Data description to "CAMELS-AUS v2: updated hydrometeorological timeseries and landscape attributes for an enlarged set of catchments in Australia"

Keirnan J. A. Fowler¹, Ziqi Zhang¹, Xue Hou^{1,a}

⁵ ¹Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia

^anow at: Department of Energy, Environment, and Climate Action, East Melbourne, Victoria, Australia

Correspondence to: Keirnan Fowler (fowler.k@unimelb.edu.au)

10 **1 Introduction**

This summary provides an overview of the CAMELS-AUS v2 dataset, augmenting the description of changes provided in the CAMELS-AUS v2 publication submitted to Earth Systems Science Data. Here, we provide a description of files included in the data repository located at <u>https://doi.org/10.5281/zenodo.12575680</u>.

15 The CAMELS-AUS v2 dataset (along with datasets on which it is based) is subject to a Creative Commons BY (attribution) licence agreement (https://creativecommons.org/licenses/, last access: 28 June 2024).

2 Catchment attributes and indices "master" table

Catchment attributes are listed by category within individual files, as listed in the sections below. For convenience, a combined "master" attribute table

20 below. For convenience, a combined "master" attribute table (*CAMELS_AUS_Attributes&Indices_MasterTable.csv*) is also provided which combines the attribute information from all the other tables.

2 Metadata

25

The *01_id_name_metadata.zip* file contains dataset sources and station information, as detailed in Table 1.

Short name	Description	Data source / notes
station_id	Station ID used by the Australian Water Resources Council.	Source dataset (HRS-
station_name	River name and station name	2015; HRS-2022; or Saft et al. (2023))

Table 1: Metadata provided in CAMELS-AUS v2

drainage_division	Drainage division, of the 13 defined by the BOM.	Bureau of Meteorology	
river_region	River region, of the 218 defined by the BOM.	(BOM) website <u>www.bom.gov.au</u> and also provided in "bonus data" folder.	
notes	General notes about data issues and/or catchment area calculations		

3 Catchment boundaries and area

The 02_location_boundary_area.zip file contains all the shapefiles (e.g. basin outlets, 30 catchment boundaries and nestedness). Related information is included in the *location_boundary_area.csv* file (Table 2).

Table 2: Basic catchment information provided in CAMELS-AUS v2

Short name	Description	Data source / notes
lat_outlet long_outlet	Latitude and longitude at outlet. Note, in most cases this will be slightly different to the BoM published value because most outlets needed to be moved onto a digital streamline in order to facilitate flow path analysis.	
lat_centroid	Latitude and longitude at contraid of the establishment	
long_centroid	Latitude and longitude at centroid of the catchment.	
map_zone	Map zone used to calculate catchment area (function of longitude)	
catchment_area	Area of upstream catchment in km ²	
state_outlet	Indicates which state or territory of Australia the outlet is within	
state-alt	If the catchment crosses a state or territory boundary, the alternative state or territory is listed here, otherwise "n/a"	
daystart	Time (UTC) for midnight local standard time (for <i>state_outlet</i>). This is the day start time for T_{max} and T_{min} (see Fowler et al., 2021).	This study
daystart_P	Time (UTC) for 9am local standard time (for <i>state_outlet</i>). 9am is when once-per-day precipitation measurements are reported (see Fowler et al., 2021).	Jian et al., (2017)
daystart_Q	Time (UTC) for streamflow day start time, assuming local standard time for <i>state_outlet</i> . This varies by state/territory (Fowler et al., 2021).	
nested_status	"Not nested" indicates the catchment is not contained within any other. "Level1" means it is contained within another, except in cases where it is contained in another "Level1" catchment in which case it is marked "Level2". Same for "Level 3" and "Level 4".	
next_station_ds	For nested catchments, <i>NextStationDS</i> ('DS' meaning downstream) indicates the catchment they are contained within.	
num_nested_within	Indicates how many catchments are nested within this catchment.	

3 Streamflow data and uncertainty

The 03 streamflow.zip file contains streamflow timeseries (Table 3), streamflow signatures 35 (Table 4) and gauging statistics (Table 5). Note that only 39 streamflow signatures, all of them single output (ie. only a single number per catchment) are listed in Table 4. For users who need the complete set, please refer to the signatures TOSSH AllOutput.mat file that includes all outputs of TOSSH (Toolbox for Streamflow Signatures in Hydrology; Gnann et al., 2021) including the 49 signatures and associated information such as run-time messages.

40

File name	Source data	Description / comments	Unit
streamflow_MLd.csv		Streamflow (not gap filled)	ML d ⁻¹
streamflow_MLd_infilled.csv		Streamflow gap filled by the BOM using GR4J (Perrin et al, 2003)	ML d ⁻¹
streamflow_mmd.csv	HRS-2015; HRS- 2022; or Saft et al. (2023)	Streamflow (not gap filled) expressed as depths relative to CAMELS-AUS version 2 adopted catchment areas	mm d ⁻¹
streamflow_QualityCodes.csv		Quality codes/flags as supplied by the HRS website, with meanings listed at www.bom.gov.au/water/hrs/qc_doc.shtml	-

Table 3: Streamflow timeseries data supplied with CAMELS-AUS v2

Table 4: Streamflow signatures provided in CAMELS-AUS v2

Short Name Description		Units	Data source / notes
sig_mag_BaseMag	Difference between maximum and minimum of annual baseflow regime	mm	
sig_mag_BFI	Baseflow index	-	
sig_mag_Q_7_day_max	7-day maximum streamflow	mm/timestep	
sig_mag_Q_7_day_min	7-day min streamflow	mm/timestep	
sig_mag_Q_CoV	Coefficient of variation	-	
sig_mag_Q_mean	Mean streamflow	mm/timestep	
sig_mag_Q_skew	Skewness of streamflow	mm ³ /timestep ³	Calaritate danain a
sig_mag_Q_var	Variance of streamflow	mm ² /timestep ²	TOSSH after
sig_mag_Q5	5-th streamflow percentile	mm/timestep	Gnann et al.
sig_mag_Q95	95-th streamflow percentile	mm/timestep	(2021); the signature
sig_mag_VarIdx	Variability index of flow, calculated from flow duration curve	-	description is from tosshtoolbox.githu
sig_freq_high_Q_freq	High flow frequency	-	<u>b.io/TOSSH/p2_si</u> gnatures.html#list-
sig_freq_low_Q_freq	Low flow frequency	-	of-signature-sets
sig_freq_zero_Q_freq	Zero flow frequency	-	
sig_dur_RespTime	Catchment response time	timestep	
sig_dur_high_Q_dur	High flow duration	timestep	
sig_dur_low_Q_dur	Low flow duration	timestep	
sig_dur_zero_Q_dur	Zero flow duration	timestep	
sig_timing_HFD_mean	Half flow date	day of year	
sig_timing_HFI_mean	Half flow interval	days	

sig_roc_AC1	Lag-1 autocorrelation	-	
sig_roc_AC1_low	Lag-1 autocorrelation for low flow period (the four months with the lowest average flows)	-	
sig_roc_BaseRecesK	Exponential recession constant	1/d	
sig_roc_FDC_slope	Slope of the flow duration curve	-	
sig_roc_FlashIdx	Richards-Baker flashiness index	-	
sig_roc_RecesK_early	Recession constant of early (exponential) recessions	1/timestep	
sig_roc_RecesVarSeasonality	Seasonal variations in recession parameters	-	
Short Name	Description	Units	Data source / notes
sig_roc_RLD	Rising limb density	1/timestep	
sig_other_EventRR	Event runoff ratio	-	
sig_other_PeakDistribution	Slope of distribution of peaks	-	
sig_other_PeakDistribution_low	Slope of distribution of peaks for low flow period (the four months with the lowest average flows)	-	Calculated using TOSSH after
sig_other_QP_elasticity	Streamflow-precipitation elasticity	-	Gnann et al.
sig_other_RR_seasonality	Runoff ratio seasonality	-	(2021); the
sig_other_SnowDayRatio	Snow day ratio (T_threshold = 2 degC)	-	description is from
sig_other_SnowStorage	Snow storage derived from cumulative P-Q regime curve	mm	tosshtoolbox.githu b.io/TOSSH/p2_si
sig_other_Spearmans_rho	Non-uniqueness in the storage-discharge relationship	-	gnatures.html#list- of-signature-sets
sig_other_StorageFromBase	Average storage from average baseflow and storage-discharge relationship	-	-
sig_other_TotalRR	Total runoff ratio	-	
sig_other_ratio_Event_TotalRR	Ratio between event and total runoff ratio	-	

45 Table 5: Flow uncertainty information provided in CAMELS-AUS v2

Short Name	Description	Units	Data source / notes
start_date	Streamflow gauging start date (yyyymmdd)	-	
end_date	Streamflow gauging end date (yyyymmdd)	-	HRS-2015; HRS-2022: or
prop_missing_data	Proportion of data missing between start date and end date	-	Saft et al. (2023)
q_uncert_unique_curves	Number of unique rating curves considered in analysis by McMahon et al. (under review)	-	
q_uncert_rmse_all	%		
q_uncert_rmse_lower As above but for the lower half of non-zero gauged values (daily discharges less than the published non-zero median value) q_uncert_rmse_upper As above but for the upper half of non-zero gauged values (daily discharges greater than the published non-zero median value) q_uncert_days_above The percentage of days for which the published discharge values exceed the maximum gauged discharge		%	McMahon et al.
		%	(under review)
		%	
q_uncert_Q_above	The percentage of the total discharge volume that is above the maximum gauged discharge	%	

4 Catchment attributes

50

We categorized the catchment attributes into five categories (geology and soils; topography and geometry; landcover and vegetation; anthropogenic influences; and others), which are included in the *04_attributes.zip* file (Table 6). Note that the adopted landcover dataset (Lymeburner et al., 2015) can provide information over time; we tabulate the average temporal proportions as attributes, providing full timeseries information in *Landcover timeseries.xlsx*.

Table 6: Catchment attributes included in CAMELS-AUS v2 (apart from climatic and hydrologic indices)

S	Short name	Description	Unit	Data source	Notes/references
g	geol_prim				
8	geol prim prop	Two most common geologies (see list in cell below) with			
8	geol sec	corresponding proportions.	-		
8	geol sec prop				
ι	unconsoldted				
i	igneous	Proportion of catchment taken up by individual geological		Geoscience Australia	Preprocessed by
<u>s</u> s	silicsed	types, specifically: unconsolidated rocks; igneous rocks,		(2008)	Stein et al. (2011)
201	carbnatesed	siliciclastic/undifferentiated sedimentary rocks; carbonate	-		
pr c	othersed	sedimentary rocks; other sedimentary rocks; metamorphic			
v ai	metamorph	rocks; and mixed sedimentary/igneous rocks.			
60 S	sedvolc				
	oldrock	Catchment proportion old bedrock	-		
5 0	claya	Percent clay in the soil A & B horizons, for the stream	0/	National Land and	Duonuo ooggad hay
C	clayb	valley in the reach containing gauging station.	70	Water Resources	Stein et al. (2011)
S	sanda	As above, but % sand in the soil A horizon	%	Audit (2001)	Stelli et al. (2011)
s	solum_thickness	Mean soil depth considering all principle profile forms	m	McKenzie et al. (2000)	-
k	ksat	Saturated hydraulic conductivity (areal mean)	mm h ⁻¹	Western and	Preprocessed by
S	solpawhc	Solum plant available water holding capacity (areal mean)	mm	McKenzie (2004)	Stein et al. (2011)
e	elev_min	Elevation above sea level at gauging station	m	Gallant et al. (2009)	-
e	elev max	Catchment maximum and mean elevation above sea level	m	Hutchinson et al.	Preprocessed by
e	elev_mean	Catchinent maximum and mean elevation above sea level	- 111	(2008)	Stein et al. (2011)
e	elev_range	Range of elevation within catchment: elev_max-elev_min	m		-
n n	mean_slope_pct	Mean slope, calculated on a grid-cell-by-grid-cell basis	%	Gallant et al. (2012)	-
u Gtr	upsdist	Maximum flow path length upstream	km		Preprocessed by
<u> </u>	strdensity	Ratio: (total length of streams) / (catchment area)	km ⁻¹		Stein et al. (2011).
<u> </u>	strahler	Strahler stream order at gauging station	-	Hutchinson et al.	For strahler, see
pu e	elongratio	Factor of elongation as defined in Gordon et al. (1992)	-	(2008)	Strahler (1957)
	relief	Ratio: (mean elev. above outlet)/(max elev. above outlet)	-		For <i>elongratio</i> , see
da r	reliefratio	Ratio: (elevation range)/(flow path distance)	-		Gordon et al. (1992).
120		Proportion of catchment occupied by classes of Multi-			
do <i>r</i>	mrvbf prop 0	Resolution Valley Bottom Flatness (MRVBF). These			
\vdash t	through to	indicate areas subject to deposition. Broad interpretations	-	CSIRO (2016)	Gallant and Dowling
n	mrvbf prop 9	are: $0 - erosional; 1 - small nillside deposit; 2-3 - narrow$. ,	(2003)
		valley moor; $4 - $ valley moor; $5 - 6$ - extensive valley moor;			
		7-6 – depositional basili, 9 – extensive depositional basili		Untahingan at al	Duonuo ooggad hay
C	confinement	that are not valley bottoms (as defined by MRVBF)	-	(2008)	Stein et al. (2011)
1	lc01 extracti			(2000)	
= l	lc 03 waterbo	Proportion of catchment occupied by land cover categories			Note the source
l Itio	lc 04 saltlak	within the Dynamic Lana Cover Dataset (DLCD): mines and quarries (ISO pame: extraction sites)			dataset has 13
l seta	lc 05 irrcrop	lakes and dams (inland water bodies)			timeslices: these
	lc06 irrpast	salt lakes (salt lakes)			attributes indicate
p 1	lc07 irrsuga	irrigated cropping (irrigated cropping)		Lymburner et al.	the temporal
	lc08 rfcronn	irrigated pasture (irrigated pasture)	-	(2015)	average. The
vei	lc09_rfnasty	irrigated sugar (irrigated sugar)	ed sugar)		timeslices are
$ $ $\frac{1}{1}$	lc10 rfsugar	rain jea cropping (rainjea cropping) rain fed pasture (rainfed pasture)			separately supplied
		rum jeu pasare (rumjeu pasare)			
pu 1	lc11 wetlands	rain fed sugar (rainfed sugar)			With CAMELS-AUS
Land	lc11 wetlands lc14 tussclo	rain fed sugar (rainfed sugar) wetlands (wetlands)			v2

	Short name	Description	Unit	Data source	Notes/references
	lc16_openhum	alpine meadows (alpine grasses - open)			
	lc18 opentus	open hummock grassland (hummock grasses - open)			
	lc19_shrbsca	open tussock grasslands (tussock grasses - open)			
	lc24 shrbden	scattered)			
	lc25_shrbope	dense shrubland (shrubs - closed)			
	lc31 forclos	open shrubland (shrubs - open)			
	lc32_foropen	closed forest (trees - closed)			
	lc33_woodope	open forest (trees - open)			
	lc34_woodspa	open woodland (trees - scattered)			
	lc35 urbanar	urban areas (urban areas)			
	 prop_forested	sum(LC 31, LC 32, LC 33, LC 34)			
	nv grasses n				
	nv grasses e	Major vegetation sub-groups within the National			
	nv forests n	Vegetation Information System (NVIS). Despite			
	nv forests e	redundancy with the DLCD attributes (see above), these			
	nv shruhs n	are included because NVIS quantifies alteration from			
	nv shrubs e	'natural' by differentiating between 'pre-1750' ('_n') and			Preprocessed by
	nv woodl n	'extant' ('_e'). Subgroups:	-	DEWR (2006)	Stein et al. (2011)
	nv woodl e	grasses forests			
	nv hare n	shrubs			
	nv bare e	woodlands			
	nv nodata n	bare			
	nv nodata e	no data			
	nv_nouuiu_e	maximum distance unstream before encountering a dam or		Geoscience Austrolio	
	distupdamw	water storage	km	(2004)	
ces	impound fac	Dimensionless factors quantifying human impacts on		(2001)	
len	flow div fac	catchment hydrology in two broad categories:			
Jft	leveebank fac	- Flow regime factors: impoundments (ImpoundmE) flow	Ionment hydrology, in two broad categories:		
c lı	infrastruc fac	diversions (<i>FlowDivF</i>) and levee hanks (<i>LeveebankF</i>)			Preprocessed by
eni	settlement fac	The combined effect is disturbance index <i>FlowRegimeDI</i> :		Stein et al. (2002),	Stein et al. (2011)
800	extract inf fac	- Catchment factors: infrastructure (<i>InfrastrucF</i>).	-	updated by Stein et al.	
lon	landuse fac	settlements (SettlementF), extractive industries		(2011)	
nth	catchment di	(ExtractiveIndF) and landuse (LanduseF). The combined			
A	flow regime di	effect is captured in CatchmentDI.			
	river di	FlowRegimeDI and CatchmentDI are combined in RiverDI			
	pop mean	Average and maximum human population density in			
	pop max	catchment across 3" grid squares.	km⁻²		
	pop gt 1	Proportion of catchment with population density exceeding		ABS (2006)	
	pop gt 10	1 person / km ² and 10 people / km ²	-		
	<u></u>		MJ mm	NH HID ((2001)	
	erosivity	Rainfall erosivity (spatial average across catchment)	ha ⁻¹ h ⁻¹	NLWRA (2001)	Preprocessed by
	anngro_mega	Average annual growth index value for magatherer			Stein et al. (2011)
ler	anngro meso	Average annual growth index value for megainerm,	-		
Otl	anngro micro	mesomerni and interomerni plants, respectively		Xu and Hutchinson	
	gromega seas			(2011)	
	gromeso seas	Seasonality of growth index value for megatherm,	-		
	gromicro seas	mesomerem and microtherm plants, respectively			
	npp_ann	Net Primary Productivity estimated by Raupach et al.			
	npp_1	(2002) for pre-European settlement conditions:	tC Ha-1	$\mathbf{P}_{\text{aurach}} = \frac{1}{2} \left(2002 \right)$	Preprocessed by Stein et al. (2011)
	through to	- annually; and	ic na '	Raupach et al. (2002)	
1	npp_12	- for the twelve calendar months of the year			

5 Hydrometeorology

The *05_hydrometeorology.zip* file contains all hydrometeorological data (Table 7) and climatic indices (Table 8).

 Table 7: Hydrometeorological time series data supplied with CAMELS-AUS v2. All timesteps are daily.
 All data were processed as part of the CAMELS-AUS v2 to extract catchment averages from Australiawide AGCD/SILO grids.

Category	File name	Source data	Description / comments	Unit	
	precipitation_agcd.csv	BOM's Australiancatchment average precipitationGridded Climate Data(Note, AGDC supersedes earlier(AGCD) v1.0.1, (EvansAWAP data used in v1)		mm d ⁻¹	
precipitation	precipitation_var_agcd.csv	et al., 2020) <u>www.bom.gov.au/clim</u> <u>ate/maps/</u> AGCD provides 0.05° grids.	Spatial internal variance in precipitation	mm ² d ⁻²	
Category	File name	Source data	Description / comments	Unit	
precipitation	precipitation_silo.csv		catchment average precipitation		
	et_short_crop_silo.csv		FAO56 short crop PET (see FAO, 1998)		
Actual and potential evano-	et_tall_crop_silo.csv	Scientific Information	ASCE tall crop PET (see ASCE, 2000)		
traspiration (AET and	et_morton_wet_silo.csv	for Land Owners (SILO) project, Government of	Morton (1983) wet-environment areal PET over land		
PET)	et_morton_potential_silo.csv	Queensland (Jeffrey et	Morton (1983) point PET		
	et_morton_actual_silo.csv	al., 2001) www.longpaddock.ald	Morton (1983) areal AET		
	evap_morton_lake_silo.csv	<u>gov.au</u> SILO provides 0.05°	Morton (1983) shallow lake evaporation		
evaporation	evap_pan_silo.csv	grids.	Interpolated Class A pan evaporation		
	evap_syn_silo.csv		Interpolated synthetic extended Class A pan evaporation (Rayner, 2005)		
	tmax_agcd.csv	AGCD (see above)			
tomporatura	tmax_silo.csv	SILO (see above)	Dairy maximum temperature	°C	
temperature	tmin_agcd.csv	AGCD (see above)	Doily minimum temperature		
	tmin_silo.csv	SILO (see above)	Dairy minimum emperature		
	vapourpres_h09_agcd.csv	AGCD (see above)			
	vapourpres_h15_agcd.csv	AGED (see above)	Vapour pressure	hPa	
	vp_silo.csv				
	radiation_silo.csv		Solar radiation	MJ m ⁻²	
Other	vp_deficit_silo.csv		Vapour pressure deficit	hPa	
variables	rh_tmax_silo.csv	SILO (see above)	Relative humidity at the time of maximum temperature	%	
	rh_tmin_silo.csv		Relative humidity at the time of minimum temperature	%	
	mslp_silo.csv		Mean sea level pressure	hPa	

Short Name	Description	Units	Data source / notes
p_mean	mean daily precipitation	mm d ⁻¹	
pet_mean	mean daily potential evapotranspiration (PET) (Morton's Wet Environment)	mm d ⁻¹	Climatic signatures are
aridity	aridity (pet_mean / p_mean)	-	from Addor et al. (2017),
p_seasonality	precipitation seasonality (0: uniform; +'ve: Dec/Jan peak; -'ve: Jun/Jul peak)	-	using the following datasets (cf. Table 1)
frac_snow	fraction of precipitation on days colder than 0° C	-	- Precipitation is based on AWAP rainfall.
high_prec_freq	frequency of high precipitation days, ≥5 times p_mean	d y-1	- PET is based on SILO
high_prec_dur	average duration of high precipitation events	days	Morton Wet Env. PET
high_prec_timing	season during which most high precip. days occur (djf, mam, jja, or son)	season	based on AWAP temperature
low_prec_freq	frequency of dry days ($\leq 1 \text{ mm/d}$)	d y-1	For n sagsonality soo
low_prec_dur	average duration of low precipitation periods (days $\leq 1 \text{ mm/d}$)	days	Eq. 14 in Woods (2009)
low_prec_timing	season during which most dry days occur (djf, mam, jja, or son)	season	

Table 8 Climatic indices provided in CAMELS-AUS v2

65

80

References

ABS (Australian Bureau of Statistics): Australian Census 2006 Population Statistics. Raw data available at <u>https://www.abs.gov.au/websitedbs/censushome.nsf/home/historicaldata2006?opendocument&navpos=280</u>, 2006

70 Acharya, S. C., Nathan, R., Wang, Q. J., Su, C.-H., and Eizenberg, N.: An evaluation of daily precipitation from a regional atmospheric reanalysis over Australia, Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, 2019

Adam, J. C., Clark, E. A., Lettenmaier, D. P., & Wood, E. F.: Correction of global precipitation products for orographic effects. Journal of Climate, 19(1), 15-38. <u>https://doi.org/10.1175/JCLI3604.1</u>, 2006.

75 Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K. and Mendoza, P. A.: Large sample hydrology: recent progress, guidelines for new datasets and grand challenges, Hydrol. Sci. J., https://doi.org/10.1080/02626667.2019.1683182, 2019.

Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N. and Clark, M. P.: A Ranking of Hydrological Signatures Based on Their Predictability in Space, Water Resour. Res., 54(11), 8792–8812, https://doi.org/10.1029/2018WR022606, 2018.

Addor, N., Newman, A. J., Mizukami, N. and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol Earth Syst Sci, 21(10), 5293–5313, 655 https://doi.org/10.5194/hess-21-5293-2017, 2017.

Aghakouchak, A., D. Feldman, M. Stewardson, J. Saphores, S. Grant, and B. Sanders: Australia's Drought: Lessons for California, Science, 343 (6178), 1430-1431, <u>https://doi.org/10.1126/science.343.6178.1430</u>, 2014

Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., ZambranoBigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J. and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22(11), 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. 90 Andréassian, V., et al., 2006. Introduction and synthesis : why should hydrologists work on a large number of basin data sets? Large sample basin experiments for hydrological model parameterization: results of the Model Parameter Experiment–MOPEX. Vol. 307. CEH Wallingford, UK: IAHS Publ, 1–5.

Arsenault, R., Bazile, R., Ouellet Dallaire, C. and Brissette, F.: CANOPEX: A Canadian hydrometeorological watershed database, Hydrol. Process., 30(15), 2734–2736, https://doi.org/10.1002/hyp.10880, 2016.

95 ASCE (American Society for Civil Engineering): ASCE's Standardized Reference Evapotranspiration Equation, proceedings of the National Irrigation Symposium, Phoenix, Arizona, 2000

Ashcroft, L., Karoly, D. J., & Gergis, J.: Southeastern Australian climate variability 1860–2009: a multivariate analysis. International Journal of Climatology, 34(6), 1928-1944. <u>https://doi.org/10.1002/joc.3812</u>, 2014

BOM (Bureau of Meteorology, Australia): Hydrologic Reference Stations data update 2015. Website. <u>www.bom.gov.au/water/hrs/update 2015.shtml</u>, accessed June 1st 2020.

Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C. D. and Siqueira, V. A.: CAMELS-BR: Hydrometeorological time series and landscape attributes for 897 catchments in Brazil, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-67, 2020.

Court, A.: Measures of streamflow timing, J. Geophys. Res., 67, 4335–4339, https://doi.org/10.1029/JZ067i011p04335, 1962.

100

120

Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson, E. L., Wagener, T., and Woods, R.: CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain, Earth Syst. Sci. Data Discuss., <u>https://doi.org/10.5194/essd-2020-49</u>, in review, 2020.

110 CSIRO: AUS SRTM 1sec MRVBF mosaic v01. Bioregional Assessment Source Dataset. Viewed 18 June 2018, http://data.bioregionalassessments.gov.au/dataset/79975b4a-1204-4ab1-b02b-0c6fbbbbbbcb5, 2016

DEWR (Department of the Environment and Water Resources, Australia): Estimated Pre-1750 Major Vegetation Subgroups - NVIS Stage 1, Version 3.1. <u>https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system</u>, 2008

115 Do, H. X., Gudmundsson, L., Leonard, M. and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM)-Part 1: The production of a daily streamflow archive and metadata, Earth Syst. Sci. Data, 10(2), 765–785, https://doi.org/10.5194/essd-10-765-2018, 2018.

Evans, A., Jones, D., Smalley, R., Lellyett, S.: An enhanced gridded rainfall analysis scheme for Australia. Bureau of Meteorology (Australia) Research Report – BRR041, ISBN: 978-1-925738-12-4, http://www.bom.gov.au/research/publications/researchreports/BRR-041.pdf, 2020.

Falkenmark, M. and Chapman, T.: *Comparative hydrology: An ecological approach to land and water resources*. Unesco, Paris, 1989.

FAO (Food and Agriculture Organization of the United Nations): Irrigation and drainage paper 56: Crop evapotranspiration - Guidelines for computing crop water requirements, 1998.

125 Fowler, K., Peel, M., Western, A., & Zhang, L. Improved rainfall-runoff calibration for drying climate: Choice of objective function. Water Resources Research, 54. https://doi.org/10.1029/2017WR022466, 2018

Fowler, K., Peel, M., Western, A., Zhang, L., and Peterson, T. J.: Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models, Water Resources Research, 52, https://doi.org/10.1002/2015WR018068, 2016

130 Fowler, K; Acharya, S. C.; Addor, N.; Chou, C.; Peel, M.: CAMELS-AUS v1: Hydrometeorological time series and landscape attributes for 222 catchments in Australia. Dataset archived with online repository PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.921850, (dataset in review at time of article), 2020a

Fowler, K., Knoben, W., Peel, M., Peterson, T., Ryu, D., Saft, M., Seo, K., Western, A. Many commonly used rainfall-runoff models lack long, slow dynamics: implications for runoff projections. Water Resources
 Research, https://doi.org/10.1029/2019WR025286, 2020b

Fowler, K., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C.: CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia, Earth System Science Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, 2021.

Gallant, J. C., and T. I. Dowling: A multiresolution index of valley bottom flatness for mapping depositional
 areas, WaterResour. Res., 39(12), 1347, <u>https://doi.org/10.1029/2002WR001426</u>, 2003

Gallant, J., Wilson, N., Tickle, P.K., Dowling, T., Read, A.: 3 second SRTM Derived Digital Elevation Model (DEM) Version 1.0. Record 1.0. Geoscience Australia, Canberra. <u>http://pid.geoscience.gov.au/dataset/ga/69888</u>, 2009.

Gallant, John; Austin, Jenet: Slope derived from 1" SRTM DEM-S. v4. CSIRO. Data Collection. <u>https://doi.org/10.4225/08/5689DA774564A</u>, 2012

155

170

Geoscience Australia: Dams and Water Storages 1990, Geoscience Australia, Canberrra. Later versions at <u>https://data.gov.au/data/dataset/ce5b77bf-5a02-4cf8-9cf2-be4a2cee2677</u>, 2004

Geoscience Australia: Surface Geology of Australia 1:1 million scale dataset. Latest version is available at <u>https://data.gov.au/dataset/ds-dga-48fe9c9d-2f10-49d2-bd24-ac546662c4ec/details</u>, 2008

150 Ghiggi, G., Humphrey, V., Seneviratne, S. I. and Gudmundsson, L.: GRUN: An observations-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data Discuss., 1–32, https://doi.org/10.5194/essd-2019-32, 2019.

Gnann, S. J., Coxon, G., Woods, R. A., Nicholas J.K. Howden, and McMillan, H. K.: TOSSH: A Toolbox for Streamflow Signatures in Hydrology, Environmental modelling & software, 138, 104983–104983, https://doi.org/10.1016/j.envsoft.2021.104983, 2021.

Gordon, N. D., McMahon, T. A., Finlayson, B. L., & Christopher, J.: Stream Hydrology: an Introduction for Ecologists. John Wiley & Sons, Ltd. 1992

Gupta, H.V., et al. Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences, 18, 463–477. https://doi.org/10.5194/hess-18-463-2014, 2014

160 Hutchinson, M.F., Stein, J.L., Stein, J.A., Anderson, H., Tickle, P.K.: GEODATA 9 second DEM and D8: Digital Elevation Model Version 3 and Flow Direction Grid 2008. Record DEM-9S.v3. Geoscience Australia, Canberra. http://pid.geoscience.gov.au/dataset/ga/66006, 2008

Isbell, R. F. The Australian Soil Classification. Revised Edition. CSIRO Publishing, Melbourne. See <u>https://www.asris.csiro.au/themes/Atlas.html#Atlas_Digital</u>, 2002

165 Jeffrey, S. J., Carter, J. O., Moodie, K. B., & Beswick, A. R.: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling and Software, 16(4), 309–330. https://doi.org/10.1016/S1364-8152(01)00008-1, 2001

Jian, J., J. Costelloe, D. Ryu, Q. J. Wang.: Does a fifteen-hour shift make much difference? – Influence of time lag between rainfall and discharge data on model calibration. 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, December 2017. https://www.mssanz.org.au/modsim2017/H3/jian.pdf, 2017

Jones, D. A., Wang, W., & Fawcett, R.: High-quality spatial climate data-sets for Australia. Australian Meteorological and Oceanographic Journal, 58(4), 233–248. <u>https://doi.org/10.22499/2.5804.003</u>, 2009

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S. and Nearing, G. S.: Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning, Water Resour. Res., 55(12), 11344–11354, https://doi.org/10.1029/2019WR026065, 2019.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S. and Nearing, G.: Benchmarking a Catchment-Aware Long Short-Term Memory Network (LSTM) for Large-Scale Hydrological Modeling, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-368, 2019.

Kuentz, A., Arheimer, B., Hundecha, Y. and Wagener, T.: Understanding hydrologic variability across Europe
 through catchment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879, https://doi.org/10.5194/hess-21-2863-2017, 2017.

Ladson, A., Brown, R., Neal, B., and Nathan, R.: A standard approach to baseflow separation using the Lyne and Hollick filter, Aust. J. Water Resour., 17, 25–34, <u>https://doi.org/10.7158/W12-028.2013.17.1</u>, 2013.

Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David, C. H., Durand, M., Pavelsky, T. M.,
 Allen, G. H., Gleason, C. J. and Wood, E. F.: Global reconstruction of naturalized river flows at 2.94 million reaches, Water Resour. Res., 2019WR025287, https://doi.org/10.1029/2019WR025287, 2019.

Linke, S., Lehner, B., Dallaire, C. O., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-levine, V., Moidu, H., Tan, F. and Thieme, M.: HydroATLAS : global hydro-environmental sub-basin and river reach characteristics at high spatial resolution, Sci. Data, 0–25, https://doi.org/10.1038/s41597-019-0300-6, 2019.

190 Liu, S. F., Raymond, O. L., Stewart, A. J., Sweet, I. P., Duggan, M., Charlick, C., Phillips, D. and Retter, A. J.: Surface geology of Australia 1:1,000,000 scale, Northern Territory [Digital Dataset]. The Commonwealth of Australia, Geoscience Australia., Canberra Retrieved from: <u>http://www.ga.gov.au</u>, 2006

Lymburner, L., Tan, P., McIntyre, A., Thankappan, M., Sixsmith, J.: Dynamic Land Cover Dataset Version 2.1. Geoscience Australia, Canberra. <u>http://pid.geoscience.gov.au/dataset/ga/83868</u>, 2015

195 Mathevet, T., Gupta, H., Perrin, C., Andréassian, V., & Le Moine, N.: Assessing the performance and robustness of two conceptual rainfall-runoff models on a worldwide sample of watersheds. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.124698, 2020.

McKenzie, N.J., Jacquier, D.W., Ashton L.J. and Cresswell, H.P.: Estimation of Soil Properties Using the Atlas of Australian Soils. CSIRO Land and Water Technical Report 11/00. see

200 <u>https://www.asris.csiro.au/themes/Atlas.html#Atlas_Digital</u>, 2000

175

McInerney, D., Thyer, M., Kavetski, D., Lerat, J., and Kuczera, G.: Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors. Water Resources Research, 53(3), 2199-2239. https://doi.org/10.1002/2016WR019168, 2017

McMahon, T.A., Finlayson, B.L., Haines, A.T. and Srikanthan, R:. *Global runoff: continental comparisons of annual flows and peak discharges*. Catena Verlag, 1992.

McMahon, T.A., Peel, M.C. and Amirthanathan, G.E.: Assessing rating curve uncertainty. Submitted to Hydrological Sciences Journal, 2024.

Morton, F. I.: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66, 1–76, 1983

210 National Land and Water Resources Audit: Gridded soil information layers. Canberra. View at www.asris.csiro.au/mapping/viewer.htm, 2001

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T. and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological dataset for the contiguous USA: dataset characteristics and assessment of regional variability in hydrologic

215 model performance, Hydrol. Earth Syst. Sci., 19, 209–223, https://www.hydrol-earth-syst-sci.net/19/209/2015/, 2015.

Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., et al. Global karst springs hydrograph dataset for research and management of the world's fastest-flowing groundwater, Sci. Data, 7(1), 1–9, https://doi.org/10.1038/s41597-019-0346-5, 2020.

220 Peel, M.C., McMahon, T.A. and Finlayson, B.L.: Variability of annual precipitation and its relationship to the El Niño–Southern Oscillation. Journal of Climate, 15(5), 545-551, 2002.

Peel, M.C., McMahon, T.A. and Finlayson, B.L.: Continental differences in the variability of annual runoffupdate and reassessment. Journal of Hydrology, 295(1-4), 185-197, 2004.

 Peel, M. C., Pegram, G., and McMahon T.: Global analysis of runs of annual precipitation and runoff equal to or
 below the median: Run magnitude and severity, International Journal of Climatology, 24 (7), 549-568, https://doi.org/10.1002/joc.1147, 2005

Peel, M. C., McMahon, T. A., & Finlayson, B. L.: Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water Resources Research, 46(9). <u>https://doi.org/10.1029/2009WR008233</u>, 2010

Peterson, T. J., Saft, M., Peel, M. C., & John, A.: Watersheds may not recover from drought. Science,
 372(6543), 745-749. <u>https://doi.org/10.1126/science.abd5085</u>, 2021Pool, S., Viviroli, D., & Seibert, J. Value of a limited number of discharge observations for improving regionalization: A large-sample study across the United States. Water Resources Research, 55, 363–377. <u>https://doi.org/10.1029/2018WR023855</u>, 2019

Raupach MR, Kirby JM, Barrett DJ, and Briggs PR: Balances of Water, Carbon, Nitrogen and Phosphorus in Australian Landscapes version 2.04, CSIRO Land and Water, Canberra, http://www.clw.csiro.au/publications/technical2001/tr40-01.pdf, 2002

235

250

Raymond, O. L., Liu, S. F. and Kilgour, P.: Surface geology of Australia 1:1,000,000 scale, Tasmania - 3rd edition [Digital Dataset]. The Commonwealth of Australia, Geoscience Australia., Canberra Retrieved from: http://www.ga.gov.au, 2007a

Raymond, O. L., Liu, S. F., Kilgour, P. L., Retter, A. J., Stewart, A. J. and Stewart, G.: Surface geology of
 Australia 1:1,000,000 scale, New South Wales - 2nd edition [Digital Dataset]. The Commonwealth of Australia, Geoscience Australia., Canberra Retrieved from: http://www.ga.gov.au, 2007b

Raymond, O. L., Liu, S. F., Kilgour, P., Retter, A. J. and Connolly, D. P.: Surface geology of Australia 1:1,000,000 scale, Victoria - 3rd edition [Digital Dataset]. The Commonwealth of Australia, Geoscience Australia., Canberra Retrieved from: <u>http://www.ga.gov.au</u>, 2007c

245 Rayner, D. Australian synthetic daily Class A pan evaporation. Technical Report December, Queensland Department of Natural Resources and Mines, Indooroopilly, Qld., Australia, 40 pp., <u>https://data.longpaddock.qld.gov.au/static/silo/pdf/AustralianSyntheticDailyClassAPanEvaporation.pdf</u>, 2005

Reynolds, J. E., S. Halldin, J. Seibert, & C. Y. Xu: Definitions of climatological and discharge days: do they matter in hydrological modelling?. Hydrological Sciences Journal, 63(5), 836-844. https://doi.org/10.1080/02626667.2018.1451646, 2018

Saft, M., Weligamage, H. G., Peel, M., Peterson, T., Brown, R., Jordan, P., Morden, R. & Fowler, K. (2023). Victorian Water and Climate dataset: long-term streamflow, climate, and vegetation observation records and catchment attributes, Version 1. Publicly accessible data repository at https://doi.org/10.5281/zenodo.7527565

Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Climate elasticity of streamflow in the United States, Water Resour. Res., 37, 1771–1781, <u>https://doi.org/10.1029/2000WR900330</u>, 2001.

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911, <u>https://doi.org/10.5194/hess-15-2895-2011</u>, 2011.

Shen, C.: A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists, Water Resour. Res., 54, 8558–8593, https://doi.org/10.1029/2018WR022643, 2018.

Skinner, D., & Langford, J. Legislating for sustainable basin management: the story of Australia's Water Act (2007). Water Policy, 15(6), 871-894. 2013

Stein, J. L., Stein, J. A. and Nix, H. A.: Spatial analysis of anthropogenic river disturbance at regional and continental scales: identifying the wild rivers of Australia. Landscape and Urban Planning, 60, 1-25, https://doi.org/10.1016/S0169-2046(02)00048-8, 2002

265

Stein, J. L., Hutchinson, M. F. and Stein, J. A.: National Catchment and Stream Environment Database version 1.1.4. Available at <u>http://pid.geoscience.gov.au/dataset/ga/73045</u>, 2011

Stewart, A. J., Sweet, I. P., Needham, R. S., Raymond, O. L., Whitaker, A. J., Liu, S. F., Phillips, D., Retter, A. J., Connolly, D. P. and Stewart, G.: Surface geology of Australia 1:1,000,000 scale, Western Australia [Digital

270 Dataset]. The Commonwealth of Australia, Geoscience Australia., Canberra Retrieved from: http://www.ga.gov.au, 2008

Strahler, A. N. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. <u>https://doi.org/10.1029/TR038i006p00913</u>, 1957

Tozer, C. R., Kiem, A. S., & Verdon-Kidd, D. C. On the uncertainties associated with using gridded rainfall data
 as a proxy for observed. Hydrology and Earth System Sciences, 16(5), 1481. https://doi.org/10.5194/hess-16-1481-2012, 2012

Turner, M., Bari, M., Amirthanathan, G., & Ahmad, Z.: Australian network of hydrologic reference stationsadvances in design, development and implementation. In Hydrology and Water Resources Symposium 2012 (p. 1555). Engineers Australia, <u>http://www.bom.gov.au/water/hrs/media/static/papers/Turner2012.pdf</u>, 2012

280 Verdon-Kidd, D. C., and A. S. Kiem: Nature and causes of protracted droughts in southeast Australia: Comparison between the Federation, WWII, and Big Dry droughts, Geophysical Research Letters, 36 (22), 1-6, <u>https://doi.org/10.1029/2009GL041067</u>, 2009.

Vertessy, R. A.: Water information services for Australians. Australasian Journal of Water Resources, 16(2), 91-105. <u>https://www.tandfonline.com/doi/abs/10.7158/13241583.2013.11465407</u>, 2013

285 Viglione, A., Borga, M., Balabanis, P. and Blöschl, G.: Barriers to the exchange of hydrometeorological data in Europe: Results from a survey and implications for data policy. Journal of Hydrology, 394(1-2), 63-77, 2010.

Western, A. and McKenzie, N.: Soil hydrological properties of Australia Version 1.0.1, CRC for Catchment Hydrology, Melbourne, 2004

Western, A. W., Matic, V., & Peel, M. C.: Justin Costelloe: a champion of arid-zone water research.
Hydrogeology Journal, 28(1), 37-41, <u>https://doi.org/10.1007/s10040-019-02051-7</u>, 2020

Whitaker, A. J., Champion, D. C., Sweet, I. P., Kilgour, P. and Connolly, D. P.: Surface geology of Australia 1:1,000,000 scale, Queensland 2nd edition [Digital Dataset]. The Commonwealth of Australia, Geoscience Australia., Canberra Retrieved from: <u>http://www.ga.gov.au</u>, 2007

Whitaker, A. J., Glanville, D. H., English, P. M., Stewart, A. J., Retter, A. J., Connolly, D. P., Stewart, G. A. and
 Fisher, C. L.: Surface geology of Australia 1:1,000,000 scale, South Australia [Digital Dataset]. The
 Commonwealth of Australia, Geoscience Australia., Canberra Retrieved from: http://www.ga.gov.au, 2008

Woods, R. A.: Analytical model of seasonal climate impacts on snow hydrology: Continuous snowpacks, Adv. Water Resour., 32, 1465–1481, https://doi.org/10.1016/j.advwatres.2009.06.011, 2009.

Wright, D. P., Thyer, M., & Westra, S.: Influential point detection diagnostics in the context of hydrological model calibration. Journal of Hydrology, 527, 1161-1172.https://doi.org/10.1016/j.jhydrol.2018.01.036, 2018

Xu, T., & Hutchinson, M.: ANUCLIM version 6.1 user guide. The Australian National University, Fenner School of Environment and Society, Canberra. <u>https://fennerschool.anu.edu.au/files/anuclim61.pdf</u>, 2011

Zhang, S. X., Bari, M., Amirthanathan, G., Kent, D., MacDonald, A., & Shin, D. Hydrologic reference stations to monitor climate-driven streamflow variability and trends. In Hydrology and Water Resources Symposium 2014 (p. 1048), Engineers Australia, 2014.

305

Zhang, X. S., Amirthanathan, G. E., Bari, M. A., Laugesen, R. M., Shin, D., Kent, D. M., et al.. How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations. Hydrology and Earth System Sciences, 20(9), 3947. https://doi.org/10.5194/hess-20-3947-2016, 2016