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will be asked, How are these observations made, and how isit
known when the star 75 in the same position when the second
observation is made ?

For this purpose a transit instrument iz used (see Fig. 30).
This differs from an ordinary telescope, being so mounted as to
move only up and down, and is armed not with simple cross
wires, but with an odd number of parallel and equidistant
vertical wires crossed by a single horizontal wire. It is also
usually pro:ided with a circle to give declination, If from any
part of the earth an observation be made on any particular star
on one day, and then another observation made on the same star
when it is in the same position the next day, as has been said,
the interval between the two observaiions must be the time
taken by the earth to move round once.

By having such an arrangement as exists in the transit instru-
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FiG. 32.—Showing that the true horizon of a pole is the equator.

ment, by which it can swing in the plane which coincides with the
axis on which the earth turns, any star may be chosen for the
observation. Suppose, for instance, the instrument be pointed to
the north pole star, then, in cansequence of the tremendous
distance of the stars, the axis of the telescope is practically
coincident with the axis of the earth. But suppose another star
to be observed, it will be quite clear that we may make the
observation on it, or any other star we choose. ~When the
instrument is upright it points to the zemith. A star in the
zenith may therefore be selected for the observation.

1t is observed when crossing the central wire of the instrument
one day, and noted again when it crosses that wire on the
succeeding day. But the observer does not limit his observation
to the one central wire, in order to ascertain when the star is in
the centre of the field. If he did so, he might miss his observa-
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Fi1G. 33.—Showing that the poles lie in the horizon at the equator.

tion. That is why the simple cross wires have been replaced by
a system of wires (see Fig. 31). As the star crosses the field of
view, the observer, listening to the beats of the clock alongside,
notes the time when it crosses each of the wires, and takes the
mean of these observations, thus attaining to a much greater
accuracy than if he had merely observed the transit over the
central wire, With an ordinary clock it is found that a period,
less by 2 few moments than twenty-four hours, elapses between
two successive transits,

In order to get an absolutely perfect nieasure of time, the
clock may be so rated that it should not be any indeterminate
number of hours, minutes, and seconds, but twenty-four hours
exactly between the two transits of that star. With a clock thus
arranged, the time at which a star crossed the central wire of the

transit instrument would really give a most perfect method of
determining that star’s place in the heavens, because, if the
earth’s rotation is an equable one and takes place in a period
which we choose to call twenty-four hours, then two stars 180°
apart will be observed twelve hours after one another, four stars
90° apart will be observed six hours apart, and so on; and clocks
like this, regulated to this star time, exist in our observatories,
being called sidereal clocks, because the time they give, which
is not quite familiar to everybody, is called sidereal time.

Now let us consider our position on the earth with regard to
the stars. This is a very interesting part of our subject, not
only in its scientific aspect, but from the point of view of its
usefulness, whether we wish to study the stars or define places
on the earth’s surface, the latter matter, however, being so
intimately connected with astronomy proper that it is impossible
to talk about the one without talking about the other.

Since we divide all circles into 360°, the circumference of the
earth maybe <o divided, and the method in use of defining positions
on the earth is to say of a place that its latitude is so much and
itsJongitude is so much. Latitude begins at the equator with o°,
and terminates at the poles with 9o°, being north latitude in the
one case, and south latitude in the other. In the case of
longitude, there is no such simple starting point, for whilst lati-
tude is counted from the equator by everybody all over the world,
longitude may commence at any point. In England we count
longitude from the meridian of Greenwich. When the transit
instrument at Greenwich is swept from the north point through
the zenith to the south point it describes a half circle, which is
called the meridian of Greenwich.

Z
/(;/\ [
e ~ N

F16- 34.— Horizon of a place in mid-latitude,

That is one point. Another point is this, Suppose the
instrument to be set up not at Greenwich but at the north pole,
Then the true horizon of the observer will be along the equator.
Remove the instrument to the equator, and the true horizon will
cut the poles. At a place in mid-latitude the true horizon
would cut neither the pole nor the equator, but would be
inclined to both (see Figs. 32, 33, and 34).

Then comes the important relationship between the latitude
of the place and the altitude of the pole star above its korizon ;
that the number of degrees this star—be it north or south—is
above the horizon of the observer will be the number of degrees
of north or south latitude of the place where the observation is
made. A place therefore in 10° N. lat. will (roughly) bave the
north pole star at a height of 10° above its horizon.

So much for this part of our subject. Let us now leave it,
because, interesting as it is, it refers to a branch of astron my
with which at present we have less to do than with the m ‘re
physical one; but it was well that we should pause for a few
moments to note the tremendous importance to mankind of that
particular movement of the earth which we have been con-
sidering. J. NorMAN LOCKYER

(70 be continued.)

PROBABLE NATURE OF THE INTERNAL
SYMMETRY OF CRYSTALS!
THE theory of the modification of crystal angles, just offered
in dealing with quartz, is manifestly applicable to all crystals
not of the cubic system, and it is submitted that for every suck
* Continued from p. 188.
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crystal there is an ideal or oot jorm proper to oue or other of
the five kinds of internal symmetry which have been presented,
from which root form the actual form can be derived by a proper
proportionate increase of dimension in one or more directions.

It is evident that, while our path must become more and more
intricate as we endeavour to establish in the cases of more
complex compounds relations similar to those above traced, the
reference of who'e classes of analogous forms, differing only in
their angles, to oneroot form, removes a very important difficulty,
and the wide applicability which it confers on the five kinds of
internal symmetry with which we started appears in the fact that
there is no crystal form which cannot be thus referrcd to an
appropriate root form in harmony with one or other of these five
kinds of internal symmetry.?

One more case may be mentioned in which a probable internal
symmetry can be assigned to a compound in harmony with its
actual crystal form ; it is a more difficult one.

The molecule of Jeeland or cale-spar is usually believed to
consist of on= atom of calcium, one atom of carbon, and three of
oxygen. We shall, however, take a liberty, and suppose that the
atoms of calcium or the atoms of carbon have but half the mass
attributed 1o them; that in the formula of this compound we
should write either two atoms of calcium or two atoms of carbon
in place of one.?

Making this supposition, we observe that if the calcium and
carbon atoms were alike we should have six atoms, three of one
kind, three of another; in other words, we should have equal
proportions of two kinds of atoms, from which, since the form
of Iceland spar is but little removed from a cube, we naturally
argue that just before crystallisation its atoms were arranged
according to the first or second kind of internal symmetry ; these
two kinds being, it will be remembered, those in harmony with
the cubic form which admit of very symmetrical arrangement of
particles of two kinds present in equal numbers.

Since Iceland spar is a uniaxal ceystal, the arrangement of the
three kinds of atoms, whatever it is, must be symmetrical about
one axis only; and we shall now endeavour to show that the
atoms can be thus arranged in either the first or second kind of
symmetry.

We will show first that they can be -hus arranged in the
second kind.

Where there ave but two kinds of particles present in equal
numbers, symmetry requires that the alternate layers of this
kind of symmetry (see Fig. 3) shall consist entirely of similar
kinds, and therefore in the case before us, one set of alternate
layers will represent oxygen atoms ; the other, atoms of calcium
and carbon. Now particles present, as we suppose the calcium
and carbon atoms to be, in the proportion 1:2 can be quite
symmetrically arranged in these layers (plan /), as the sphere
centres were in the layers depicting the fourth kind of symmetry
(plan ¢), and therefore the only question remaining is the relative
disposition of the layers of calcium and carbon atoms with
respect to one another.

Now the spheres in alternate layers of the second kind of
symmetry considered alone have the relative arrangement of the
third kind of symmetry (Fig. 4), and in determining the rela-
tive disposition of the calcium and carbon atoms, we may
therefore neglect the oxygen atoms, and treat the case as belong-
ing to the third kind of symmetry. The two spiral arrange-
ments in this kind of symmetry, in which the less numerous
spheres in the fourth layer are vertically over those in the first
(see "ante), have the necessary symimetry about a single axis,
and if the calcium and carbon atoms have one of these arrange-
ments, the requirements of the case are entirely met.

We will now show that the three kinds of atoms can also be
arranged symmetrically about a single axis in the first kind of
symmetry.

One half the spheres depicting this kind. of symmetry will in
this case represent the oxygen atoms, and the remaining half the
atoms of calcium and carbon (see Fig. 2), and, as previously
noticed, the arrangement of either half will be that of the second
kind of symmetry. It follows that the question of the relative
disposition of the atoms of caleium and carbon is simply the
question of the symmetrical arrangement about a single axis of
atoms of two kinds present in the proportion 2 : I in the second

* The very symumetrical form the pentagonal dodecahedron is not in
harmony with either of the five kinds of symmetry, nor is it found in
crystals.

1t has already heenremarked that the crystal form of fluor-spar favours
the supposition that calcium has half the atomic weight usnally attributed
to it.

kind of symmetry (Fig. 3). And since the layers of spheres
depicting this kind of symmetry have a triangular arrangement
(plan §), it is evident that this can be accomplished here just as
in the former case.

In either of the two arrangements just described we have only
to suppose that when the symmetrically placed atoms change
volume at the time of crystallisation the dimensions transversely
to the axis of symmetry are increased relatively to those in the
direction of this axis, and we have an obtuse rhombohedron
where formerly we had a cube. And the significant fact that
the angle of a rhombohedron of calc-spar diminishes when the
crystal is heated supports this theory of its production. Per-
haps the arrangement of the atoms according to the first kind of
internal symmetry is the more probable of the two, as this would
give the cleavage directions coincident with the directions of
layers of similar atoms (oxygen).

An important fact supporting our conclusions is that certain
definite relations as to their proportions which are found sub-
sisting between the allied forms taken by crystals of the same
substance are found inherent in one or other of the five kinds of
internal symmetry.

Thus it is well known that if a particular substance is found
crystallised in hexazonal pyramids of various kinds—that is,
whose sides have various different degrees of inclination to the
base—the number of kinds is strictly limited, and they are strictly
velated to each other, If x be the side of the hexagonal base of
the pyramid and y the height for the same substance, while x
remains constant, y has not more than fourteen different values,
seven related thus: ¢, ¢, 3¢, % ¢, 1 ¢, ¥ ¢, 1% ¢; and the other
seven similarly related thus: &, 34, 34, 1d, 4 d, 2 d, & d;
and ¢ bearing to @ the ratio 2 : A/3.

Now, if we turn to the fourth kind of internal symmetry
(Fig. 5) to ascertain the possible varieties of inclination of the
sides of hexagonal pyramids which can be depicted, we find that
the greatest possible height to which we can build a hexagonal
pyramid of equal spheres is exactly double the height of a tetra-
hedron with the same side as the hexagonal base of the pyramid.
Thus, if twenty-five spheres form each side of the hexagonal
base, giving twenty-four equal distances between the sphere
centres in any one side, we find that the highest possible pyramid
has forty-nine layers of spheres giving forty-eight equal spaces
between consecutive layers.

If we call this height ,.it is evident that pyramids corresponding
with the first of the above series of actually observed forms will
have respectively—

49 layers of balls, giving 48 spaces between consecutive layers.
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We find, moreover, that such a series can be readily depicted,
and that, upon examination, no additional terms appear ad-
missible.

Again, a farther inspection of the stack of spheres shows us
that with the same heights—that is, with the respective numbers
of layers just enumerated—we may, in place of the base layer
which forms a hexagon whose sides have twenty-five spheres
each, have a base derived from this in which each of the six
spheres at the angles becomes the centre of a side, the outline of
the base layer being now a larger hexagon described about the
hexagon which bounded the former base layer. The sides of
this new base thus bear to the sides of the old the ratio subsisting
between the side and the perpendicular of an equilateral triangle,
i.e. the ratio 2 : +/3. And finally, since the distance between
the planes containing the centres in suceessive layers bears to the
distance between centres in the same layer the same ratio which
the perpendicular from the angle of a tetrahedron upon its
opposite face bears to its edge, that is the ratio a/2: /3, it
follows

That the two allied series of possible altitudes of hexagonal
pyramids thus formed, if we take tke same length of side a for
both, will be—

First Series
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Surely the fact thus established, that each term of a series of
relative altitudes of the hexagonal pyramids in which a particular
substance crystallises always has to some term of the series thus
theoretically derived a particular ratio peculiar to the substance,
constrains us to conclude that the above fourteen ‘“root” forms
are those to which all crystal forms involving regular six-sided
pyramids are referable, and that the actual forms are produced
from the “root” forms by difference in the degree of expansion
in the direction of the axis of the crystal as compared with other
directions at the time of crystallisation,

Other allied forms, as allied octahedra or rhombohedra, can be
in the same way connected with some one of the five kinds of
internal symmetry.

The peculiarities of crystal-grouping diplayed in twin crystals
can be shown to favour the supposition that we have in crystals
symmetrical arrangement rather than symmetrical shape of
atoms or small particles. Thus if an octahedron be cut in half
by a plane parallel to two opposite faces, and the hexagonal
faces of separation, while kept in contact and their centres coin-
cident, are turned one upon the other through 60°, we know
that we get a familiar example of a form found in some twin
crystals.  And a stack can be made of layers of spheres placed
triangularly in contact to depict this form as readily as to depict
a regular octahedron, the only modification necessary being for
the Jayers above the centre layer to be placed as though turned
bodily throuzh 60° from the position necessary to depict an octa-
hedron (compare Figs. 7 and 8). The modification, as we see,

F1G. 7.

Fic. 8.

involves no departure from the condition that each particle is
equidistant from the twelve nearest particles.

Before closing, a few words may be said on the bearing of the
conclusions of this paper on isomorphism and dimorphism.

First, as to isomorphism.

The conclusion that there are but five kinds of internal sym-
metry possible, three of which indicate a cubic form, evidently
accords with the fact that not only the simplest combinations—
those in which two kinds of atoms are present in equal propor-
tions—but also many very complicated compounds crystallise in
cubes.

Out of the regular system we generally find that for the angles
of crystals of different compounds to be the same there must be
some resemblance in their atom-composition, and the explanation
suggested is that the atoms which are common to two iso-
morphous compounds, ¢.g. the carbon and oxygen atoms in calc-
spar and spathic iron ore, have similar situations in the two
different crystals, and that the change of bulk which occurs when
erystallisation takes place is due to a change in tkese atoms only,
the atoms not found in both remaining passive.

There are, however, some cases which do not at first seem to
be met by this view—cases in which the atom composition of
isomorphous compounds has only a very partial similarity. Am-
monia compounds may be specially mentioned. Thus, ammonic
sulphate, (NH,),H,SO,, is isomorphous with potassic sulphate

SO

The following suggestion would seem to enable us to suppose
that in this, as in other cases of isomorphism, the phenomenon
is referable to the passivity of some of the atoms in the change
of bulk which accompanies crystallisation, Let us write am-
monic sulphate thus (NH,),H,SO,, and let us suppose that the
symmetrical arrangement is such that the groups, (NHjy), just
occupy places which might, without altering the symmetry, be
filled by additional groups H,SO, ; that, in other words, the
relative position of the groups tH,SO, which are present in the

symmetrical arranzement is precisely the same as it would be if
the entire mass consisted of thesz groups instead of consisting
partly of NHj; groups. If now, in addition to supposing that
1 both compounds the active atoms in the process of crystallisa-
tion are the sulphur and oxygen atows, and these only, we sup-
pose that the expansion of some of the atoms of the active kind
checks the expansion of others ; that only a certain proportion
of these atoms expands, we perceive that we may have both the
same amount and kind of atom expansion in the two cases, and,
as the natural result, isomorphism,

Next, as to dimorphism.

It is evident that a very small change is requisite to convert
one kind of internal symmetry into another. Thus we have
already had occasion to notice that the only difference in depict-
ing the third and fourth kinds of symmetry is that for the former
the centres of the spheres in the first and fourth iayers, those in
the second and fifth, and so on, range vertically, while for the
latter the centres in the first and third, in the second and fourth,
and so on, range in this way.

In the case of a dimorphic compound consisting of two kinds
of atoms in the proportion of 2:1, eg. water, H,O, we
have only to suppose therefore that the same layers of atoms
which under one set of conditions produce hexagonal prisms, are
by some alteration in conditions arranged in the slightly different
way necessary to produce rhombohedral forms. Other cases ot
dimorphism are probably to be accounted for much in the same
way.

Thus the following interpretation of the fact that calcic
carbonate, which we have seen crystallises in obtuse rhombo-
hedra as calc-spar, sometimes crystallises in six-sided trimetric
prisms as aragonite may be offered.

We have already endeavoured to show that the first or second
kind of internal symmetry is that proper to calc-spar, We will
now endeavour to show that the fifth kind of internal symmetry
(Fig. 6) is proper to aragonite.

Alternate layers of spheres (plan 4) will represent the oxygen
atoms, and the other alternate layers the calcium and carbon
atoms; the central layers of the triplets above alluded to, viz.
the second, the fourth, the sixth, &c., being the oxygen layers ;
the calcium and carbon atoms in the remaining layers will be
symmetrically arranged (plan /). From the fact of the crystals
being trimetric, the layers containing the last-named atoms,
which, considered apart from the oxygen layers, are in the fourth
kind of symmetry, probably have the arrangement above de-
scribed, in which the less numerous spheres form zigzags, the
stack in this case having a different symmetry about three axes
at right angles to each other (Fig. 6).

The fact that the dimorphic varieties of the same substance
have different densities is in harmony with the supposition that
different sets of the atoms are concerned in the different cases;
that the active atoms which produce one form are not those, or
those only, which produce the other.

It is not always necessary to refer two incompatible crystal
forms of the same substance to two different kinds of internal
symmetry : for example, from the third kind of internal sym-
metry we can produce square-based octahedra, and we can also
produce right-rhombic prisms, and in accord with this we have
the well-known fact that right-rhombic prisms of sulphate of
nickel, N,SO7H,0, when exposed to sunlight are molecularly
transformed, and, though they neither liquefy nor lose their form,
when they are broken are found to be made up of square-based
octahedra several lines in length. WILLIAM BARLOW
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