed by the use of generalized coordinates. 
Thus (1) follows from (7) by substantially the same process 
(given in my former note) that (22) follows from (6). 
Again, if E denote the total energy of a system, the dis- 
tribution 

f (E)dq l  . . . d~d dpl  . . . dp , ,  (33) 

where f is an arbitrary function, satisfies the condition of 
permanency; and, if Maxwell's assumption be applicable, it 
is the only form of distribution that can be permanent. 

As I hinted before, some of the difficulties that have been 
felt upon this subject may be met by a fuller recognition 
of the invariantic character of the expressions. This point 
has been ably developed by Prof. Bryan, who has given 
(lee. c i t . w  14) a formal verification that (33) is unaltered by 
a change of coordinates. If we follow attentively the process 
by which (1) is established, we see that in (3) there is no 
assumption that the system of coordinates is the same at times 
t' and t, and that accordingly we are not tied to one system 
in (33). Indeed, so far as 1 can see, there would be no 
me, ruing in the assertion that the system of generalized coor- 
dinates employed for two different configurations was the 
same •. 

We come now to the deduction from (33) of Maxwell's law 
of partition of energy. On this Prof. Bryan (Inc. cit. w 20, 
remarks :~"Objections have been raised to this step in 
Maxwell's work by myself (' Report on Thermodynamics,' 
Part I. w 44) on the ground that the kinetic energy cannot in 
general be expressed as the sum of squares of general ized 
momen ta  corresponding to generalized coordinates of the 
system, and by Lord Kelvin (Nature, Aug. 13, 1891) on the 
ground that the conclusion to which it leads has no intelligible 
meaning. Boltzmann (Phil. Mug. March 1893) has put the 
investigation into a slightly modified form which meets the 
first objection, and which imposes a certain restriction upon 
the generality of the result. Under this limitation the result 
is perfectly intelligible, and the second objection is therefore 
also met." At this point I find myself in disagreement with 
all the above quoted authorities, and in the position of 
maintaining the correctness of Maxwell's original deduction. 

Prof. Boitzmann considers that " Maxwell committed an 

It would be like saying that two points lie upon the same curve, 
when the character of the curve is not defined. 
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error in assuming that by choosing suitable coordinates the 
expression for the vis viva could always be made to contain 
only the squares of the momenta." This is precisely the 
objection which I supposed myself to have already answered 
m 1892. I wrote, " I t  seems to be overlooked that Maxwell 
is limiting his attention to systems in a given configuration, 
and that no dynamics is founded upon the reduced expression 
for T. The reduction can be et~k~cted in an infinite number 
of ways. We may imagine the configuration in question 
rendered one of stable equilibrium by the introduction of 
suitable forces proportional to displacements. The principal 
modes of isochronous vibration thus resulting will serve the 
required pro'pose." 

It is possibl% therefor% so to choose the coordinates that for 
a given configuration (and for configurations differing infi- 
nitely little therefrom) the kinetic energy T, which is always 
a quadratic function of the velocities, shall reduce to a stun of 
squares with, if we please) given coefficients. Thus in the 
given configuration 

T = } ~ + { ~  + . . .  + ~ ;  . . . .  (34:) 

and, since in general p = dT/d~, 

p l =  1, p2=~2, &c., 

so that 
t [ ~ - - I  ~ 2 j _  1 2_1_ - ~ r ~  ~ p ~  . . . .  ++P~ . . . . .  (35) 

Whether the coordinates requireJ to effect a similar re- 
duction for other configurations are the same is a question 
with which we are not concerned. 

The mean value (,t'p~ 2 fbr all the systems in the given con- 
figuration is, according to (33), 

j'p,~. F{V+ �89 + �89 dpn (36)a 

j" F{ V + �89  2 + . . . .  + �89 2 } d p v . .  dp~ 

The limits for each variable may be supposed ~o be _+ ~ ; 
but the large values do not really enter if we suppose F(E) to 
be finite for moderat% perhaps for nearly definit% values of 
E only, 

It is now evident that the mean value is the same for all the 
momenta p; and accordingly that for each the mean value of 
�89 is 1/n of the mean value of T. This result holds good for 
every moment of tim% for every configuration~ ibr every 
value of E, and for every system of resolution (of which there 

* Co~er Bryan~ lee. tit. 
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are an infinite number) which allows T to be expressed in the 
form (35). 

In the case where the " s y s t e m "  consists of a single 
particl% (35) is justified by any system of rectangular coor.- 
dinates ; and although we are not bound to use the same 
system for different positions of the particle, it would conduce 
to simplicity to do so. I f  the system be a rigid body, we may 
measure the velocities of the centre of inertia parallel to three 
fixed rectangular axes, while the remaining momenta refer to 
rotations about the principal axes of the body. I f  Maxwell's 
assumption hold good, a permanent distribution is such that 
in one, or in any number of positions, the mean energy of 
each rotation and of each translation is the same. And under 
the same restriction a similar assertion may be made respecting 
the time-averages for a single rigid body. 

There is much difficulty in judging of the applicability of 
Maxwell s assumption. As Maxwell himself showed, it is easy 
to find cases of exception ; but in most of these the conditions 
strike one as rather special. I t  must be observed, however, 
that if we take it quite literally, the assumption is of a severely 
restrictive character; for it asserts that the system, starting 
from any phase, will traverse every other phase (consistent 
with the energy condition) before returning to the initial phase. 
As soon as the initial phase is recovered, a cycle is estab- 
lished, and no new phases can be reached, however long 
the motion may continue. 

We return now to the question of the distribution of 
momenta among the systems which occupy a given configu- 
ration, still supposing the coordinates so chosen as to reduce 
T to a sum of squares (35). I t  will be convenient to fix our 
attention upon systems for which E lies within narrow limits, 
E and E + dE. Since E is given, there is a relation between 
pl, p2, �9 �9 �9 P,, and we may suppose p ,  expressed in terms of 
E and the remaining momenta. By (35) 

p~dp~ =dT---dE, 
since the configuration is given, and thus (33) becomes 

/ ( E ) d E .  dq~.., dq~.p-;~ dp~.., dp~ 1. . (37) 

For the present purpose the latter factors alone concern us~ 
so that what we have to consider is 

@a @~... @.-, (38) 
~/{ 2 T - p 1  ~ - p ~  ~ ~ " " -...-P.-1} 

in which T~ being equal to E - -  V~ is given. For the moment 
we may suppose that 2T is unity. 
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The whole number of systems is to be fbnnd by integrating 
(38), the integral being so taken as to give the variables all 
values consistent with the condition that p:2+p2~+.. "T~-i is 
not greater than unity. Now 

j j ~/{ 1 --p~---dpldP~'"<tP~-I .- -__.Tr~"-~ {'+1 
� 9  - - - -  ~ F I  / " ~ r  

and . (39) 

ff_ ~: (1 --p:*)~'-~dp: = r (~) r (�89 �89 (40) 
: r( -~n)  

in which F(�89 ~/~'. Thus the whole number of systems is 

{r(�89 
r(�89 ' 

or on restoration of 2T, equal to 2E--2V, 

T(�89 - {r(�89 ,{,2E --2V}~"--' ..... (41) 

To this we shall return later; but for t]}e present what we 
require to ascertain is the distribution of one of the momenta, 
say pl, irrespectively of the values of the remaining momenta. 
By (39), (40) the number of systems for which jo: lies between 
Pl and px+dpl in comparison with the whole number of 
systems is 

r(�89 f ~ _  ~ l. ~-~ ,0,~ (~2) 
r(�89 r(~n-�89 k -  2T f ,/(~'r)" 

This is substantially Maxwell's investigation, and (42) corre- 
sponds with his equation (51). As was to be expected, the 
law of distribution is the same for all the momenta. From 
the manner ot~ its formation, we note that the integral of (42), 
taken between the limits p~--- + v'(2T), is equal to unity. 

Maxwell next proceeds to the consideration of the special 
form assumed by (42), when the nmnber n of degrees of 
freedom is extremely great *. This part of the work seems to 
he very important ; but it has been much neglectsd~ probably 
because the result was not correctly stated. 

Dropping the suffix as unneeessary~ we have to consider 
the form of 

2TA 
when n is very grea~, the mean value of p~ becoming a~ the 

* The particular cases where n=2~ or n=3, are also worthy of notice. 
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same time small in comparison with 2T. i f  we write 

T = n K = ~ n P  2, . . . . . .  (43) 
we have 

Limit { 1-- ~2 ~ ~-~ (44) 

The limit of the fraction containing the F functions may 
be obtained by the formula 

r ( m +  1) =e-m,n~,/ (2m~) ; 

and the limiting form of (42) becomes 

e-~'/4~ dp e-~'l~r' ap (45) 
4 (~ ' 0  ~/(2K)' or 7 ( ' z ~ )  P . . . .  

It may be observed that the integral of (45)between the 
limits 4=_ ~ is unity, and that this fact might have been used 
to determine the numerical factor. 

Maxwell's result is given in terms of a quantity k, analo- 
gous to K, and defined by 

�89 . . . . . . . .  (46) 
It is 

1 1 e - ~ d ~  . . . . . .  (47) 
~/(27r) K 

The corresponding form from (45) is 

1 1 k 
, / (2 ,0  2 r  e - ~ d k  . . . . .  (48) 

Ill like manner if we inquire what proportion of the whole 
number of' systems have momenta lying within the limits 
denoted by dpl dp~.., dp~, where r is a number very small 
relatively to n, we get 

e -(P,~+p~+"" +p,~)/4x dpl dp2 �9 .. dp~ 
{J(27r)F { J ( 2 K ) F  ' (49) 

or, if we prefer it, 

e-t~'~+e~+"" +P~')/'~rzdp, dp~.., dp, (50) 
{ r ( ~ ) t "  P" " 

These results tbilow from the general expression (38), in 
the same way as does (45), by stopping the multiple integra- 
tion at an earlier stage. The remaining variables range over 
values which may be considered in each case to be unlimited. 

PM1, Mag. S. 5. Vol. 49. No. 296. Jan. 1900. I 
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If  the integration between + ~ be carried out completely, we 
recover the value unity. 

The interest of the ease where n is very great lies of course 
in the application to a gas supposed to consist of an immense 
number of similar molecules ~, or of several sets of similar 
molecules; and the question arises whether (45) can be 
applied to deduce the Maxwellian law of distribution of 
velocities among the molecules of a single system at a given 
instant of time. A caution may usefully be interposed here 
as to the sense in which the Maxwellian distribution is to be 
understood. It  would be absurd to attempt to prove that the 
distribution in a single system is necessarily such and such, for 
we have already assmned that every phase, including every 
distribution of velocities, is attainable, and indeed attained if 
su~cient time be allowed. The most that can be proved is 
that the distribution will approximate to a particular law for 
the greater part of the time, and that if  sensible deviations 
occur they will be transitory. 

In applying (45) to a gas it will be convenient to suppose 
in the first instance that all the molecules are similar. Each 
molecule has several degrees of freedom, but we may fix our 
attention upon one of them, say the x-velocity of the centre 
of i~ler~ia, usually denoted by u. In (45) the whole system is 
supposed to occupy a given configuration ; and the expression 
gives us the distribution of velocity at a given time for a 
single molecule among all the systems. The distribution of 
velocity is the same for every other molecule, and thus the 
expression applies to the statistics of all the molecules of all 
the systems. Does it also apply to the statistics of all the 
molecules of a single system ? In order to make this inference 
we must assume that the statistics are the same (at the same 
time) for all the systems, or, what comes to the same thing 
(if Maxwe]l's assumption be allowed), that they are the same 
for the same system at the various times when it passes through 
a given configuration. 

Thus far the argument relates only to a single configuration. 
I f  the configuration be changed, there will be in general a 
change of potential energy and a corresponding change in the 
kinetic energy to be distributed amongst the degrees of free- 
dora. But in the case of a gas, of which the statistics are 
assumed to be regular, the potential energy remains approxi- 
mately constant when exclusion is made of exceptional 
conditions. The same law of distribution of velocity then 
applies to every configuration, that is, it may be asserted 

* The terms "gas" and "molecule" are introduced for the sake of 
brevity. The question is stiff purely dynamical, 
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without reference to the question of configuration. We thus 
arrive at the Maxwellian law of velocities in a single gas, as 
well as the relation between the velocities in a mixture of 
molecules of die,  rent kinds first laid down by Waterston. 

The assumptions which we have made as to the practical 
regularity of statistics are those upon which the usual theory 
of ideal gases is founded; but-the results are far more 
general. Nothing whatever has been said as to the character 
of the forces with which the molecules act upon one another, 
or are acted upon by external agencies. Although for distinct- 
ness a gas has been spoken of, the results apply equally to a 
medium constituted as a liquid or a solid is supposed to be. 
A kinetic theory of matter, as usually understood, appears to 
require that in equilibrium the whole kinetic energy shall be 
equally shared among all the degrees of freedom, and within 
each degree of freedom be distributed according to the same 
law. It  is included in this statement that temperature is a 
matter of kinetic energy only, e 5'- that when a vertical column 
of gas is in equilibrium, the mean velocity of a molecule is the 
same at the top as at the bottom of the column. 

Reverting to (37), (41)~ in order to consider the distribution 
of the systems as dependent upon the coordinates independ- 
ently of the velocities, we have, omitting unnecessary factors, 

{E--V}~'~-ldql dq~ . . . dq. .  (51) 

If  n=2 ,  e .g .  in the case already considered of a single 
particle moving in two dimensions, or of two particles 
moving in one dimension, or again whatever n may be, pro- 
vided V vanish, the first factor disappears, so that the 
distribution is u n i f o r m  with respect to the coordinates q, .. (/.. 
I f  n > 2 and V be finite, the distribution is such as to favour 
those configurations for which V is least. 

" When the number of variables is very great, and when 
the potential energy of the specified configuration is very 
small compared with the total energy of the system, we may 
obtain a useful approximation to the value of {E--V} ~-1 
in an exponential form ; tbr if we write (as before) E = nK, 

{ E - - V  t~"- l=SO- 'e  -v/~ . . . .  (52) 

nearly, provided n is very great and V is small compared 
with E. The expression is no longer approximate when V 
is nearly as great as E, and it does not vanish~ as it ought 
to do, when V = E." (Maxwell). 

In the case of gas composed of molecules whose mutual 
influence is limited to a small distance and which are not 
subject to external forces, the distribution expressed by (51) 

I 2  
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is uniform in space except near the boundary. For  if ql 
denote the ~.-coordinate of a particular molecule, and if we 
effect the integration with respect to all the coordinates of 
other molecules as well as the other coordinates of' the par- 
ticular molecule, we must arrive at a result independent of x, 
provided x relate to a point well in the interior. That is to 
say in the various systems contemplated the particular mole- 
cule is uniformly distributed with respect to x. The same 
is true of y and z, and thus the whole spacial distribution is 
uniform. I f  the single system constituting the gas has 
uniform statistics, it will follow that the distribution in it of 
molecules similar to the particular molecule is uniform. 

The uniformity of the distribution is disturbed if an external 
force acts. In illustration of this we may consider the case 
of gravity. From (52) the distribution with respect to the 
coordinates of the particular molecule will be 

e-g~/2x dx dy dz, 

and the same formula gives: the density of molecules similar 
to the particular molecule m a single system. 

The main purpose of this paper is now accomplished ; hut 
I will take the opportunity to make a few remarks upon some 
general aspects of a kinetic theory of matter. Many writers 
appear to commit themselves to absolute statements, but 
Kelvin * and Boltzmann and Maxwell fully recognize that 
conclusions can never be more than probable. The second 
law of thermodynamics itself is in this predicament. Indeed 
it might seem at first sight as if the case were even worse than 
this. Mr. Culverwell has emphasized a di~culty,  which must 
have been pret ty generally felt, arising out of the reversibility 
of a dynamical system. I f  during one motion of a system 
energy is dissipated, restoration must occur when the motion 
is reversed. How then is one process more probable than the 
other? Prof. Boltzmann has replied to this objection, upon 
the whole I think satisfactorily, in a very interesting letter t .  
The available (internal) energy of a system tends to zero, or 

* Witness the following, remarkable passa_~ev .'--" It is a stran~,e. but 
nevertheless a true conception of the old well-known law of the conduction 
of heat to say that it is very improbable that in the course of 1000 years 
one-half tile bar of iron shall of itself become warmer by a degree than 
the other half; and that the probability of this happening before 1,000,000 
years pass is 1000 times as great as that it will happen in {he course of ]000 
years, and that it certainly will happen in the course of some very long 
time."--( ~ Nature,' vol. ix. p. 443, 1874.) 

t ' Nature,' vol. It. p. 413 (1895). 
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rather to a small value, only because the conditions, or phases 
as we have called them, corresponding to small values are 
more probable, i. e. more numerous. If  there is considerable 
available energy at any moment, it is because the condition 
is then exceptional and peculiar. After a short interval of 
time the condition may become more peculiar still, and the 
available energy may increase, but this is improbable. The 
probability is that the available energy will. if not at once, at 
any rate after a short interval~ decrease owing to the substitu- 
tion of a more nearly normal state of things. 

There is, however, another side to this question, which 
perhaps has been too much neglected. Small values of the 
available energy are indeed more probable than large ones, 
but there is a degree of smallness below which it is improbable 
that the value will lie. ]f at any time the value lies extremely 
low, it is an increase and not a decrease which is probable. 
Maxwell showed long ago how a being capable of dealing 
with individual molecules wouM be in a position to circumvent 
the second law. It is important to notice that for this end it 
is not necessary to deal with individual molecules. It  would 
suffice to take advantage of local reversals of the second law, 
which will involve, not very rarely, a considerable number of 
neighbouring molecules. Similar considerations apply to other 
departures from a normal state of things~ such, for example, as 
unequal mixing of two kinds of molecules, or such a departure 
from the Waterston relation (of equal mean kinetic energies) as 
has been investigated by Maxwell and by Tait and Burbury. 

The difficulties connected with the application of the law 
of equal partition of energy to actual gases have long been felt. 
In the ease of argon and helimn and mercury vapour the ratio 
of specific heats (1'67) limits the degrees of freedom of each 
molecule to the three required for translatory motion. The 
value (l '4)applicable to the principal diatomie gases gives 
room fbr the three kinds of |ranslation and for two kinds of 
rotation. Nothing is left for rotation round the line joining 
the atoms, nor for relative motion of the atoms in this line. 
:Even if we regard the atoms as mere points, whose rotation 
means nothing, there must still exist energy of the last- 
mentioned kind, and its amount (according to the law) should 
not be inferior. 

We are here brought face to face with a fundamental 
difficulty, relating not to the theory of gases merely, but 
rather to general dynamics. In most questions of dynamics 
a condition whose violation involves a large amount of 
potential energy may be treated as a constraint. ]~t is on this 
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principle that solids are regarded as rigid, strings as inex- 
tensible, and so on. And it is upon the recognition of such 
constraints that Lagrange's method is founded. But the law 
of equal partition disregards potential energy. However 
great may be the energy required to alter the distance of the 
two atoms in a diatomic molecule, practical rigidity is never 
secured, and the kinetic energy of the relative motion in the 
line of junction is the same as if the tie were of the feeblest. 
The two atoms, however related, remain two atoms, and the 
degrees of freedom remain six in number. 

What would appear to be wanted is some esc~Te from the 
destructive simplicity of the general conclusion relating to 
partition of kinetic energy, whereby the energy of motions 
involving larger amounts of potential energy should be 
allowed to be diminished in consequence. If  the argument, 
as above set forth after Maxwell, be valid, such escape must 
involve a repudiation of Maxwell's fundamental postulate as 
practically applicable to systems with an immense number of 
degrees of freedom. 

VII.  On Swan's Prism P]wtometer, commonly called Lummer 
and.Brodhun' s P]wtometer. By Prof. C. G .KI~oTT, D.Sc.*. 

] 1~ 1849 William Swan, subsequently Professor of Natural 
Philosophy in the University of' St. Andrews, read a 

paper " On the' Gradual production of Luminous Impressions 
on the Eye and other Phenomena of Vision" before the Royal 
Society of Edinburgh (see Transactions, vol. xvi.). This paper 
contains some results of high interest, but I have no recollection 
of ever having seen it referred to in modern literature on the 
subject. 

On April 4, 1859, Professor Swan gave a second paper on 
the same subject, much briefer than the first, and entirely 
occupied with descriptions of greatly improved forms of 
apparatus (see Transactions, vol. xxii.). Among the forms 
of apparatus described is his " Prism Photometer. ' This is 
simply and solely the form of photometer described in 1889, 
exactly thirty years later, by Lummer and Brodhun, and 
named after thenl in all recent literature (see Zeitschrift fi~r 
lr~strume~tenkunde, Bd. ix.). I cannot do better than give 
Swan's description in full, and reproduce his own diagram. 

He writes : --"An arrangement which~ from an imperfect 

* Communicated by the Author: read before the Royal Society of 
Edinburgh, Dec. 17th, 1899. 


