

Cantilever Rod: Tutorial

GO-VIKING WP 6

Mohammed Muaaz M. D. Hussain,

NRG PALLAS, Petten 1755LE, The Netherlands, 28 August 2024

Funded by the European Union

NRG ref. 2.6206.60/24.289986 C&S/MH/ESI EU DuC = N

- Introduction
 - Test Section
- Modelling Assumptions
- CAD Geometry
- Interactive FSI tutorial using Simcenter STAR-CCM+ (V2306)
 - FSI Test
- FSI Test Results
- What have we learnt?

- Single Phase flow along Cantilevered Rod with Curved end considered
- Experiment carried out at UoM [1]
- Free-Clamped Configuration at Re_{ann}=21.2k

- Rods are filled with lead shots (d = 0.3-1.6 mm)
- Rod is made of AISI 316 SS with an aluminum end plug
- Mass density of rod = 588 g/m
- Measurements:
 - L1 = 1045 mm
 - L2 = 944 mm
 - L3 = 1100 mm
 - D1 = 20.86 mm
 - D2 = 21.80 mm

Flow In/Out -

- Only the test section will be considered
- The lead shots are absent, the effective density of AISI 316 SS will be increased to respect the mass density
- The flow straighteners are absent, a uniform velocity will be provided at the inlet
- The union cross and the two outlet pipes will be present
- Roughness of the rod will be considered
- The working fluid will be taken as water at 20°C
- Gravity will be considered
- Since the Rod is slender and hollow, the nonlinear geometry solver will be used
- The FSI coupling will be two-way
- URANS governing equations will be solved for the fluid side

CAD Geometry

- Can be created externally on any CAD tool and imported into STAR-CCM+
- Can be created using '3D-CAD Modeler' of STAR-CCM+ via creation of 2D sketches and extrusions and then create 'Parts' from the geometry
- Can be created via Boolean operations on primitives such as cylinders and spheres in STAR-CCM+ directly as 'Parts'

- Regions --> Apply your boundary conditions
- Continua --> Describe your solid and fluid properties
- Meshing --> Spatial Discretization of your domain
- Interfaces --> Exchange kinematic & dynamic boundary conditions for FSI or contacts
- Solvers & Stopping Criteria --> Set the solver settings
- Parameters & Field Functions --> Handy for automation
- Derived Parts, Reports, Monitors, Plots & Scenes--> Post processing

Interactive Tutorial: FSI Test

- Free to Clamped flow
- Re_{ann} = 21.2k (V_{in} = 1.510 m/s)
- Simulation run for 12.08 Flow Passes (1FP = 1.376s)
- Time step size = 0.1 ms with 25 inner iterations/time step
- Standard K-Epsilon Low Re Turbulence model
- First 3.5FP ignored for Vibration statistics, first 4.5FP ignored for PIV statistics

• Results: Left Simulation, Right Expt.

 Results: Left Simulation, Right Expt.

FSI Test results

FSI Test results

- 1. Polar displacement [Rho \rightarrow sqrt([x-<x>]^2+ ([z-<z>]^2)]
- Expt. = 0.08 mm
- Numerical = 0.00816 mm (An order of magnitude less)
- 2. Vibrational frequency $[F \rightarrow 0.5^*(F_z+F_x)]$
- Expt. = 3.758 Hz
- Numerical = 3.601Hz [4% error]

- The Cantilevered Rod problem
- Modelling Assumptions for the FSI problem
- How to Setup the problem on the commercial code Simcenter STAR-CCM+ (V2306)
- FSI Test Results

- Cioncili, A. et. al. (2023). Experiments on axial-flow-induced vibration of freeclamped/clamped-free rod for light-water nuclear reactor applications. Annals of Nuclear Energy, 190, 109900. Doi: 10.1016/j.anucene.2023.109900
- Simcenter STAR-CCM+ User Guide: Available at <u>Simcenter STAR-CCM+ User Guide</u> (<u>HUGE pdf</u>) (siemens.com)

GO-VIKING

*

Mohammed Muaaz M. D. Hussain

Funded by the European Union

www.go-viking.eu

Partners				
GRS	NRG	UNIVERSITEIT GENT	LGi sustainable innovation	edf
T UDelft		framatome	IRSIDU DE RADIOPROTECTION ET DE SÚRETÉ NUCLÉAIRE	VON KARMAN INSTITUTE FOR FLUID DYNAMICS
IPP CENTRE			Cea	
Associated Partners				
ACV-MCV-RPI- RPI- 7838 - 1 18	* edf	MANCHESTER 1824 The University of Manchester	PennState	
		*EDF R&D UK Center		GO-VIKING